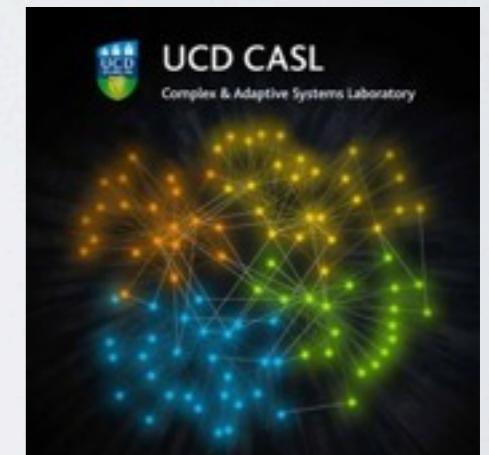


ORBIT EVOLUTION WITH THE SELF-FORCE PROGRESS AND CHALLENGES

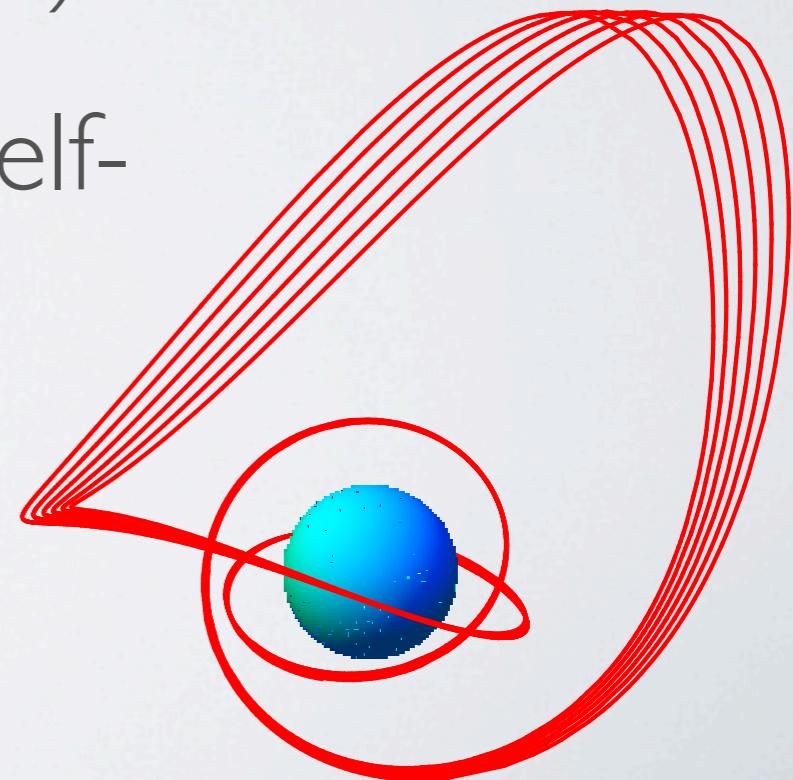
Niels Warburton
University College Dublin

CapraI6, Dublin, 2013



Overview

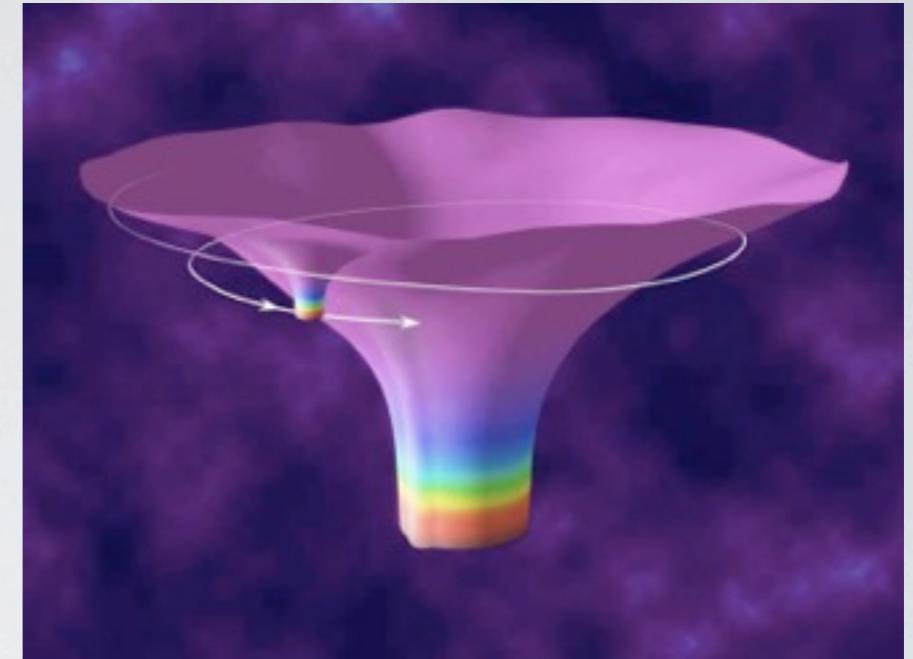
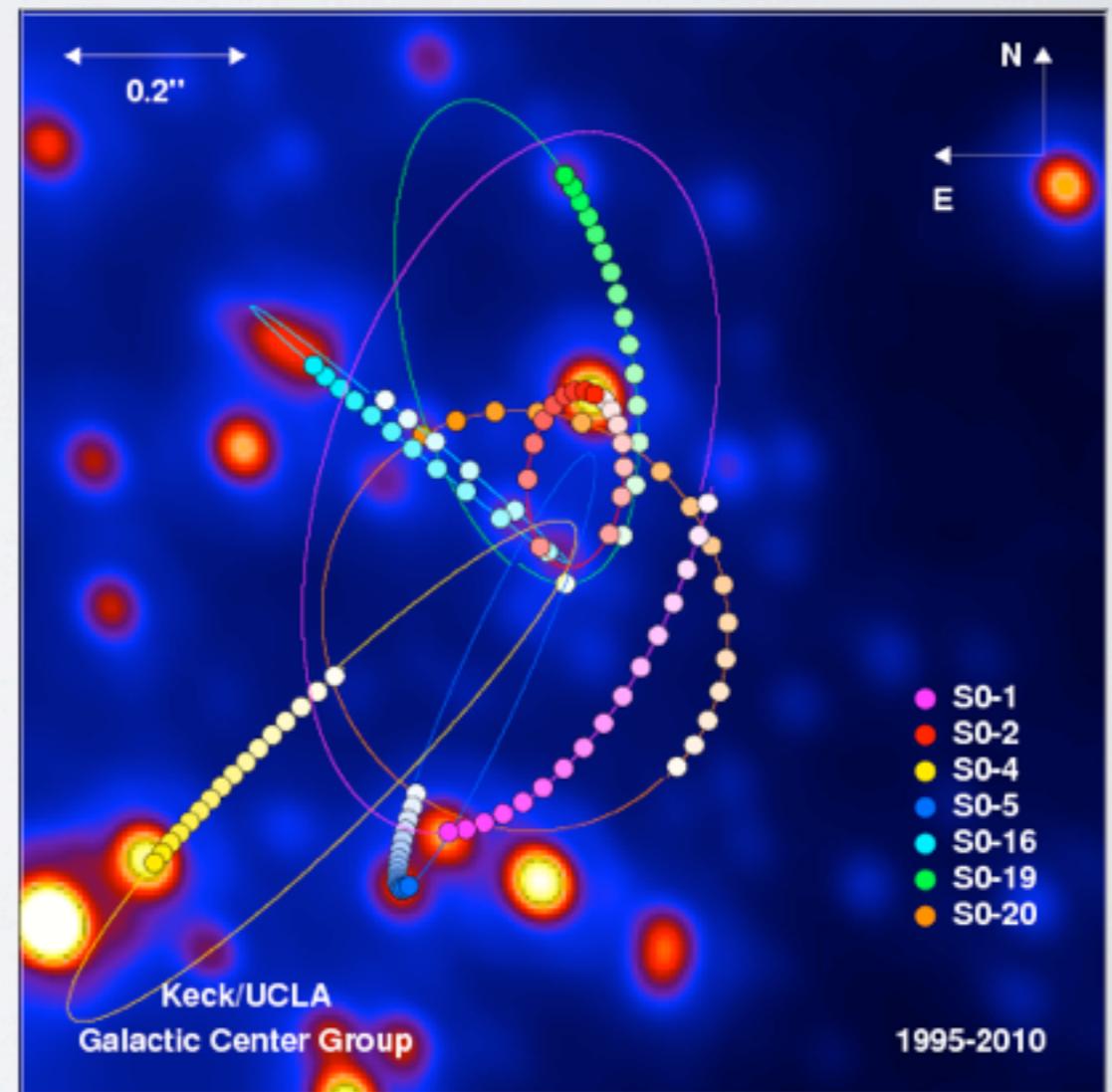
- Motivation and progress
- Phase evolution
- Orbit evolution with osculating orbits and geodesic gravitational self-force (GSF)
- Inspiral comparisons for the scalar self-force (SSF)
- Future directions



Motivation

- Model gravitational waves from Extreme/Intermediate-mass-ratio inspirals
- Allows the spacetime around the central black hole to be mapped out. Resolve the Kerr hypothesis.
- Compare perturbative results with other approaches to the GR two-body problem

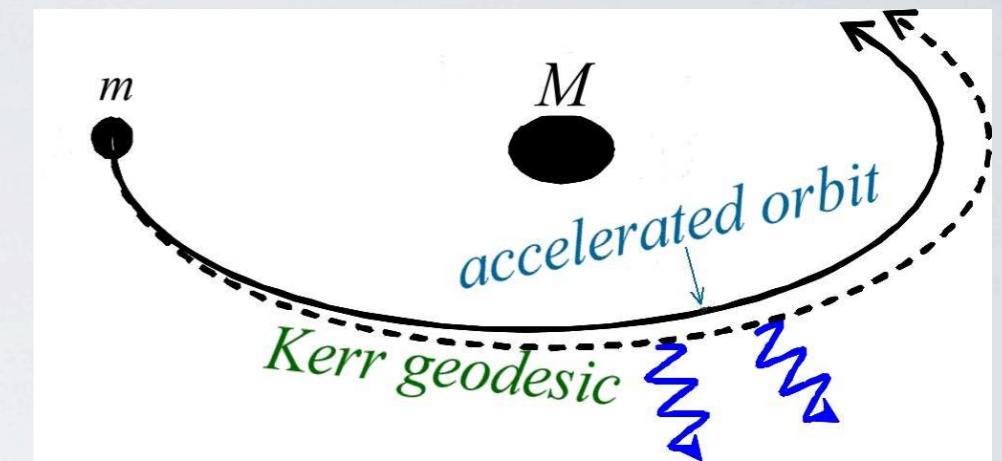
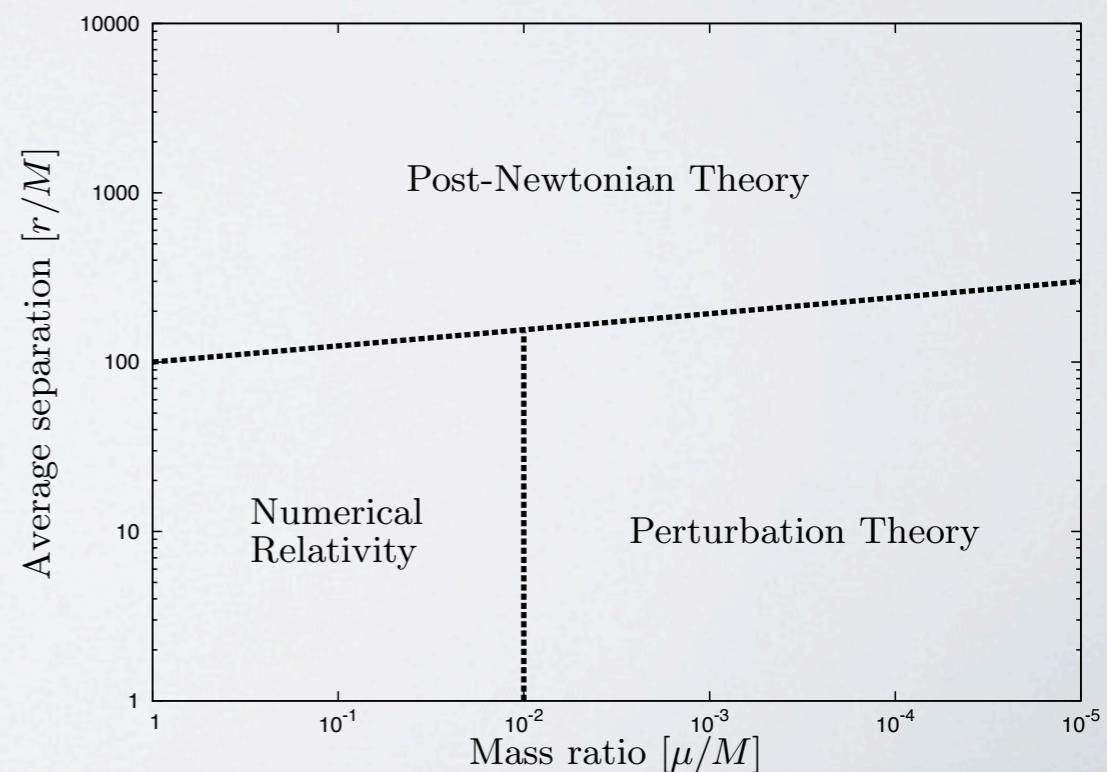
See Gair's talk for eLISA motivation



Self-force: overview

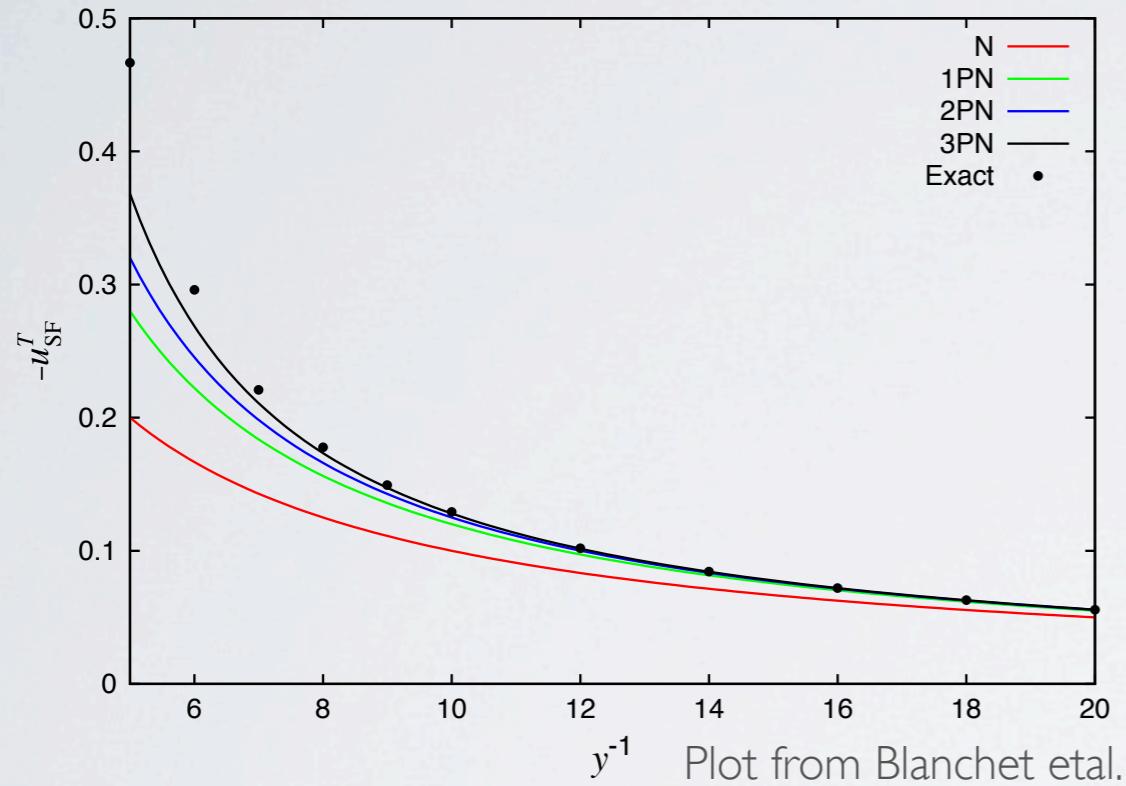
$$F_\alpha(\tau) = q^2 \int_{-\infty}^{\tau^-} \nabla_\alpha G_{\text{ret}}(z(\tau), z(\tau')) d\tau'$$

- Gravitational self-force is known for generic bound geodesic orbits in Schw. spacetime
- Progress in Kerr spacetime (see Dolan's talk)
- Progress in non-Lorenz gauges (see Merlin's talk)
- Calculation of gauge invariant quantities and comparisons with other approaches to the two body problem



Self-force: comparisons

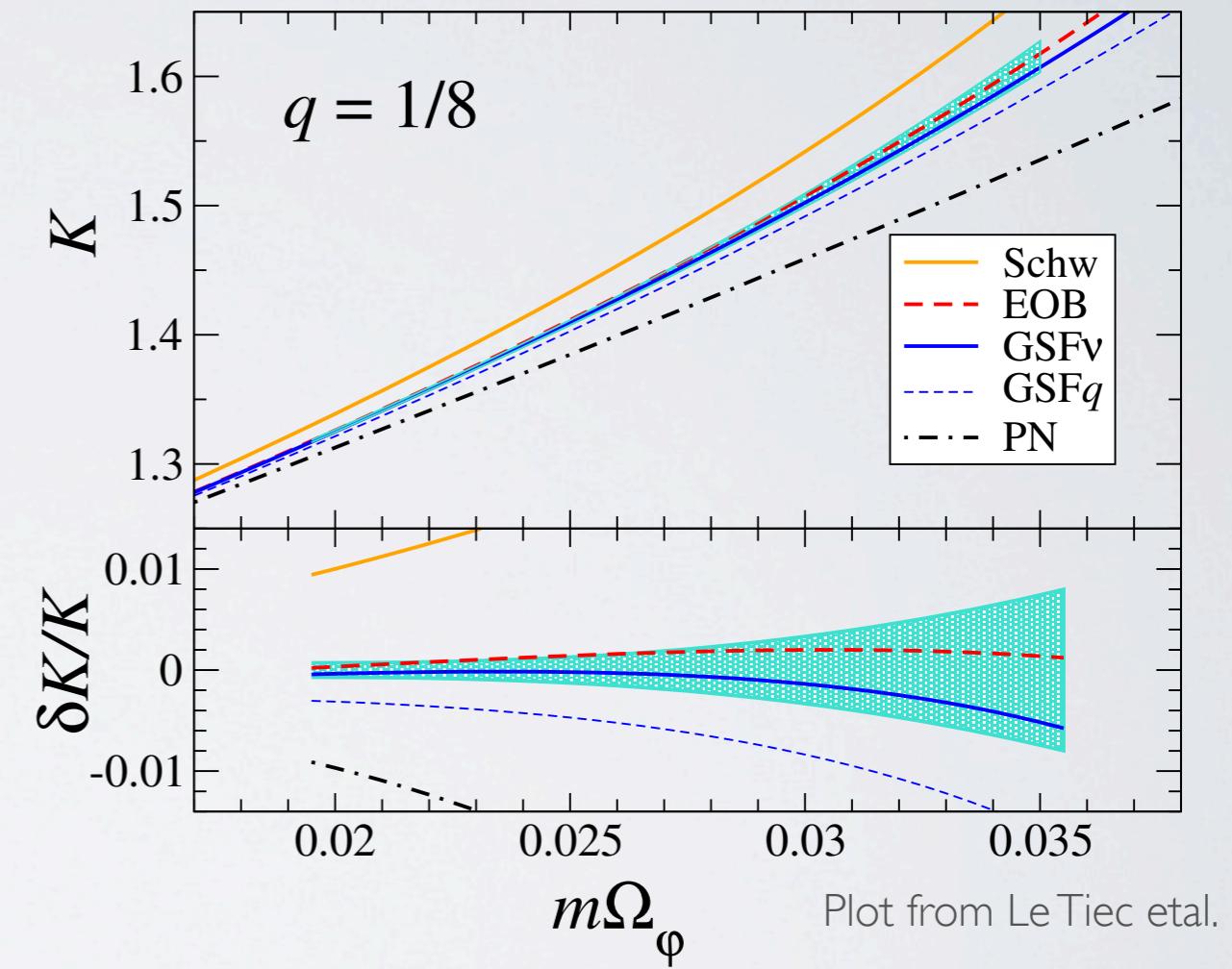
Comparison with
post-Newtonian



Assess PN in the strong-field
and extract higher-order PN
parameters

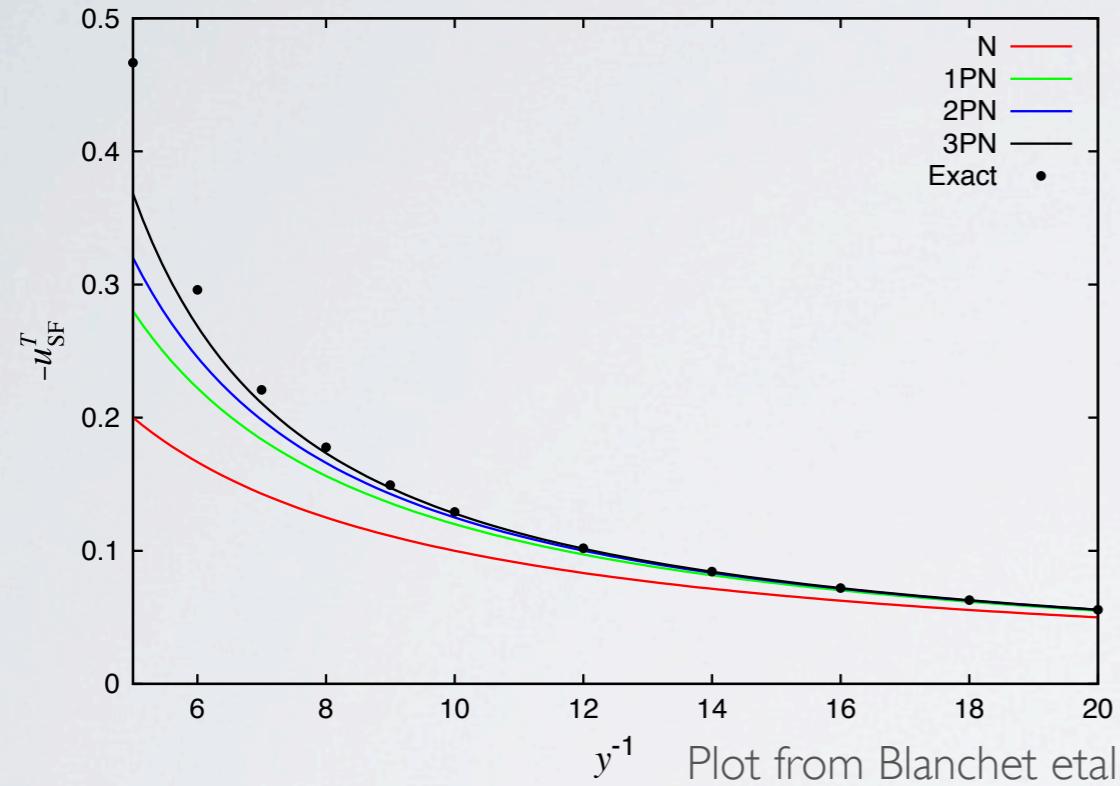
See Shah's talk

Comparison with
numerical relativity



Self-force: comparisons

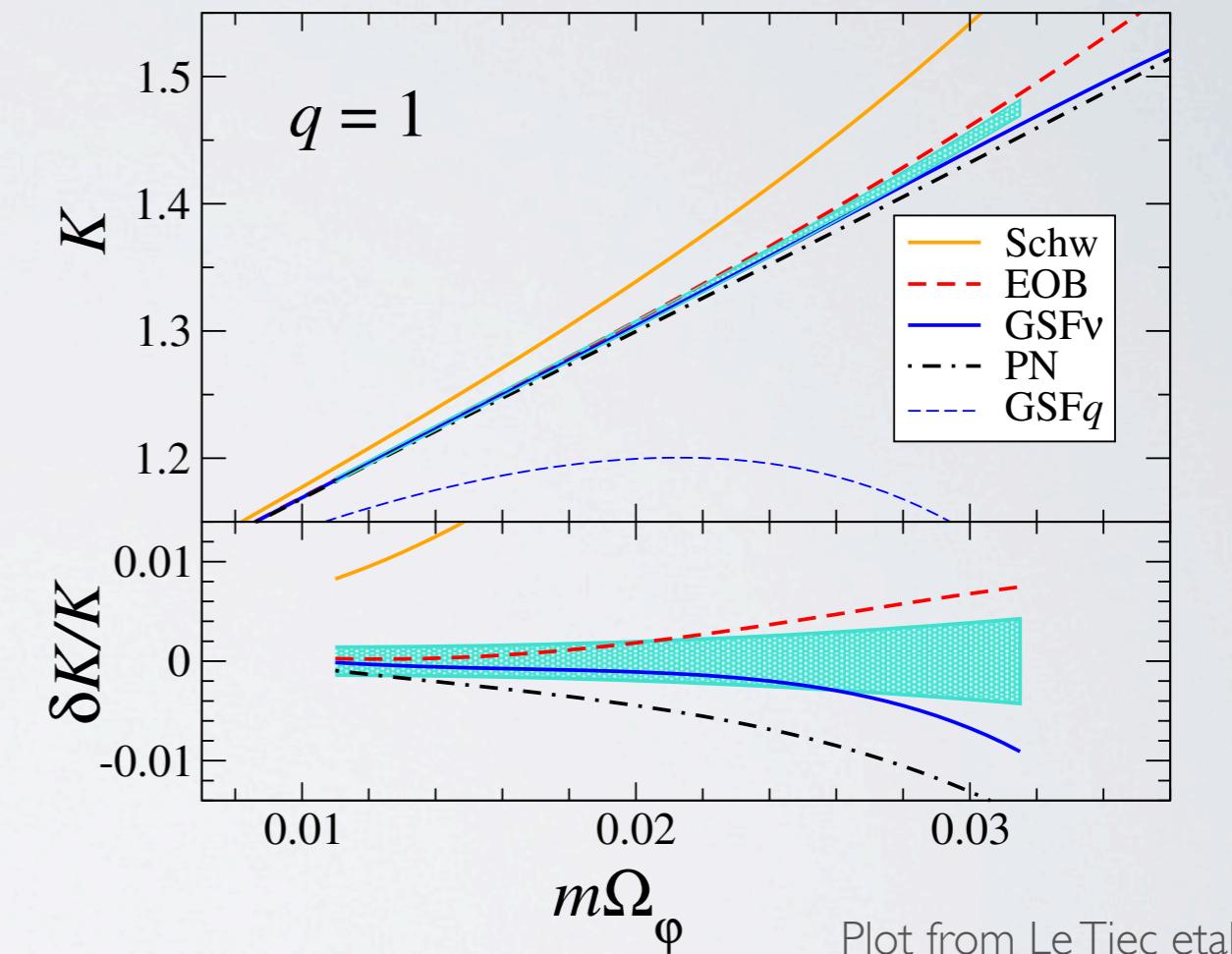
Comparison with
post-Newtonian



Assess PN in the strong-field
and extract higher-order PN
parameters

See Shah's talk

Comparison with
numerical relativity



Domain of validity of
perturbation theory may be
much greater than first thought

Phase evolution

With $\epsilon = \mu/M$ Hinderer and Flanagan showed that the phase evolution of a generic inspiral about a Kerr black hole scales as:

$\mathcal{O}(\epsilon^{-1})$: Orbit-averaged dissipative component of the SF

$\mathcal{O}(\epsilon^{-1/2})$: Resonances, oscillating SF no longer averages out

$\mathcal{O}(\epsilon^0)$: $\left\{ \begin{array}{l} \text{Oscillatory component of the dissipative SF} \\ \text{Conservative component of the SF} \\ \text{Orbit-averaged dissipative piece of the second-order SF} \end{array} \right.$

(See Pound's talk)

Leading order inspiral

Movie from S. Drasco

Change in \mathcal{E} and \mathcal{L} from flux balance. Adiabatic change in \mathcal{Q}
building on Mino's work

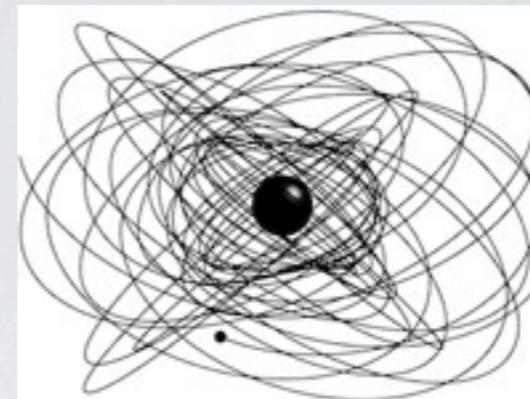
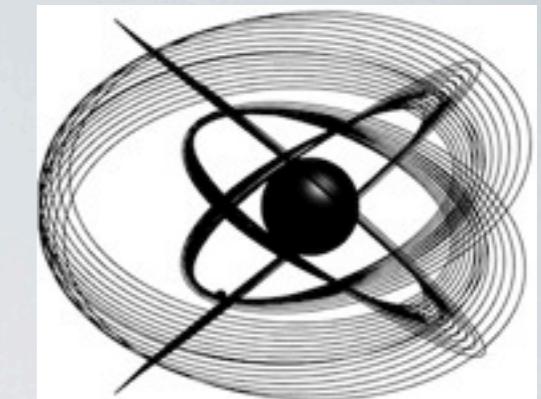
Resonances

- Only occurs for generic orbits about Kerr black holes
- Occurs when:

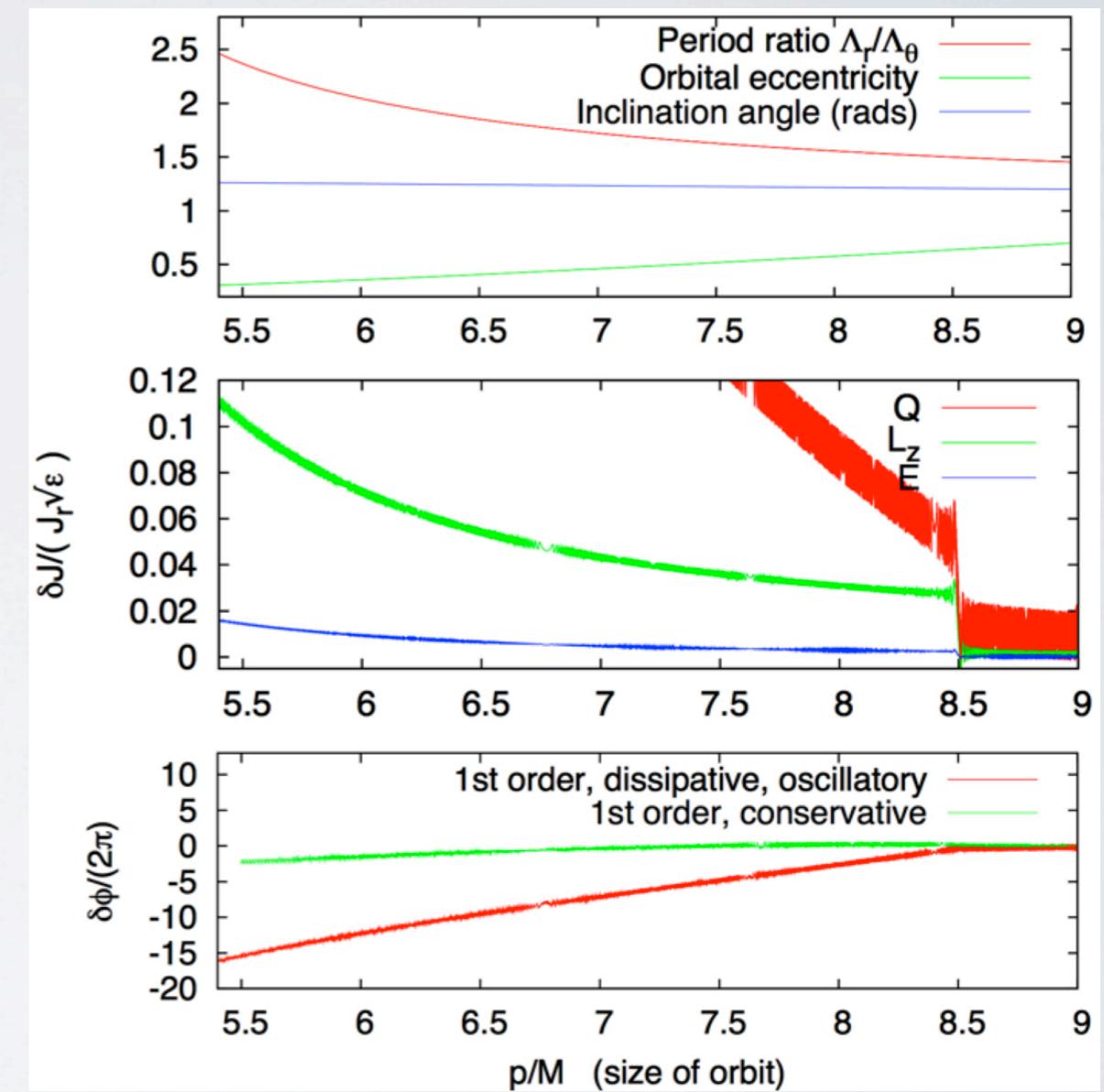
$$\frac{\Omega_r}{\Omega_\theta} = \frac{n_1}{n_2}$$

where n_1 and n_2 are coprime with small ratio

- Causes a large change in the orbital parameters, but only when the oscillatory parts of the self-force are included
- Location of resonance will be a good test of the Kerr metric



Images from S. Drasco



Plot from Hinderer and Flanagan

See van de Meent, Cañizares, Tanaka and Isoyama's talks

Inspirals in Schwarzschild spacetime using geodesic self-force data

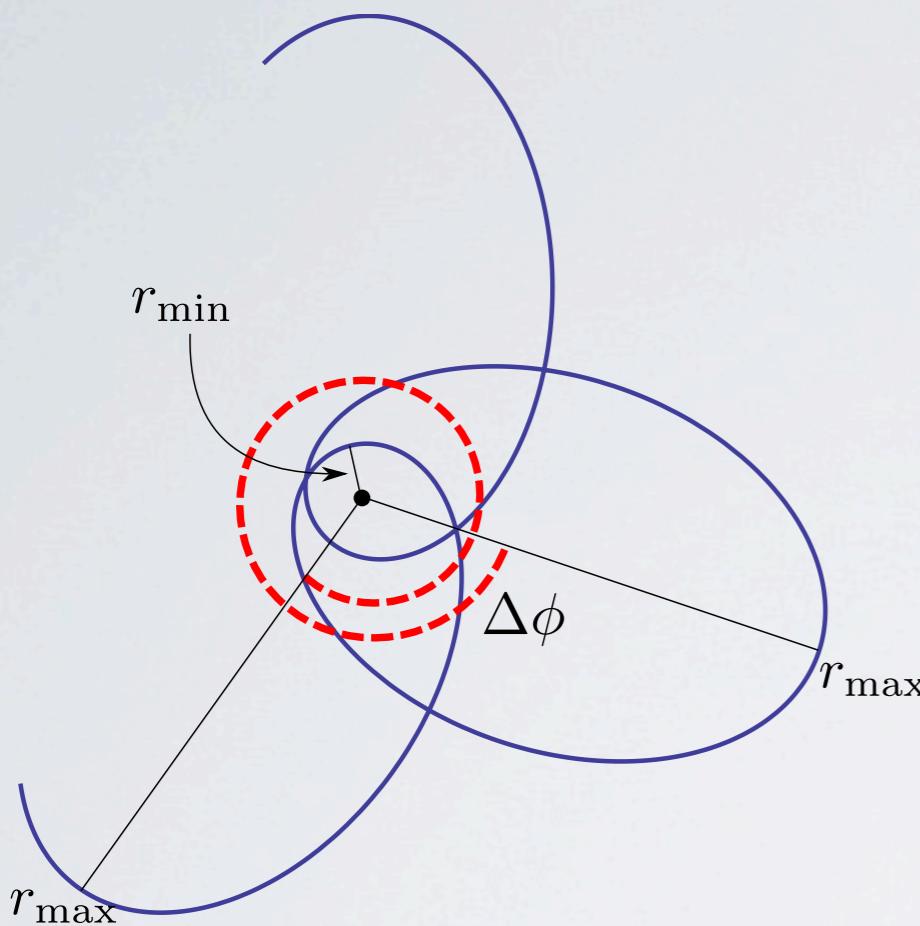
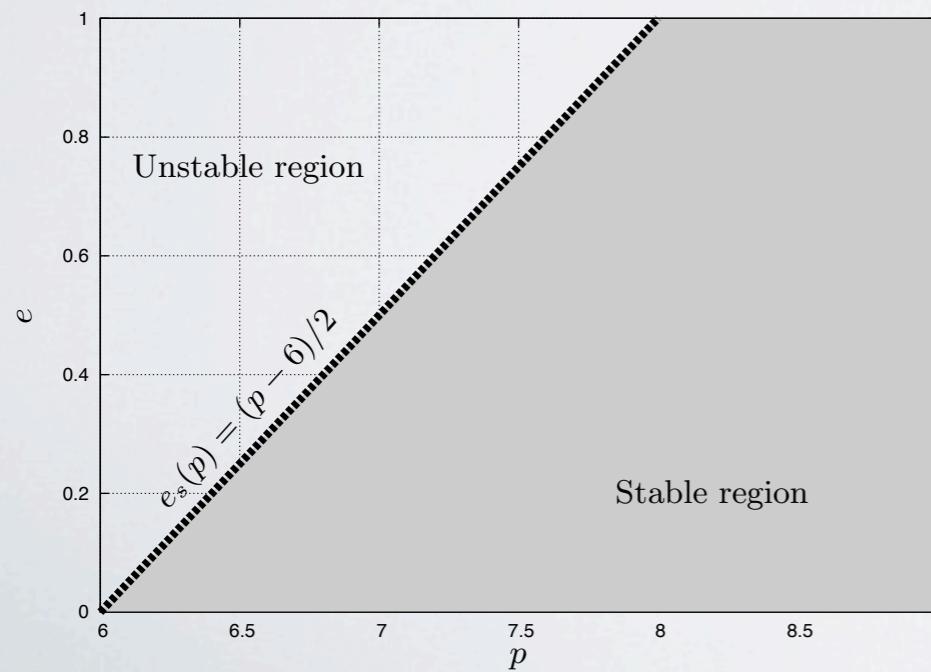
NW, S. Akcay, L. Barack, J. Gair and N. Sago
Phys. Rev. D 85.061501(r)

$\mathcal{O}(\epsilon^{-1})$: Orbit-averaged dissipative component of the SF

$\mathcal{O}(\epsilon^{-1/2})$: ~~Resonances, oscillating SF no longer averages out~~

$\mathcal{O}(\epsilon^0)$: ~~{ Oscillatory component of the dissipative SF
Conservative component of the SF
Orbit-averaged dissipative piece of the second-order SF }~~

Orbital parametrization



Up to orientation, bound geodesic orbits in Schw. spacetime are uniquely specified by \mathcal{E} and \mathcal{L} .

We use an alternative parametrization: the semi-latus rectum, p , and the orbital eccentricity, e .

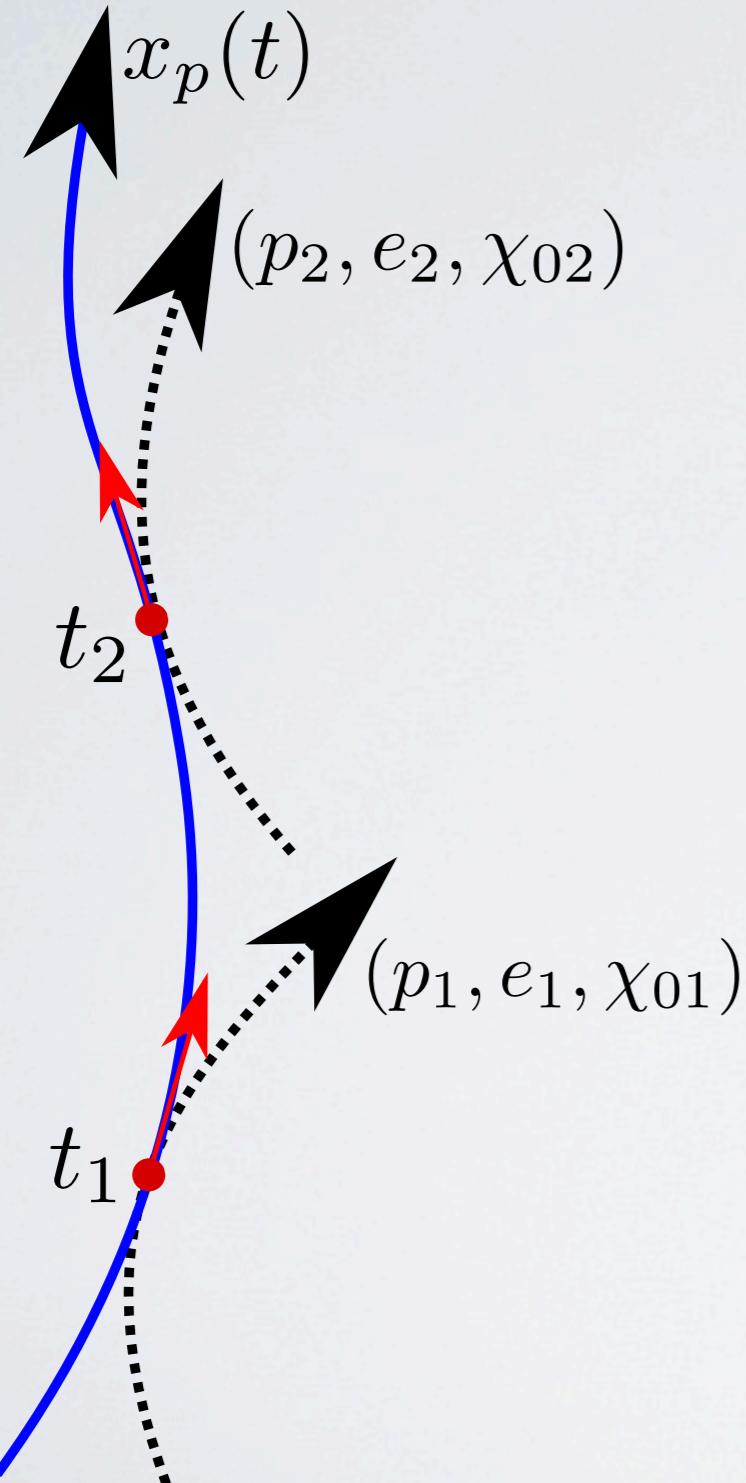
$$p \equiv \frac{2r_{\max}r_{\min}}{M(r_{\max} + r_{\min})} \quad e \equiv \frac{r_{\max} - r_{\min}}{r_{\max} + r_{\min}}$$

Also introduce a relativistic anomaly parameter, χ , such that

$$r(t) = \frac{pM}{1 + e \cos[\chi(t) - \chi_0]}$$

where χ_0 is the periastron phase

Orbit evolution: osculating orbits



At t_1 the position and velocity of the inspiralling particle corresponds to that of an osculating ('kissing') geodesic. In general, at later times $x_p(t)$ and the osculating geodesic will diverge. If instead $\{p, e, \chi_0\} \rightarrow \{p(t), e(t), \chi_0(t)\}$ the trajectory can be described by a sequence of osculating geodesics.

There is no requirement in this formulation that the force be small

Pound and Poisson derived the evolution equations in Schw. spacetime

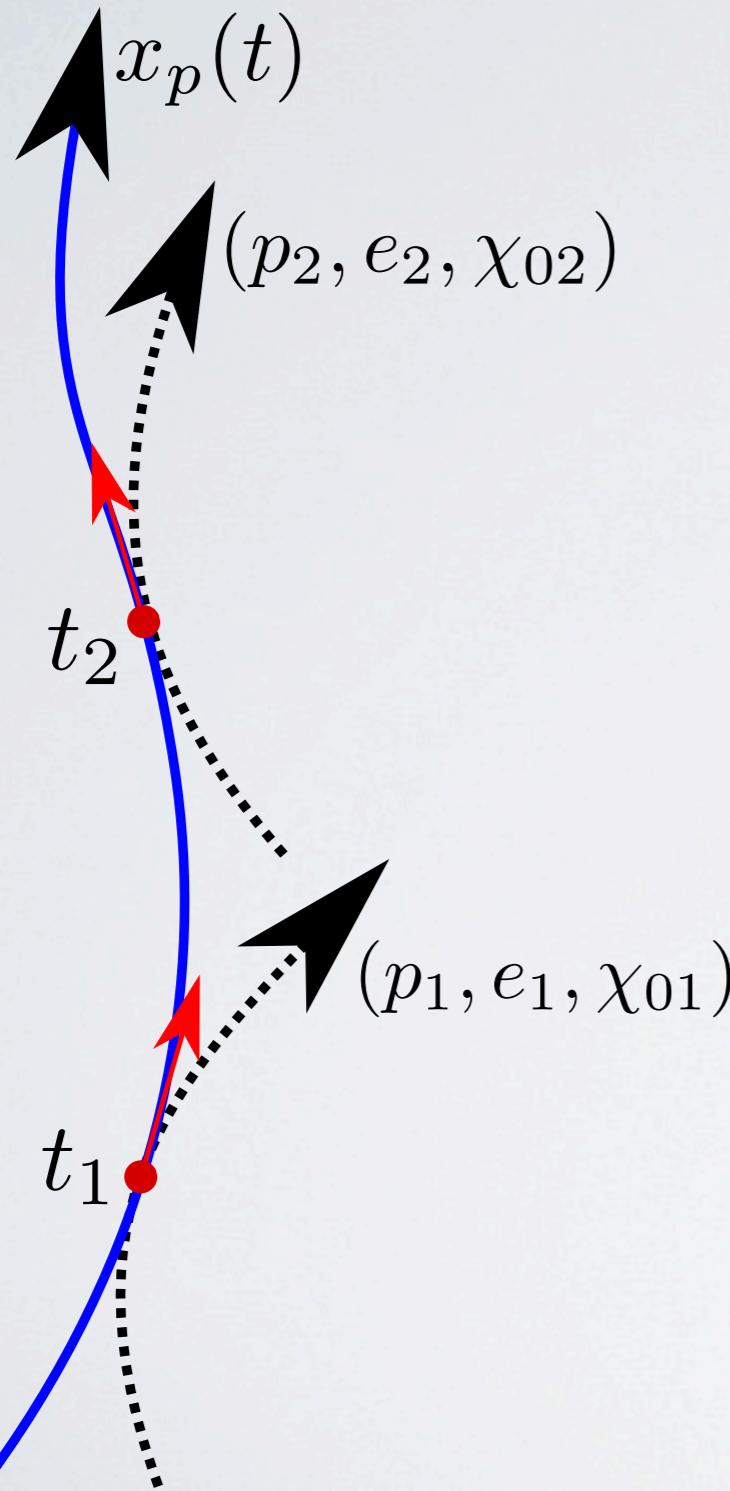
$$\dot{p} = \mathcal{F}_p[p, e, \chi - \chi_0, F_{\text{self}}^{\text{diss}}(t)]$$

$$\dot{e} = \mathcal{F}_e[\dots]$$

$$\dot{\chi}_0 = \mathcal{F}_{\chi_0}[p, e, \chi - \chi_0, F_{\text{self}}^{\text{cons}}(t)]$$

Gair et al. gave the extension to forced motion in Kerr spacetime

Orbit evolution: key assumption



The true self-force is given by an integral over the entire past history of the particle

$$F_\alpha(\tau) = q^2 \int_{-\infty}^{\tau^-} \nabla_\alpha G_{\text{ret}}(z(\tau), z(\tau')) d\tau'$$

In this work we approximate the self-force at a given instance by that of the self-force of a particle that has spent its entire history on the corresponding osculating geodesic

$$\dot{p} = \mathcal{F}_p[p, e, \chi - \chi_0, F_{\text{self}}^{\text{diss}}(p, e, \chi - \chi_0)]$$

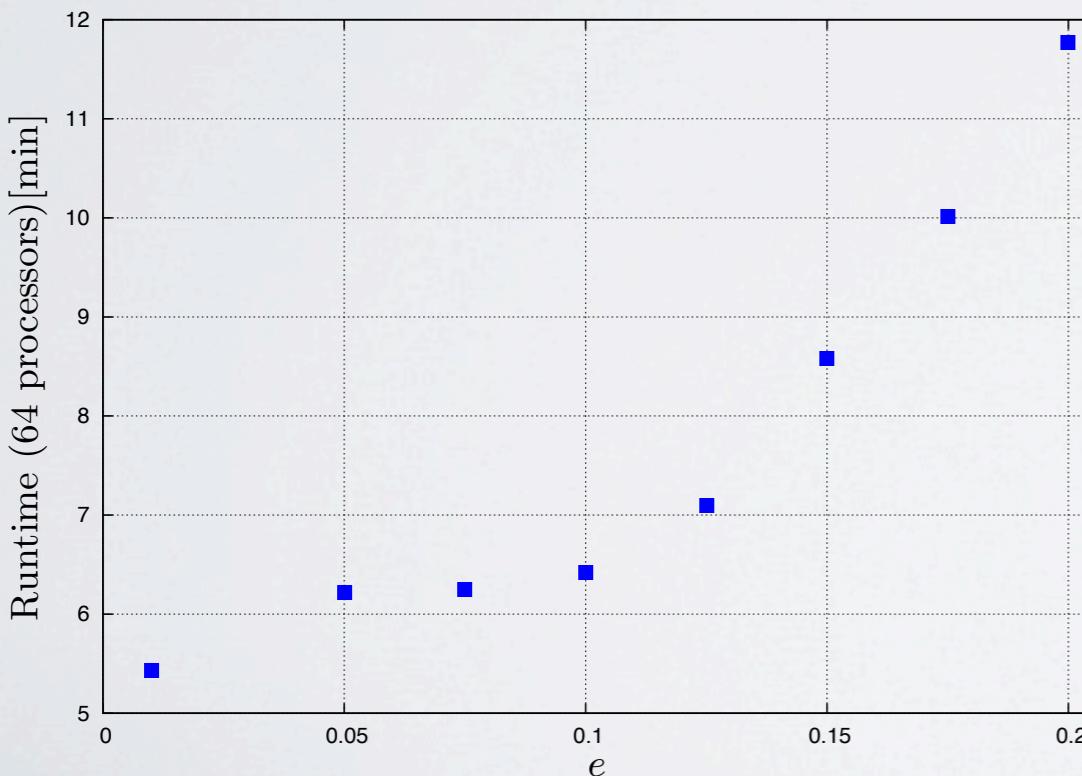
$$\dot{e} = \mathcal{F}_e[\dots]$$

$$\dot{\chi}_0 = \mathcal{F}_{\chi_0}[p, e, \chi - \chi_0, F_{\text{self}}^{\text{cons}}(p, e, \chi - \chi_0)]$$

It is not yet known how the phase error from the approximation scales with ϵ . See later on.

Self-force interpolation model

- Though we now have fast FD GSF codes it is still impractical to calculate F^r and F^φ for given $(p, e, v \equiv \chi - \chi_0)$ at each time step of the orbital evolution
- Instead we fit as much data as we can produce (see next slide) to a model



Efficiency of S. Akcay, NW and L. Barack code.
See also talks by Hopper, Forest and Osburn

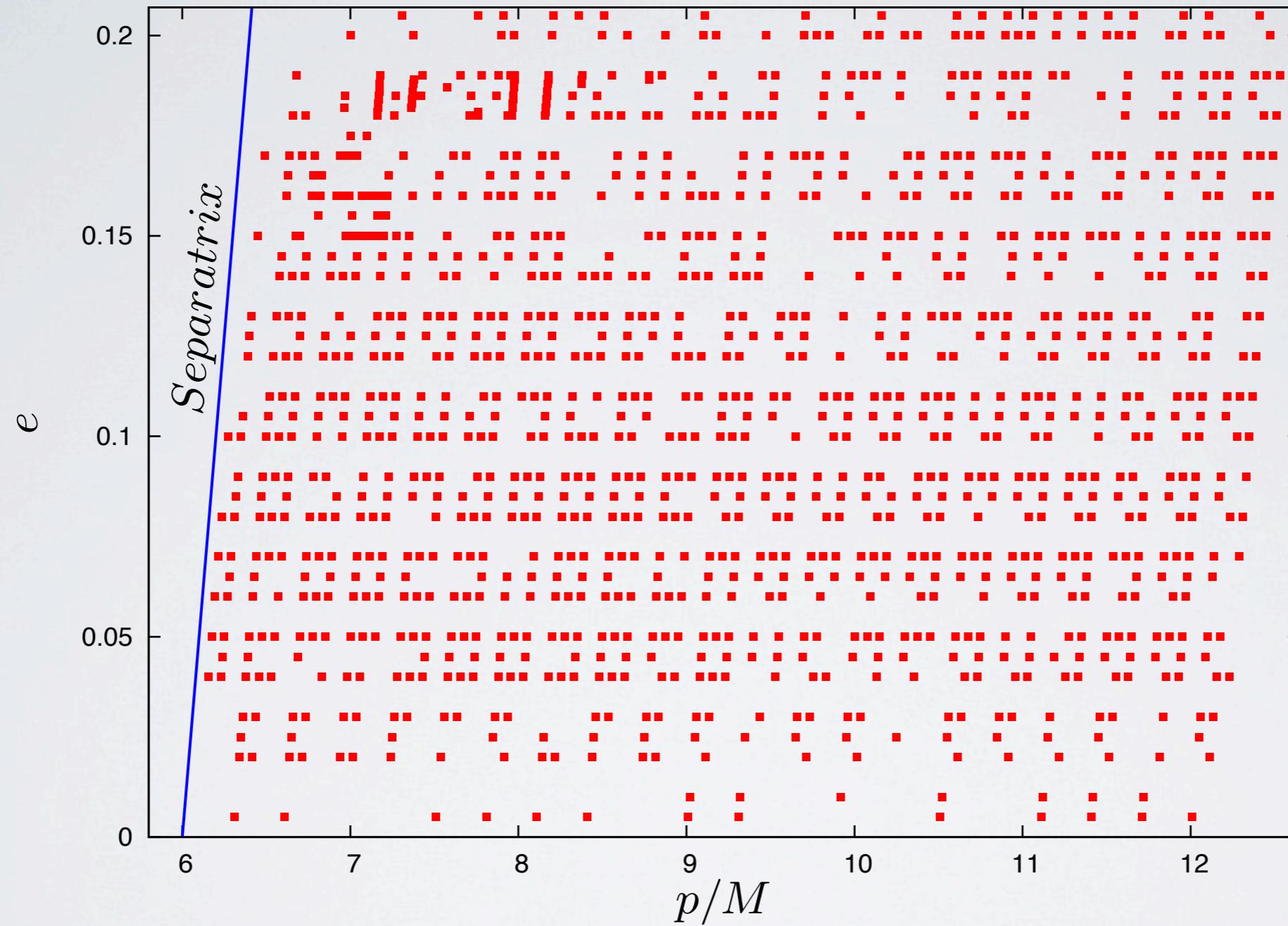
We use a Fourier representation and fit the four GSF $\{F_{\text{cons}}^r, F_{\text{diss}}^\varphi, F_{\text{diss}}^r, F_{\text{cons}}^\varphi\}$ components as

$$F_{\text{cons}}^r = (\mu/M)^2 \sum_{n=0}^{\bar{n}} A_n(p, e) \cos(nv)$$
$$A_n(p, e) = p^{-2} \sum_{j=n}^{\bar{j}_a} \sum_{k=0}^{\bar{k}_a} a_{jk}^n e^j p^{-k}$$

Fit the a_{jk}^n using standard χ^2 minimization and seek a global accuracy of

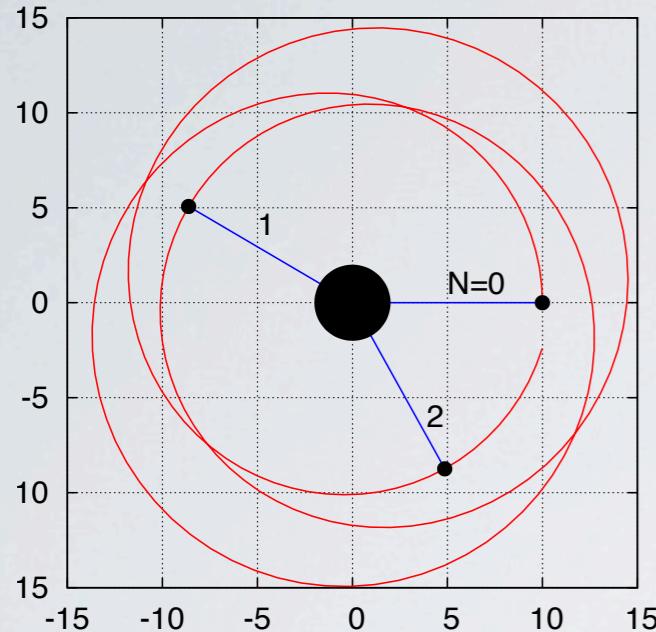
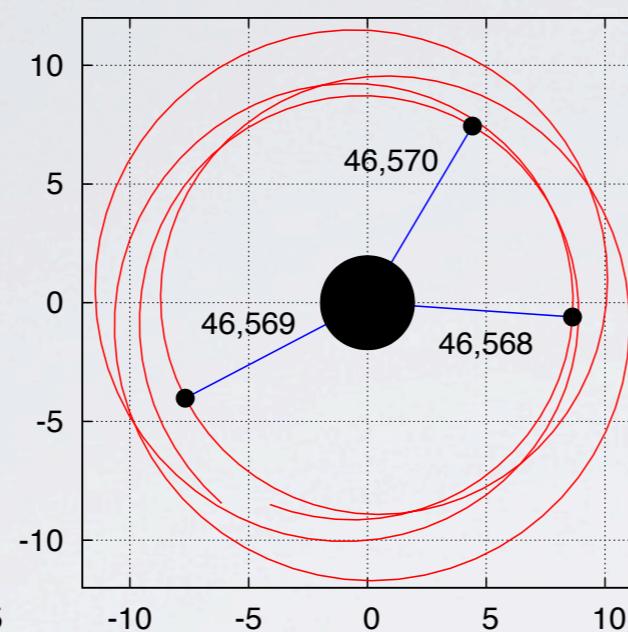
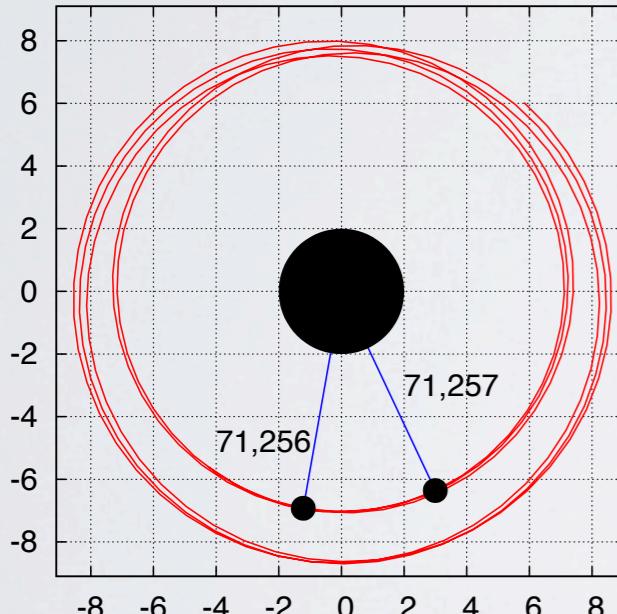
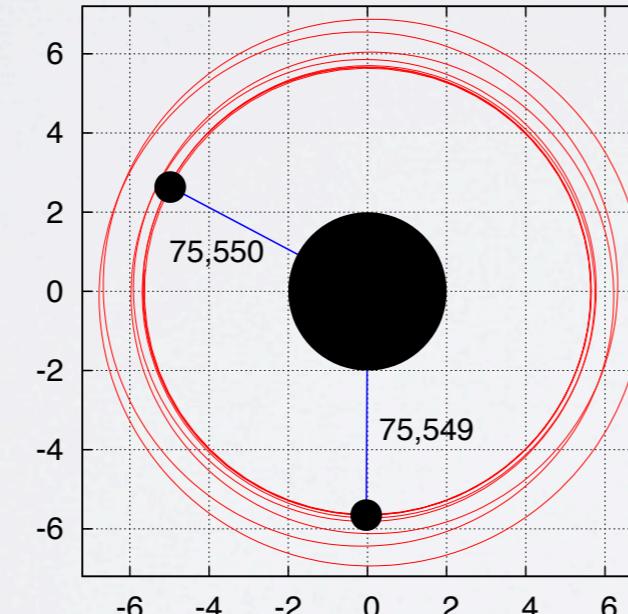
$$\delta F \equiv \frac{F(\text{model}) - F(\text{data})}{F(\text{data})} < 10^{-3}$$

Self-force interpolation model



Fit the model with data from over 1000 geodesics. Verified the fit by checking the results of the model against Barack and Sago's TD code.

Sample Inspiral: snapshots



One hour snapshots of orbital motion at
(reading from top left) 1443 days, 500 days,
75 days and 1 hour to plunge

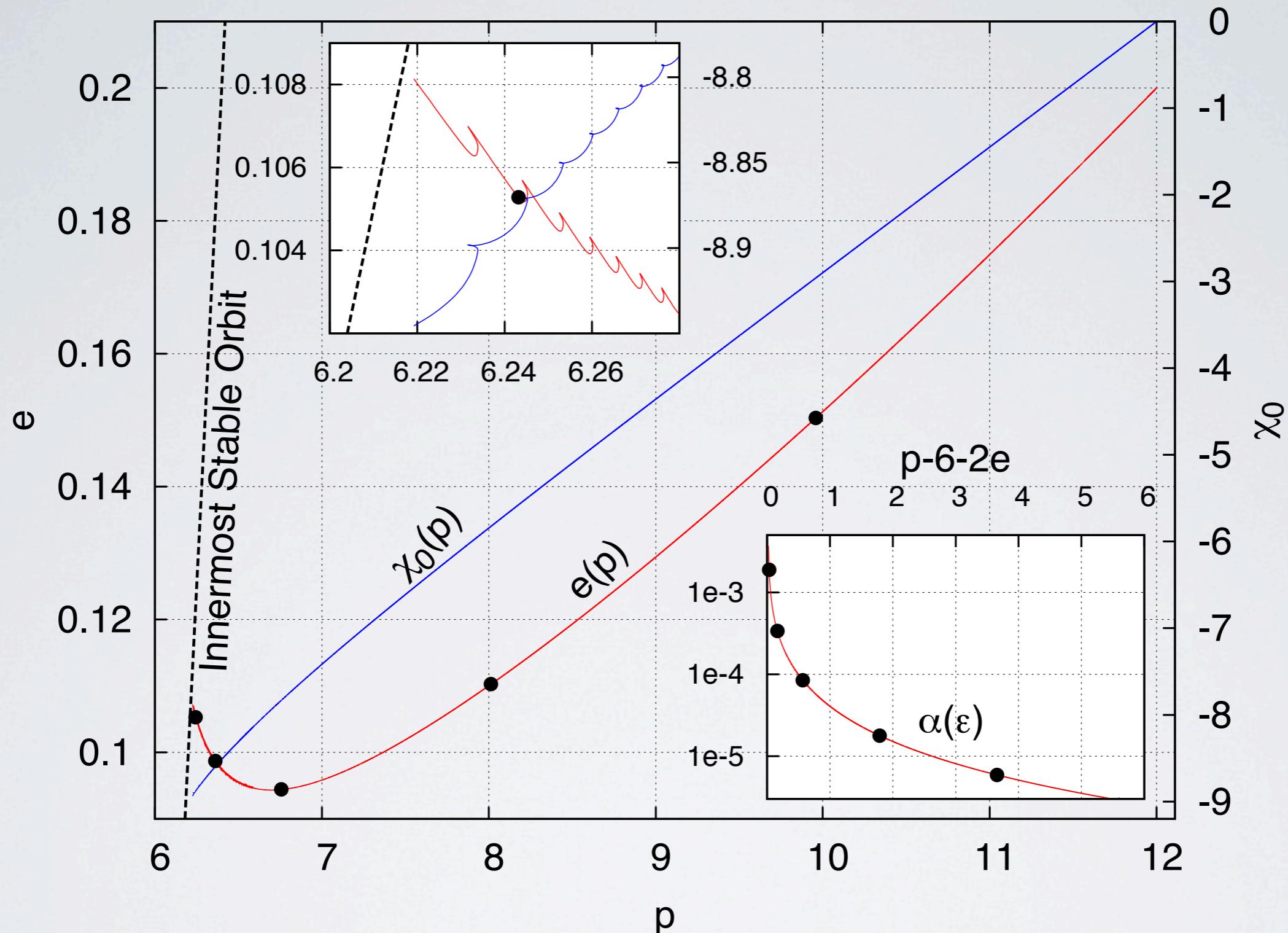
Masses:

$$\mu = 10M_{\odot}, M = 10^6 M_{\odot}$$

Initial conditions:

$$(p_0, e_0, \chi_{00}) = (12, 0.2, 0)$$

Inspiral completes 75,550
periastron passages



Black dots mark (from right) 500 days, 100 days, 10 days and 1 hour to plunge (note the left and right hand axes)

Construct a radiative approximation:

$$\dot{p} = \langle \mathcal{F}_p[p, e, v, F_{\text{self}}^{\text{diss}}] \rangle$$

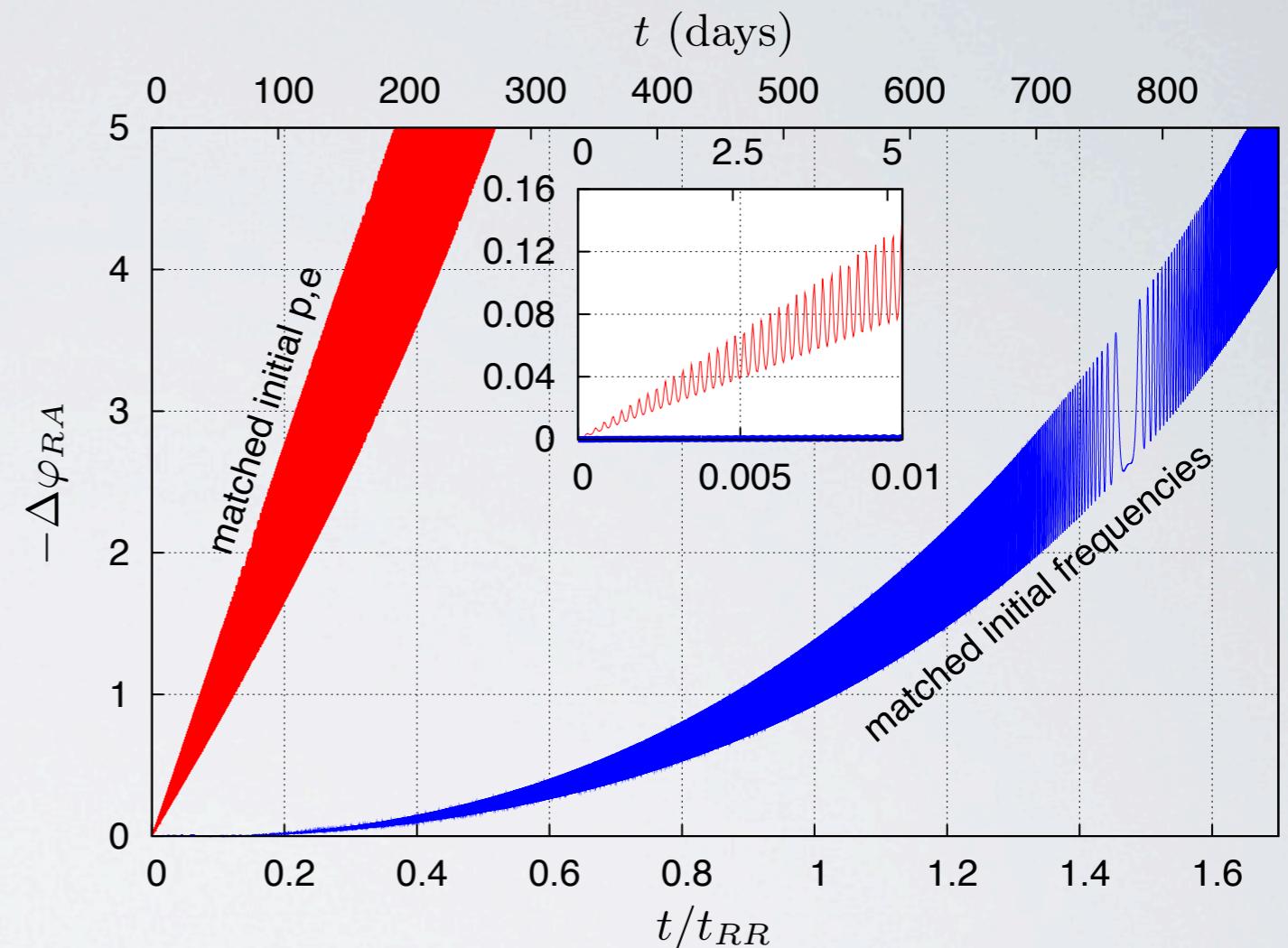
$$\dot{e} = \langle \mathcal{F}_e[\dots] \rangle$$

$$\dot{\chi}_0 = \langle \mathcal{F}_{\chi_0}[p, e, v, F_{\text{self}}^{\text{cons}}] \rangle = 0$$

where $\langle \cdot \rangle$ is a t-average over the instantaneous osculating geodesic

Then consider difference in accumulated phase:

$$\Delta\varphi_{\text{RA}} \equiv \varphi^{\text{full}} - \varphi^{\text{RA}}$$

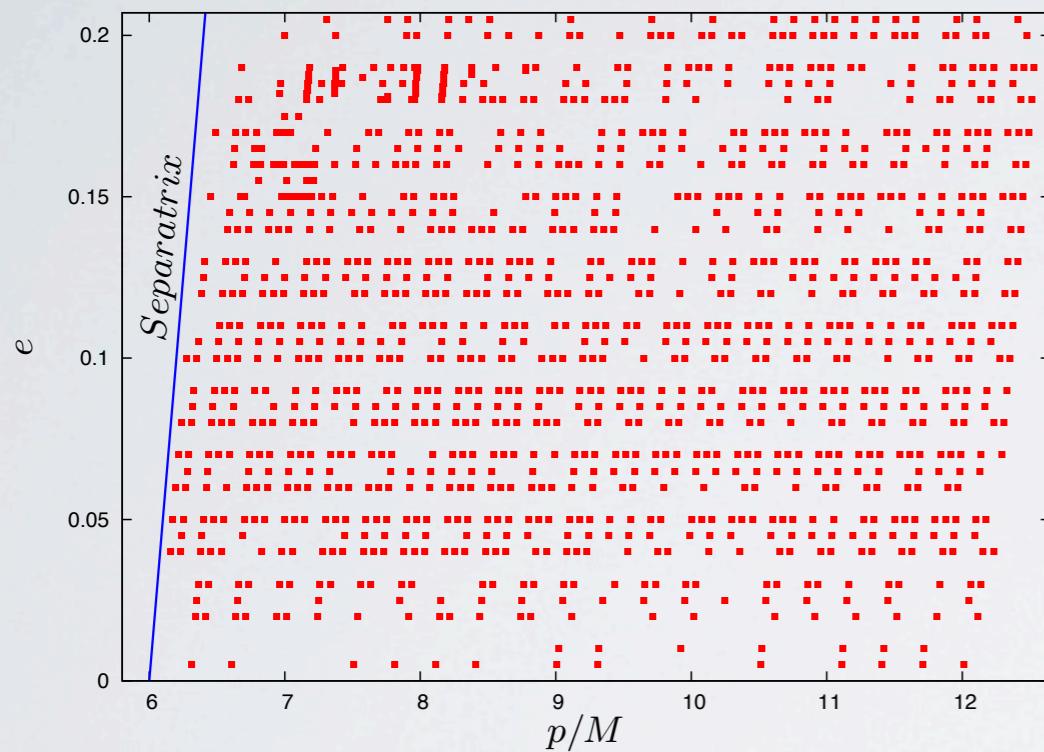


$$t_{RR} = (M/\mu)T_c, \quad T_c = 2\pi/6^{3/2}M$$

‘Beating’ waveforms

Inspiral comparison: scalar case

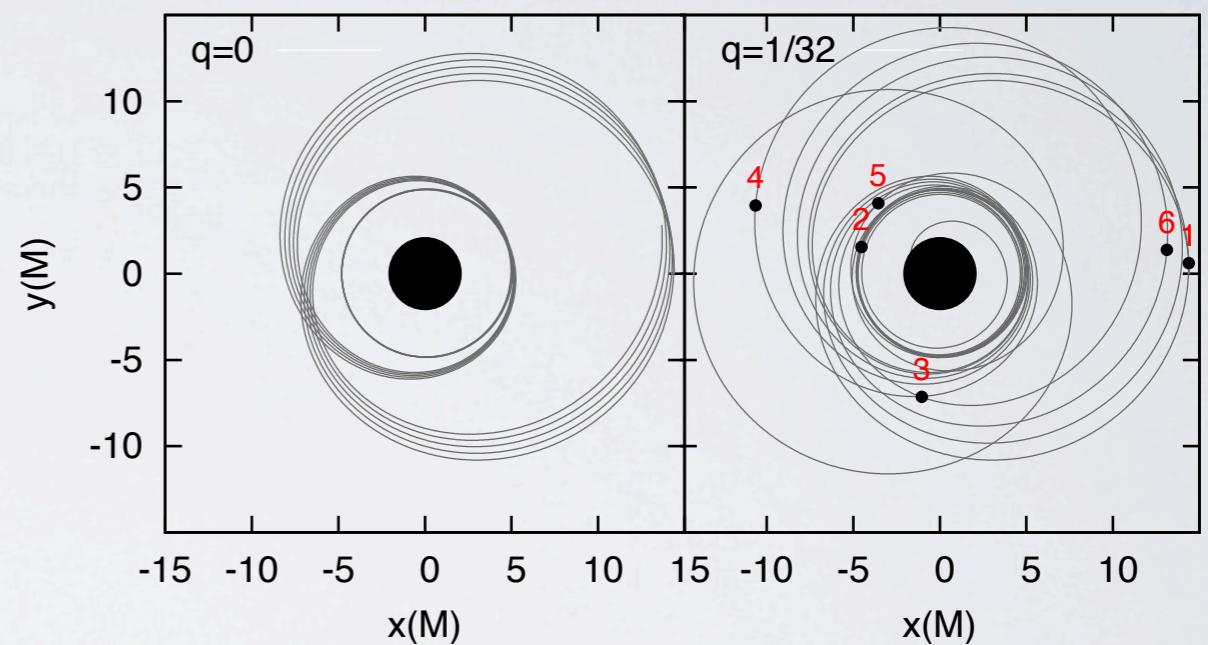
Osculating orbits with geodesic SSF



Fit model with 1000 geodesics
worth of SSF data computed using
FD code using mode-sum
regularization [see Heffernan's talk]

NW

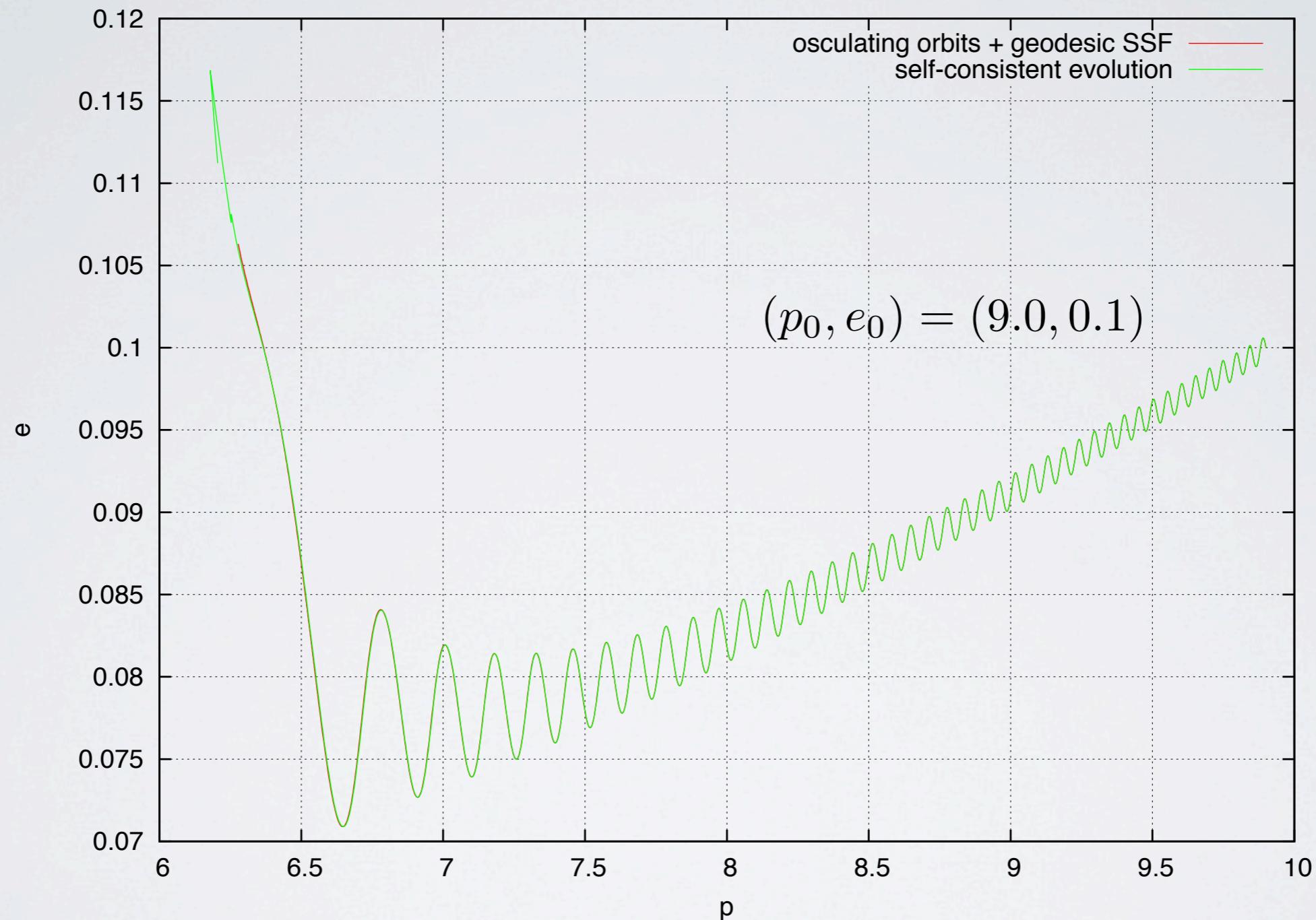
Self-consistent evolution



3+1 time domain code using the
effective source approach
[see Diener's talk]

Deiner, Vega and Wardell

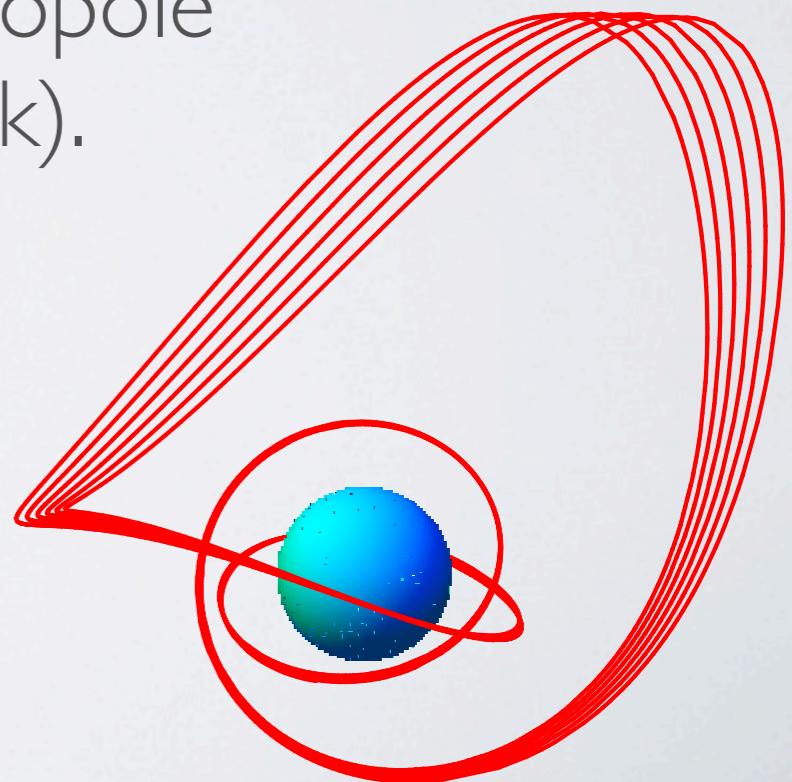
Inspiral comparison: preliminary results



Evolutions are indistinguishable to within the numerical error from the 3+1 code

Future directions

- Increase accuracy of self-consistent evolution. Progress on a 1+1D effective-source code (See Wardell's talk)
- Ascertain the scaling with ϵ of the error from using osculating orbits. Can we come up with an analytical argument for the scaling?
- Extension to gravity. Stability issues of the monopole and dipole in the time-domain (see Dolan's talk).
- Extension to Kerr. Is osculating orbits with geodesic SF practical here?



Future directions

Recent work by Casals et al. allows for the calculation of the retarded Greens function

Self-force along a tangent geodesic

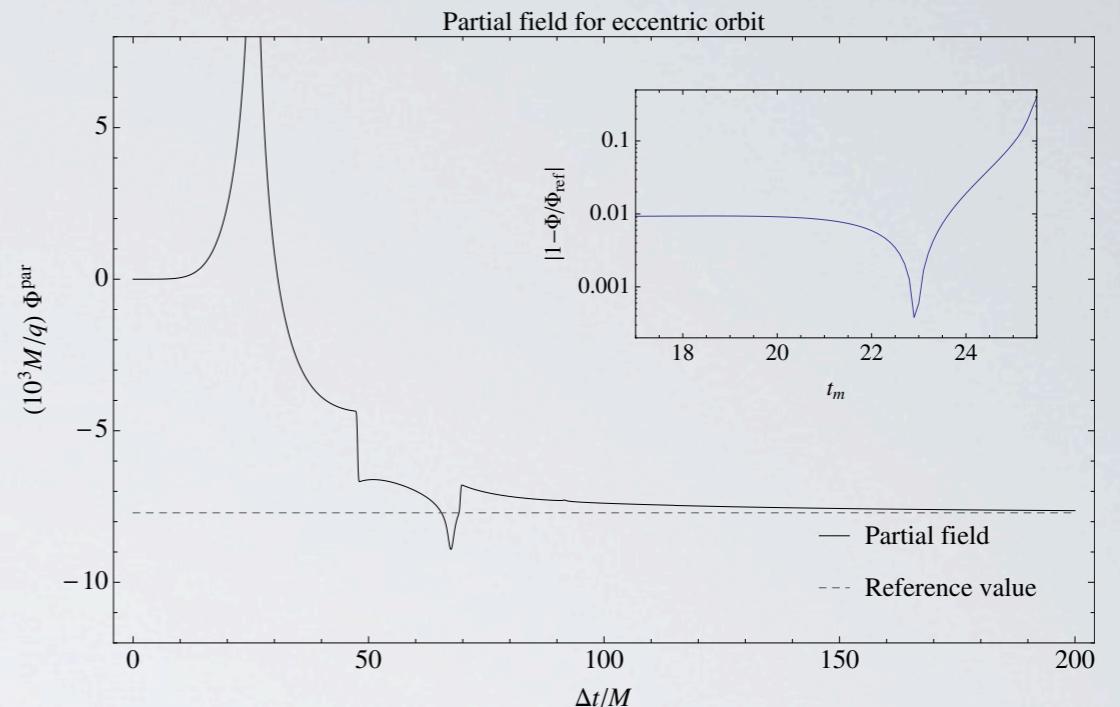
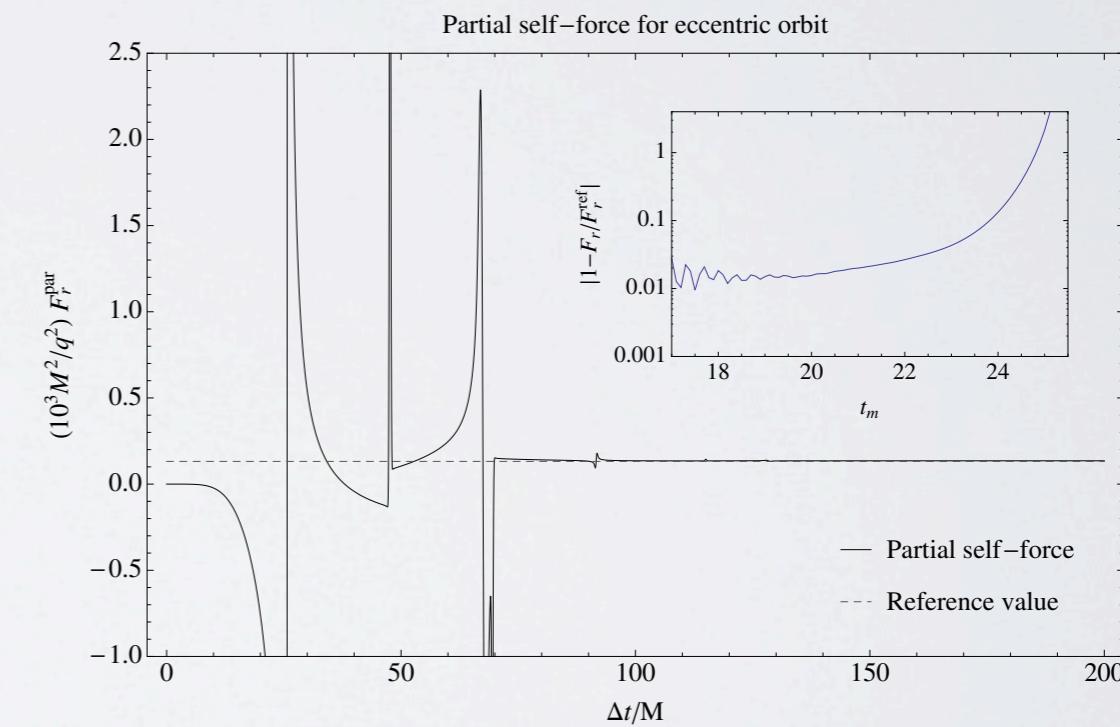
$$F_\alpha^g(\tau) = q^2 \int_{-\infty}^{\tau^-} \nabla_\alpha G_{\text{ret}}(z(\tau), z^g(\tau')) d\tau'$$

Self-force along the inspiral

$$F_\alpha^i(\tau) = q^2 \int_{-\infty}^{\tau^-} \nabla_\alpha G_{\text{ret}}(z(\tau), z^i(\tau')) d\tau'$$

How do the Greens functions differ?

For details see Casals' talk



Plots courtesy of Casals, Dolan, Ottewill and Wardell
orbit parameters (p,e) = (7.2, 0.5)