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Motivation

See Gair’s talk for eLISA motivation

Model gravitational waves from 
Extreme/Intermediate-mass-ratio 
inspirals

Allows the spacetime around the 
central black hole to be mapped 
out. Resolve the Kerr hypothesis.

Compare perturbative results with 
other approaches to the GR two-
body problem



Self-force: overview
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F↵(⌧) = q2
Z ⌧�

�1
r↵Gret(z(⌧), z(⌧

0)) d⌧ 0

Gravitational self-force is known for generic 
bound geodesic orbits in Schw. spacetime

Progress in Kerr spacetime (see Dolan’s 
talk)

Progress in non-Lorenz gauges (see Merlin’s 
talk)

Calculation of gauge invariant quantities and 
comparisons with other approaches to the 
two body problem



Self-force: comparisons
Comparison with 
numerical relativity

Comparison with 
post-Newtonian 3
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FIG. 1: The periastron advance K of an equal mass black hole binary, in
the limit of zero eccentricity, as a function of the orbital frequency Wj of
the circular motion. The NR results are indicated by the cyan-shaded region.
The PN and EOB results are valid at 3PN order. The lower panel shows the
relative difference dK/K ⌘ (K �KNR)/KNR.

other mass ratios, the EOB(3PN) result is within the numerical
error at all frequencies. When using the EOB potential A(u)
with 4PN and 5PN terms calibrated to a set of highly accu-
rate unequal mass non-spinning binary black hole simulations
[20], the EOB prediction is within the numerical error at all
frequencies and for all mass ratios considered. This remark-
able agreement could be attributed in part to the “pole-like”
structure at the EOB ISCO in Eq. (5), which is absent from
the standard PN result (4).

Perturbation Theory and the Gravitational Self-Force. Ex-
treme mass ratio inspirals (EMRIs) of compact objects into
massive black holes, for which m2 � m1, are important
sources of low-frequency gravitational radiation for future
space-based detectors. Modelling the dynamics of these sys-
tems requires going beyond the geodesic approximation, by
taking into account the back-reaction effect due to the inter-
action of the small object with its own gravitational perturba-
tion. This “gravitational self-force” (GSF) effect has recently
been computed for generic (bound) geodesic orbits around a
Schwarzschild black hole [21–23]. In particular, the O(q) cor-
rection to the test-mass result KSchw has been derived [24].
This calculation determined (numerically) the term r(x) in
the function W ⌘ 1/K2 = 1� 6x+ qr(x)+O(q2). The re-
sults are well fitted (at the 10�5 level) by the rational func-
tion r = 14x2(1 + ax)/(1 + bx + gx2), with a = 12.9906,
b = 4.57724, and g =�10.3124. (This model improves upon
the model of Ref. [24]; it is based on a much denser sample of
GSF data points in the relevant frequency range.) In terms of
the quantity K we have

Kq
GSF =

1p
1�6x


1� q

2
r(x)

1�6x
+O(q2)

�
. (6)

We used this expression, with the above analytic fit for r(x),
to produce the dashed blue curves in Figs. 1–3.
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FIG. 2: Same as in Fig. 1, but for a mass ratio q = 1/8. Note that for an
orbital frequency mWj ⇠ 0.03, corresponding to a separation r ⇠ 10m, the
periastron advance reaches half an orbit per radial period.

Since r(x) > 0 for all stable circular orbits, the O(q) GSF
decreases the rate of precession. Note that the formal diver-
gence of Kq

GSF at the ISCO limit (x ! 1/6) is simply a conse-
quence of the fact that Wr vanishes there (by definition), while
Wj remains finite. This divergence might explain why the
convergence of the standard PN series seems to deteriorate
with decreasing q [25], as also illustrated by our results (cf.
Fig. 3). We remind the reader that Eq. (6) captures only the
conservative effect of the GSF, and has a limited physical rel-
evance near the ISCO, where the actual dynamics transitions
from an adiabatic quasi-circular inspiral (driven by the dissi-
pative piece of the GSF) to a direct plunge [26, 27].

We now turn to discuss one of the most striking findings
of our study. Since q and n = q/(1+ q)2 coincide at leading
order, namely q = n +O(n2), we may recast Eq. (6) as

Kn
GSF =

1p
1�6x


1� n

2
r(x)

1�6x
+O(n2)

�
, (7)

which, unlike Kq
GSF, is symmetric under m1 $ m2. The solid

blue curves in Figs. 1–3 show Kn
GSF. Remarkably, while the

agreement between Kq
GSF and KNR becomes manifest only at

sufficiently small q (as expected), Kn
GSF appears to agree ex-

tremely well with KNR at all mass ratios. This suggests that
the substitution q ! n amounts to an efficient “resummation”
of the q-expansion, to the effect that much of the functional
form K(x) is captured by the O(n) term, even for large q.

A few heuristic explanations for this behavior may be sug-
gested. (i) As mentioned earlier, quadratic corrections in n
enter the PN expression for K only at 3PN [recall Eq. (4)],
and account for less than 1% of K at this order. This implies
that the linear-in-n approximation must be very accurate, at
least at small frequencies. (ii) The true function K(x;m1,m2)
must be invariant under exchange m1 $ m2. The expansion
in n , Kn

GSF, satisfies this symmetry by definition of n , whereas
the expansion in q, Kq

GSF, does not. (iii) Assuming the co-

Plot from Le Tiec etal.
Assess PN in the strong-field 
and extract higher-order PN 

parameters

See Shah’s talk

 0

 0.1

 0.2

 0.3

 0.4

 0.5

6 8 10 12 14 16 18 20


u
T S
F

y-1

N

1PN

2PN

3PN

Exact

FIG. 2: The self-force contribution uT
SF to uT plotted as a function of the gauge invariant variable y−1.

Note that y−1 is equal to RΩ/m2, an invariant measure of the orbital radius, scaled by the black hole mass

m2 [cf. Eq. (2.16)]. The “exact” numerical points are taken from Ref. [24].

The 2PN result is in agreement with (2.17) as it should. For the much more difficult 3PN
coefficient, whose value depends on subtle issues regarding the self-field regularization (see
Sec. III), we thus find

C3PN = −
121

3
+

41

32
π2 . (5.6)

We get also the 3PN expansion of the post-self-force, which could be compared with future
SF analyses with second-order black hole perturbations,22

uT
PSF = y + 3y2 +

97

8
y3 +

(

725

12
−

41

64
π2

)

y4 +O(y5) , (5.7)

as well as all higher post-self-force effects up to 3PN order.
Numerically, the 3PN coefficient in the self-force is C3PN = −27.6879 · · · . This shows a

remarkable agreement between the post-Newtonian prediction and the result of the numerical
SF calculation reported in (2.18), namely CSF

3PN = −27.677 ± 0.005. The two results are
consistent at the 2σ level with five significant digits. This agreement can also be visualized
in Fig. 2, where we show the SF contribution uT

SF to uT as a function of y−1, as well as
the successive Newtonian, 1PN, 2PN and 3PN approximations to uT

SF. Observe notably

22 Notice that uT
SF < 0 and uT

PSF > 0 (at least up to 3PN order). The effect of the self-force is to reduce the

value of uT , while the post-self-force tends to increase it.

26

Plot from Blanchet etal.
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FIG. 1: The periastron advance K of an equal mass black hole binary, in
the limit of zero eccentricity, as a function of the orbital frequency Wj of
the circular motion. The NR results are indicated by the cyan-shaded region.
The PN and EOB results are valid at 3PN order. The lower panel shows the
relative difference dK/K ⌘ (K �KNR)/KNR.

other mass ratios, the EOB(3PN) result is within the numerical
error at all frequencies. When using the EOB potential A(u)
with 4PN and 5PN terms calibrated to a set of highly accu-
rate unequal mass non-spinning binary black hole simulations
[20], the EOB prediction is within the numerical error at all
frequencies and for all mass ratios considered. This remark-
able agreement could be attributed in part to the “pole-like”
structure at the EOB ISCO in Eq. (5), which is absent from
the standard PN result (4).

Perturbation Theory and the Gravitational Self-Force. Ex-
treme mass ratio inspirals (EMRIs) of compact objects into
massive black holes, for which m2 � m1, are important
sources of low-frequency gravitational radiation for future
space-based detectors. Modelling the dynamics of these sys-
tems requires going beyond the geodesic approximation, by
taking into account the back-reaction effect due to the inter-
action of the small object with its own gravitational perturba-
tion. This “gravitational self-force” (GSF) effect has recently
been computed for generic (bound) geodesic orbits around a
Schwarzschild black hole [21–23]. In particular, the O(q) cor-
rection to the test-mass result KSchw has been derived [24].
This calculation determined (numerically) the term r(x) in
the function W ⌘ 1/K2 = 1� 6x+ qr(x)+O(q2). The re-
sults are well fitted (at the 10�5 level) by the rational func-
tion r = 14x2(1 + ax)/(1 + bx + gx2), with a = 12.9906,
b = 4.57724, and g =�10.3124. (This model improves upon
the model of Ref. [24]; it is based on a much denser sample of
GSF data points in the relevant frequency range.) In terms of
the quantity K we have

Kq
GSF =

1p
1�6x


1� q

2
r(x)

1�6x
+O(q2)

�
. (6)

We used this expression, with the above analytic fit for r(x),
to produce the dashed blue curves in Figs. 1–3.
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FIG. 2: Same as in Fig. 1, but for a mass ratio q = 1/8. Note that for an
orbital frequency mWj ⇠ 0.03, corresponding to a separation r ⇠ 10m, the
periastron advance reaches half an orbit per radial period.

Since r(x) > 0 for all stable circular orbits, the O(q) GSF
decreases the rate of precession. Note that the formal diver-
gence of Kq

GSF at the ISCO limit (x ! 1/6) is simply a conse-
quence of the fact that Wr vanishes there (by definition), while
Wj remains finite. This divergence might explain why the
convergence of the standard PN series seems to deteriorate
with decreasing q [25], as also illustrated by our results (cf.
Fig. 3). We remind the reader that Eq. (6) captures only the
conservative effect of the GSF, and has a limited physical rel-
evance near the ISCO, where the actual dynamics transitions
from an adiabatic quasi-circular inspiral (driven by the dissi-
pative piece of the GSF) to a direct plunge [26, 27].

We now turn to discuss one of the most striking findings
of our study. Since q and n = q/(1+ q)2 coincide at leading
order, namely q = n +O(n2), we may recast Eq. (6) as

Kn
GSF =

1p
1�6x


1� n

2
r(x)

1�6x
+O(n2)

�
, (7)

which, unlike Kq
GSF, is symmetric under m1 $ m2. The solid

blue curves in Figs. 1–3 show Kn
GSF. Remarkably, while the

agreement between Kq
GSF and KNR becomes manifest only at

sufficiently small q (as expected), Kn
GSF appears to agree ex-

tremely well with KNR at all mass ratios. This suggests that
the substitution q ! n amounts to an efficient “resummation”
of the q-expansion, to the effect that much of the functional
form K(x) is captured by the O(n) term, even for large q.

A few heuristic explanations for this behavior may be sug-
gested. (i) As mentioned earlier, quadratic corrections in n
enter the PN expression for K only at 3PN [recall Eq. (4)],
and account for less than 1% of K at this order. This implies
that the linear-in-n approximation must be very accurate, at
least at small frequencies. (ii) The true function K(x;m1,m2)
must be invariant under exchange m1 $ m2. The expansion
in n , Kn

GSF, satisfies this symmetry by definition of n , whereas
the expansion in q, Kq

GSF, does not. (iii) Assuming the co-
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numerical relativity

Domain of validity of 
perturbation theory may be 

much greater than first thought
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post-Newtonian

Plot from Le Tiec etal.
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The 2PN result is in agreement with (2.17) as it should. For the much more difficult 3PN
coefficient, whose value depends on subtle issues regarding the self-field regularization (see
Sec. III), we thus find

C3PN = −
121
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We get also the 3PN expansion of the post-self-force, which could be compared with future
SF analyses with second-order black hole perturbations,22
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as well as all higher post-self-force effects up to 3PN order.
Numerically, the 3PN coefficient in the self-force is C3PN = −27.6879 · · · . This shows a

remarkable agreement between the post-Newtonian prediction and the result of the numerical
SF calculation reported in (2.18), namely CSF

3PN = −27.677 ± 0.005. The two results are
consistent at the 2σ level with five significant digits. This agreement can also be visualized
in Fig. 2, where we show the SF contribution uT

SF to uT as a function of y−1, as well as
the successive Newtonian, 1PN, 2PN and 3PN approximations to uT

SF. Observe notably

22 Notice that uT
SF < 0 and uT

PSF > 0 (at least up to 3PN order). The effect of the self-force is to reduce the

value of uT , while the post-self-force tends to increase it.
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Phase evolution

✏ = µ/M

Orbit-averaged dissipative component of the SF O(✏�1) :

O(✏�1/2) : Resonances, oscillating SF no longer averages out

With                Hinderer and Flanagan showed that the phase 
evolution of a generic inspiral about a Kerr black hole scales as:

O(✏0) :

8
<

:

Oscillatory component of the dissipative SF
Conservative component of the SF
Orbit-averaged dissipative piece of the second-order SF

(See Pound’s talk)



Leading order inspiral

Movie from S. Drasco

Change in   and   from flux balance.  Adiabatic change in     
building on Mino’s work

E L Q



Resonances

See van de Meent, Cañizares, Tanaka and Isoyama’s talks

Images from S. Drasco 3

rections to the phases over a complete inspiral [10], and
the kicks �Jµ produced during the resonance depend on
the O(1) phases at the start of the resonance.

Seventh, resonances give rise to increased sensitivity
to initial conditions, analogous to chaos but not as ex-
treme as chaos, because at a resonance information flows
from a higher to a lower order in the perturbation ex-
pansion. For example, we have argued that changes to
the phases at O(1) prior to the resonance will a↵ect the
post-resonance phasing at O(1/

p
"). Similarly changes to

the phases at O(
p
") before resonance will produce O(1)

changes afterwards. With several successive resonances,
a sensitive dependence on initial conditions could arise.

Numerical Integrations: The scaling relation �� / 1/
p
"

suggests the possibility of phase errors large compared to
unity that impede the detection of the gravitational wave
signal. To investigate this possibility, we numerically in-
tegrated the exact Kerr geodesic equations supplemented
with approximate post-Newtonian forcing terms. While
several such approximate inspirals have been computed
previously [20], none have encountered resonances, be-
cause resonances require non-circular, non-equatorial or-
bits about a spinning black hole with non orbit-averaged
forces, which have not been simulated before.

For the numerical integrations we use instead of q↵ the
variables q̄↵ = (q̄t, q̄r, q̄✓, q̄�) = (t, ,�,�) where  and �
are the angular variables for r and ✓ motion defined in
Ref. [13]. The equations of motion (1) in these variables
are

t,⌧ = !̄t(q̄✓, q̄r,J), �,⌧ = !̄�(q̄✓, q̄r,J), (3a)

q̄✓,⌧ = !̄✓(q̄✓,J) + "h(1)
✓ (q̄✓, q̄r,J) +O("2), (3b)

q̄r,⌧ = !̄r(q̄r,J) + "h(1)
r (q̄✓, q̄r,J) +O("2), (3c)

J⌫,⌧ = "H(1)
⌫ (q̄✓, q̄r,J) +O("2). (3d)

Here ⌧ is Mino time [13], the frequencies !̄ are given in

[13], and h(1)
↵ and H(1)

⌫ are given in terms of the compo-
nents of the 4-acceleration in [21].

We parameterize the three independent components of

the acceleration in the following way: a↵ = ar̂e↵r̂ +a✓̂e↵
✓̂
+

a?✏↵���u
�e�r̂ e

�
✓̂
+(ar̂ur̂+a✓̂u✓̂)u

↵, where ~u is the 4-velocity
and ~er̂ and ~e✓̂ are unit vectors in the directions of @r and

@✓. We compute the dissipative pieces of ar̂, a✓̂ and a?
from the results of [22], as functions of r̃ = r + a2/(4r),
En = E�1, and K̄ = Q+a2L2

z+a2En, and then expand
to O(a2) and to the leading post-Newtonian order at each
order in a [17]. We also add the conservative component,
expressed similarly and computed to O(a) and to the
leading post-Newtonian order, taken from Refs. [23]; see
Ref. [17] for details.

We numerically integrate Eqs. (3) twice, once using
the adiabatic prescription, and once exactly, and then
subtract at fixed t to obtain the post-adiabatic e↵ects.
The adiabatic prescription involves numerically integrat-
ing the right hand sides over the torus parameterized

FIG. 1: [Top] The adiabatic inspiral computed from our ap-
proximate post-Newtonian self-force, for a mass ratio " =
µ/M = 3 ⇥ 10�6, with black hole spin parameter a = 0.95,
with initial conditions semilatus rectum p = 9.0M , eccentric-
ity e = 0.7, and orbital inclination ✓inc = 1.20. The bottom
curve is e, the middle curve is ✓inc, and the top curve is ratio of
frequencies !✓/!r, shown as functions of p. [Middle] The fluc-
tuating, dissipative part of the first order self-force causes a
strong resonance when !✓/!r = 3/2 at p = 8.495. Shown are
the corrections to the energy E, angular momentum Lz and
Carter constant Q, as functions of p, scaled to their values at
resonance, and divided by the square root

p
µ/M of the mass

ratio. The sudden jumps at the resonance are apparent, with
the largest occurring for the Carter constant. [Bottom] The
lower curve is the correction to the number of cycles �/(2⇡)
of azimuthal phase of the inspiral caused by the fluctuating,
dissipative part of the first order self-force. The sharp down-
ward kick due to the resonance at p = 8.495 can be clearly
seen. The resonant corrections to the number of cycles of r
and ✓ motion are similar. These phase shifts scale as

p
M/µ.

The upper curve is the post-adiabatic phase correction due
to the conservative piece of the first order self-force, which is
considerably smaller and is independent of the mass ratio.

by q✓, qr at each time step, where qr = Fr(q̄r)/Fr(2⇡),
Fr(q̄r) =

R q̄r
0 dq̄r/[!̄r(q̄r,J)], with a similar formula for

q✓. This is numerically time consuming, but the adiabatic
integration can take timesteps on the inspiral timescale
⇠ 1/" rather than the dynamical timescale ⇠ 1.

Typical results are shown in Fig. 1, which shows the
adiabatic inspiral for a mass ratio of " = 3⇥10�6 with a =
0.95, in terms of the relativistic eccentricity e, semilatus
rectum p and orbital inclination ✓inc, which are functions
of E, Lz and Q [24]. This example has a strong resonance
at !✓/!r = 3/2, that generates jumps in the conserved

Plot from Hinderer and Flanagan

Only occurs for generic orbits 
about Kerr black holes
Occurs when: 

Causes a large change in the orbital 
parameters, but only when the 
oscillatory parts of the self-force are 
included
Location of resonance will be a 
good test of the Kerr metric

⌦r

⌦✓
=

n1

n2

where     and      are coprime 
with small ratio

n1 n2



Inspirals in Schwarzschild 
spacetime using geodesic 

self-force data
NW, S. Akcay, L. Barack, J. Gair and N. Sago

Phys. Rev. D 85.061501(r)

Orbit-averaged dissipative component of the SF O(✏�1) :

O(✏�1/2) : Resonances, oscillating SF no longer averages out

O(✏0) :

8
<

:

Oscillatory component of the dissipative SF
Conservative component of the SF
Orbit-averaged dissipative piece of the second-order SF



Orbital parametrization
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We use an alternative parametrization: the 
semi-latus rectum, p, and the orbital eccentricity, 
e.

p ⌘ 2r
max

r
min

M(r
max

+ r
min

)
e ⌘ r

max

� r
min

r
max

+ r
min

Also introduce a relativistic anomaly 
parameter,     , such that�

r(t) =
pM

1 + e cos[�(t)� �0]

where      is the periastron phase�0



Orbit evolution: osculating orbits

There is no requirement in this formulation 
that the force be small

Pound and Poisson derived the evolution equations 
in Schw. spacetime

Gair etal. gave the extension to forced 
motion in Kerr spacetime

ṗ = Fp[p, e,�� �
0

, F diss

self

(t)]

ė = Fe[· · · ]
�̇
0

= F�0 [p, e,�� �
0

, F cons

self

(t)]

At     the position and velocity of the inspiralling 
particle corresponds to that of an osculating 
(‘kissing’) geodesic. In general, at later times     
and the osculating geodesic will diverge. If instead                                      
                                              the trajectory 
can be described by a sequence of osculating 
geodesics.

t1

xp(t)

{p, e,�0} ! {p(t), e(t),�0(t)}



Orbit evolution: key assumption

The true self-force is given by an integral over 
the entire past history of the particle

ṗ = Fp[p, e,�� �
0

, F diss

self

(p, e,�� �
0

)]

ė = Fe[· · · ]
�̇
0

= F�0 [p, e,�� �
0

, F cons

self

(p, e,�� �
0

)]

In this work we approximate the self-force at a give 
instance by that of the self-force of a particle that 
has spent its entire history on the corresponding 
osculating geodesic

F↵(⌧) = q2
Z ⌧�

�1
r↵Gret(z(⌧), z(⌧

0)) d⌧ 0

It is not yet known how the phase error from the 
approximation scales with    . See later on.✏



Self-force interpolation model
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Efficiency of S. Akcay, NW and L. Barack code.  
See also talks by Hopper, Forest and Osburn

anjk �2

F r
cons

= (µ/M)

2

n̄X

n=0

An(p, e) cos(nv)

An(p, e) = p�2

¯jaX

j=n

¯kaX

k=0

anjke
jp�k
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F (data)

< 10

�3

Fit the     using standard    minimization 
and seek a global accuracy of

{F r
cons

, F'
diss

, F r
diss

, F'
cons

}
We use a Fourier representation and fit 
the four GSF                         
components as

Though we now have fast FD GSF 
codes it is still impractical to 
calculate     and      for given
                             at each time     
step of the orbital evolution
Instead we fit as much data as we 
can produce (see next slide) to a 
model

F r F'

(p, e, v ⌘ �� �0)
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Self-force interpolation model

Fit the model with data from over 1000 geodesics. Verified the fit by checking 
the results of the model against Barack and Sago’s TD code.



Sample Inspiral: snapshots
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75 days and 1 hour to plunge

Inspiral completes 75,550 
periastron passages

µ = 10M�,M = 106M�

(p0, e0,�00) = (12, 0.2, 0)
Initial conditions:

Masses:



 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 6  7  8  9  10  11  12
-9

-8

-7

-6

-5

-4

-3

-2

-1

 0
e χ 0

p

In
ne

rm
os

t S
ta

bl
e 

O
rb

it

e(p
)χ 0(

p)

 0.104

 0.106

 0.108

 6.2  6.22  6.24  6.26

-8.9

-8.85

-8.8

1e-5

1e-4

1e-3

 0  1  2  3  4  5  6
p-6-2e

α(ε)

Black dots mark (from right) 500 days, 100 days, 10 days 
and 1 hour to plunge (note the left and right hand axes)



Construct a radiative 
approximation:

ṗ = hFp[p, e, v, F
diss

self

]i
ė = hFe[· · · ]i

�̇
0

= hF�0 [p, e, v, F
cons

self

]i = 0

where     is a t-average 
over the instantaneous 
osculating geodesic

h·i

Then consider difference 
in accumulated phase:
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Inspiral comparison: scalar case
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Osculating orbits with geodesic SSF

NW

Fit model with 1000 geodesics 
worth of SSF data computed using 
FD code using mode-sum 
regularization [see Heffernan’s talk]
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Deiner, Vega and Wardell

3+1 time domain code using the 
effective source approach 
[see Diener’s talk]



Inspiral comparison: preliminary results
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Evolutions are indistinguishable to within the numerical error from the 3+1 code



Future directions

Increase accuracy of self-consistent evolution. Progress on a 1+1D 
effective-source code (See Wardell’s talk)

Ascertain the scaling with   of the error from using osculating 
orbits. Can we come up with an analytical argument for the scaling?

Extension to gravity. Stability issues of the monopole 
     and dipole in the time-domain (see Dolan’s talk).

Extension to Kerr. Is osculating orbits with 
     geodesic SF practical here?

✏



Future directions
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Plots courtesy of Casals, Dolan, Ottewill and Wardell
orbit parameters (p,e) = (7.2, 0.5)For details see Casals’ talk

F g
↵(⌧) = q2

Z ⌧�

�1
r↵Gret(z(⌧), z

g(⌧ 0)) d⌧ 0

F i
↵(⌧) = q2

Z ⌧�

�1
r↵Gret(z(⌧), z

i(⌧ 0)) d⌧ 0

Self-force along a tangent geodesic

Self-force along the inspiral

How do the Greens functions differ?

Recent work by Casals etal. allows for the 
calculation of the retarded Greens function


