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Overview

& Motivation and progress
& Phase evolution

-®- Orbit evolution with osculating orbits and
seodesic gravitational self-force (GSF)

+®" Inspiral comparisons for the scalar self-
[Elieet50))

& Future directions




Motivation

+® Model gravitational waves from
Extreme/Intermediate-mass-ratio
inspirals

- & Allows the spacetime around the
central black hole to be mapped
out. Resolve the Kerr hypothesis.

-® Compare perturbative results with

other approaches to the GR two-
body problem

See Gair’s talk for el ISA motivation

' _Keck/UCLA

Galactic Center Group

® S0-1
S0-2
® S04
S0-5
® S0-16
® S0-19
® S0-20

1995-2010




Self-force: overview

a7 = ar /_T e G ) d

-® Gravitational self-force is known for generic
bound geodesic orbits In Schw. spacetime

+® Progress in Kerr spacetime (see Dolan’s
talk)

+® Progress in non-Lorenz gauges (see Merlin's
talk)

-® Calculation of gauge invariant quantities and
comparisons with other approaches to the
two body problem
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Self-force: comparisons

Comparison with Comparison with
post-Newtonian numerical relativity
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Assess PN In the strong-field oo oo IO’O: tlfl -
and extract higher-order PN |
parameters

See Shah'’s talk




Self-force: comparisons

Comparison with
post-Newtonian
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.

y Plot from Blanchet etal.

Assess PN In the strong-field
and extract higher-order PN
parameters

See Shah’s talk

Comparison with
numerical relativity

Plot from Le Tiec etal.

Domain of validity of
perturbation theory may be
much greater than first thought




Phase evolution

With e = u/M Hinderer and Flanagan showed that the phase
evolution of a generic inspiral about a Kerr black hole scales as:

O(e~ 1) : Orbit-averaged dissipative component of the SF
O(e~1/2) . Resonances, oscillating SF no longer averages out

Oscillatory component of the dissipative Sk
O(e°) : ¢ Conservative component of the SF
Orbit-averaged dissipative piece of the second-order Sk
(See Pound'’s talk)




L eading order inspiral

Movie from S. Drasco

Change In £ and £ from flux balance. Adiabatic change InQ
building on Mino’s work




Resonances

+® Only occurs for generic orbits
about Kerr black holes

Images from S. Drasco

-® Occurs when:

Q’r T

Period ratio A/Ag —— -
Orbital eccentricity
—__Inclination angle (rads)

QH—nQ

where 11 and ng are coprime
with small ratio

- Causes a large change In the orbrtal

parameters, but only when the

6.5 7 7.5 8 8.5

osclllatory parts of the self-force are

1st order, 'dissipat}ve, osci'llatory '
1st order, conservative

iINncluded
- Location of resonance will be a

good test of the Kerr metric

See van de Meent, Canizares, lanaka and Isoyama’s talks
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p/M (size of orbit)

Plot from Hinderer and Flanagan




Inspirals in Schwarzschild
spacetime using geodesic
self-force data

NW, S. Akcay, L. Barack, J. Gair and N. Sago
Fiys: (Rava B eis 1510 ()

O(e 1) : Orbit-averaged dissipative component of the SF
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Oscillatory component of the dissipative SF
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Orortal parametrization

Up to orientation, bound geodesic orbits in

Schw. spacetime are uniquely specified by &
and L .

We use an alternative parametrization: the

semi-latus rectum, p, and the orbrtal eccentricity,
=
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Also introduce a relativistic anomaly
parameter, X , such that
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Unstable region

Sisfils wsgion where Xo Is the periastron phase




Orbrt evolution: osculating orbits

Tp(1)

4(1?2, €2, on)

' (p1,e1,Xo1)

At T the position and velocity of the inspiralling
particle corresponds to that of an osculating
(‘kissing”) geodesic. In general, at later times x, (%)
and the osculating geodesic will diverge. If instead
{p,;e,x0} —= {p(t), e(?), xo(¢)} the trajectory
can be described by a sequence of osculating
geodesics.

There Is no requirement in this formulation
that the force be small

Pound and Poisson derived the evolution equations
N Schw. spacetime

diss

p gz Fp[pa €, X — X0, Fself (t)]
e -Fe[' . ]
X.O S ‘FXO [paeax — X0, sceol?s(t)]

Galr etal. gave the extension to forced
motion In Kerr spacetime




Orbit evolution: key assumption

" The true self-force Is given by an integral over
Zp(t) - - -
the entire past history of the particle

:4(2?2,62,X02) Fa(T) R q2 /—T VaGret(Z(T),Z(T/))dT/

In this work we approximate the self-force at a give
instance by that of the self-force of a particle that
has spent Its entire history on the corresponding
osculating geodesic

4. p = Fplp,e, X — X0, F5(p, e, X — Xo)]
...” (p17€17X01) GZFP[]

X0 = Fyo D€, X — X0, Feit- (D, €, X — X0)]

[t I1s not yet known how the phase error from the
approximation scales with € . See later on.




Self-force interpolation model

+® Though we now have fast FD GSF

codes it is still impractical to We use a Fourier representation and fit
calculate Fr and F¥ for given the four GSE {Foons: ol Bt oy
(p,e,v =x — xo0) at each time components as
step of the orbital evolution

- Instead we fit as much data as we
can produce (see next slide) to a

T = () A, (p,e) cos(nu
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it the o}, using standard XQminimization
and seek a global accuracy of

[e¢]
T

Runtime (64 processors)[min]

(e
T

5 F(model) — F(data)

0 ! O.e‘l3 0.15 0.2 5F E < 10_3
Efficiency of 5. Akcay, NW and L. Barack code.

See also talks by Hopper, Forest and Osburn

F(data)




Self-force interpolation model

T
0.2

it the model with data from over 1000 geodesics. Verified the fit by checking
the results of the model against Barack and Sago’s TD code.




Sample Inspiral: snapshots

15
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One hour snapshots of orbital motion at

(reading from top left) 1443 days, 500 days,

/5 days and | hour to plunge

Masses:
p=10Mg, M = 10° Mg

Inrtial conditions:
(po, €0, X00) = (12,0.2,0)

Inspiral completes 75,550
periastron passages
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Construct a radiative
approximation:

p[p7 €, U, Fs%iISfSD

Xo = <]:X0 [p,e,v, sceci?sb =0

where {(-) is a t-average
over the Instantaneous
osculating geodesic

Then consider difference
N accumulated phase:

full _RA

APRa = @ ¥

t (days)
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‘Beating’ waveforms




Inspiral comparison: scalar case

Osculating orbrts with geodesic SSF

Fit model with 1000 geodesics
worth of SSF data computed using
FD code using mode-sum
regularization [see Heffernan's talk]

NW

Self-consistent evolution

| | | | | | | | | |
-15 10 -5 0 5 10 15 -10 -5 0 5 10
x(M) x(M)

3+ 1| time domain code using the
effective source approach
[see Diener’s talk]

Deiner;Vega and Wardell




Inspiral comparison: preliminary results

0.12 T | |
osculating orbits + geodesic SSF ———

| self-consistent evqutiQn
0.115 | : 3

0.11
0.105

0.1

Evolutions are indistinguishable to within the numerical error from the 3+ 1| code




Future directions

+® Increase accuracy of self-consistent evolution. Progress on a |+ 1D
effective-source code (See Wardell's talk)

- & Ascertain the scaling with € of the error from using osculating
orbits. Can we come up with an analytical argument for the scaling?

- Extension to gravity. Stability issues of the monopole
and dipole in the time-domain (see Dolan’s talk).

- Extension to Kerr: Is osculating orbits with
seodesic SF practical here!




Future directions e
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Recent work by Casals etal. allows for the
calculation of the retarded Greens function

(10°M/q) P

|
9]
—_—

: : — Partial field
Self-force along a tangent geodesic |

--- Reference value

IR — q2/ RET )

Partial self—force for eccentric orbit

Self-force along the inspiral

F;(T) = g /_T VaoGret(2(7), Zi(T/)) dr’

(10°M?% /%) F™

— Partial self—force |

How do the Greens functions differ? O

Plots courtesy of Casals, Dolan, Ottewill and Wardell
. : orbit parameters (p,e) = (7.2,0.5)
For details see Casals’ talk




