Scalar self-force for highly eccentric orbits in Kerr spacetime Jonathan Thornburg

in collaboration with

Barry Wardell

Department of Astronomy and Center for Spacetime Symmetries Indiana University Bloomington, Indiana, USA School of Mathematical Sciences and Complex & Adaptive Systems Laboratory University College Dublin Dublin, Ireland

July 16, 2013 1 / 14

Goals, overall plan of the computation

Goals, overall plan of the computation

Brief review of effective-source (puncture-function) regularization

Goals, overall plan of the computation

Brief review of effective-source (puncture-function) regularization

Some details of the computation

- *m*-mode decomposition
- separate 2+1D time-domain evolution for each mode
- worldtube scheme
 - finite differencing across the worldtube boundary
 - moving the worldtube
- computing the effective source and puncture function
- finite differencing near the particle (where fields are only C^2)
- mesh refinement

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Goals, overall plan of the computation

Brief review of effective-source (puncture-function) regularization

Some details of the computation

- *m*-mode decomposition
- separate 2+1D time-domain evolution for each mode
- worldtube scheme
 - finite differencing across the worldtube boundary
 - moving the worldtube
- computing the effective source and puncture function
- finite differencing near the particle (where fields are only C^2)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

July 16, 2013

2 / 14

• mesh refinement

Sample results

Conclusions, Plans, Lessons Learned

• Kerr

• Kerr

• scalar field for now develop techniques for future work with gravitational field

- Kerr
- scalar field for now develop techniques for future work with gravitational field
- be able to handle generic orbits (inclined & highly-eccentric)
 - astrophysical EMRIs likely have inclined orbits, any e up to ~ 0.99

- Kerr
- scalar field for now develop techniques for future work with gravitational field
- be able to handle generic orbits (inclined & highly-eccentric)
 - astrophysical EMRIs likely have inclined orbits, any e up to ~ 0.99
 - low to moderately eccentric orbits

 \Rightarrow frequency-domain is fast & accurate

- Kerr
- scalar field for now develop techniques for future work with gravitational field
- be able to handle generic orbits (inclined & highly-eccentric)
 - astrophysical EMRIs likely have inclined orbits, any e up to ~ 0.99
 - low to moderately eccentric orbits
 ⇒ frequency-domain is fast & accurate
 - highly-eccentric orbits \Rightarrow need time-domain

- Kerr
- scalar field for now develop techniques for future work with gravitational field
- be able to handle generic orbits (inclined & highly-eccentric)
 - astrophysical EMRIs likely have inclined orbits, any e up to ~ 0.99
 - low to moderately eccentric orbits
 ⇒ frequency-domain is fast & accurate
 - highly-eccentric orbits \Rightarrow need time-domain
- compute self-force very accurately
 - eLISA/NGO will eventually need parameter-estimation templates with phase error $\lesssim 0.01$ radians over ${\sim}10^5$ orbits of inspiral

イロト イポト イヨト イヨト 三日

- Kerr
- scalar field for now develop techniques for future work with gravitational field
- be able to handle generic orbits (inclined & highly-eccentric)
 - astrophysical EMRIs likely have inclined orbits, any e up to ~ 0.99
 - low to moderately eccentric orbits
 ⇒ frequency-domain is fast & accurate
 - highly-eccentric orbits \Rightarrow need time-domain
- compute self-force very accurately
 - eLISA/NGO will eventually need parameter-estimation templates with phase error $\lesssim 0.01$ radians over ${\sim}10^5$ orbits of inspiral

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

July 16, 2013

3 / 14

- as efficient as possible (orbital evolution!)
 - (but still much less accurate/efficient than frequency-domain for orbits where frequency-domain works)
- geodesic approximation (at least for now)

- Kerr
- scalar field for now develop techniques for future work with gravitational field
- be able to handle generic orbits (inclined & highly-eccentric)
 - astrophysical EMRIs likely have inclined orbits, any e up to ~ 0.99
 - low to moderately eccentric orbits
 ⇒ frequency-domain is fast & accurate
 - highly-eccentric orbits \Rightarrow need time-domain
- compute self-force very accurately
 - eLISA/NGO will eventually need parameter-estimation templates with phase error $\lesssim 0.01$ radians over ${\sim}10^5$ orbits of inspiral

EN E SQA

3 / 14

July 16, 2013

- as efficient as possible (orbital evolution!)
 - (but still much less accurate/efficient than frequency-domain for orbits where frequency-domain works)
- geodesic approximation (at least for now)

Work in progress: some goals accomplished, some not yet!

Effective-Source (also known as puncture-function) regularization

Effective-Source (also known as puncture-function) regularization

- use Barry Wardell's 4th order effective src and puncture fn
- scalar field for now
- gravitational field in the future? (m = 0, 1 Lorenz-gauge instabilities)

Effective-Source (also known as puncture-function) regularization

- use Barry Wardell's 4th order effective src and puncture fn
- scalar field for now
- gravitational field in the future? (m = 0,1 Lorenz-gauge instabilities)

m-mode decomposition, time domain

- \Rightarrow separate 2+1D numerical evolution for each m
 - can handle (almost) any orbit, including high eccentricity

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Effective-Source (also known as puncture-function) regularization

- use Barry Wardell's 4th order effective src and puncture fn
- scalar field for now
- gravitational field in the future? (m = 0,1 Lorenz-gauge instabilities)

m-mode decomposition, time domain

- \Rightarrow separate 2+1D numerical evolution for each m
 - can handle (almost) any orbit, including high eccentricity
 - worldtube scheme

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Effective-Source (also known as puncture-function) regularization

- use Barry Wardell's 4th order effective src and puncture fn
- scalar field for now
- gravitational field in the future? (m = 0,1 Lorenz-gauge instabilities)

m-mode decomposition, time domain

- \Rightarrow separate 2+1D numerical evolution for each m
 - can handle (almost) any orbit, including high eccentricity
 - worldtube scheme
 - worldtube moves in (r, θ) to follow the particle around the orbit

Effective-Source (also known as puncture-function) regularization

- use Barry Wardell's 4th order effective src and puncture fn
- scalar field for now
- gravitational field in the future? (m = 0,1 Lorenz-gauge instabilities)

m-mode decomposition, time domain

- \Rightarrow separate 2+1D numerical evolution for each m
 - can handle (almost) any orbit, including high eccentricity
 - worldtube scheme
 - worldtube moves in (r, θ) to follow the particle around the orbit
 - Cauchy evolution
 - fixed mesh refinement; some (finer) grids follow the worldtube/particle
 - (almost) causally-disconnected spatial boundaries (with mesh refinement this isn't very expensive)

The particle's physical (retarded) field φ satisfies $\Box \varphi = \delta (x - x_{\text{particle}}(t))$

The particle's physical (retarded) field φ satisfies $\Box \varphi = \delta (x - x_{\text{particle}}(t))$

Detwiler and Whiting (2003) showed that φ can be decomposed into a singular field $\varphi_{\text{singular}}$ which is spherically symmetric at the particle (and hence exerts no self-force), and a finite regular part φ_{regular} which exerts the self-force

The particle's physical (retarded) field φ satisfies $\Box \varphi = \delta (x - x_{\text{particle}}(t))$

Detwiler and Whiting (2003) showed that φ can be decomposed into a singular field $\varphi_{\text{singular}}$ which is spherically symmetric at the particle (and hence exerts no self-force), and a finite regular part φ_{regular} which exerts the self-force

It's very hard to explicly compute $\varphi_{\rm regular}$

The particle's physical (retarded) field φ satisfies $\Box \varphi = \delta (x - x_{\text{particle}}(t))$

Detwiler and Whiting (2003) showed that φ can be decomposed into a singular field $\varphi_{\text{singular}}$ which is spherically symmetric at the particle (and hence exerts no self-force), and a finite regular part φ_{regular} which exerts the self-force

It's very hard to explicly compute $\varphi_{\rm regular}$

Instead (Barack & Golbourn (2007), Vega & Detweiler (2008)) we construct a "puncture function" φ_p which closely approximates $\varphi_{\text{singular}}$ near the particle, then numerically compute the (finite) "residual field" $\varphi_r := \varphi - \varphi_p$ by solving

$$\Box \varphi_r = \Box (\varphi - \varphi_p) = \Box \varphi - \Box \varphi_p$$

= $\delta (x - x_{\text{particle}}(t)) - \Box \varphi_p$
= $\begin{cases} 0 & \text{at the particle} \\ -\Box \varphi_p & \text{elsewhere} \end{cases} =: S_{\text{effective}}$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

The particle's physical (retarded) field φ satisfies $\Box \varphi = \delta (x - x_{\text{particle}}(t))$

Detwiler and Whiting (2003) showed that φ can be decomposed into a singular field $\varphi_{\text{singular}}$ which is spherically symmetric at the particle (and hence exerts no self-force), and a finite regular part φ_{regular} which exerts the self-force

It's very hard to explicly compute $\varphi_{\rm regular}$

Instead (Barack & Golbourn (2007), Vega & Detweiler (2008)) we construct a "puncture function" φ_p which closely approximates $\varphi_{\text{singular}}$ near the particle, then numerically compute the (finite) "residual field" $\varphi_r := \varphi - \varphi_p$ by solving

$$\Box \varphi_r = \Box (\varphi - \varphi_p) = \Box \varphi - \Box \varphi_p$$

= $\delta (x - x_{\text{particle}}(t)) - \Box \varphi_p$
= $\begin{cases} 0 & \text{at the particle} \\ -\Box \varphi_p & \text{elsewhere} \end{cases}$ =: $S_{\text{effective}}$

If φ_p "closely-enough" approximates $\varphi_{\text{singular}}$ near the particle, then the self-force is given by $F^a = q \left(\nabla^a \varphi_r \right) \Big|_{\text{particle}}$

The particle's physical (retarded) field φ satisfies $\Box \varphi = \delta (x - x_{\text{particle}}(t))$

Detwiler and Whiting (2003) showed that φ can be decomposed into a singular field $\varphi_{\text{singular}}$ which is spherically symmetric at the particle (and hence exerts no self-force), and a finite regular part φ_{regular} which exerts the self-force

It's very hard to explicly compute $\varphi_{\rm regular}$

Instead (Barack & Golbourn (2007), Vega & Detweiler (2008)) we construct a "puncture function" φ_p which closely approximates $\varphi_{\text{singular}}$ near the particle, then numerically compute the (finite) "residual field" $\varphi_r := \varphi - \varphi_p$ by solving

July 16, 2013 5 / 14

$$\Box \varphi_r = \Box (\varphi - \varphi_p) = \Box \varphi - \Box \varphi_p$$

= $\delta (x - x_{\text{particle}}(t)) - \Box \varphi_p$
= $\begin{cases} 0 & \text{at the particle} \\ -\Box \varphi_p & \text{elsewhere} \end{cases}$ =: $S_{\text{effective}}$

If φ_p "closely-enough" approximates $\varphi_{\text{singular}}$ near the particle, then the self-force is given by $F^a = q \left(\nabla^a \varphi_r \right) \Big|_{\text{particle}}$

Even though $\varphi_p \neq \varphi_{\text{singular}}$, then self-force is exact to $\mathcal{O}(\mu)_{\text{singular}}$, is a singular of $\varphi_p \neq \varphi_{\text{singular}}$.

Problems:

• φ_p and $S_{\rm effective}$ are only defined in a neighbourhood of the particle

Problems:

- φ_p and $S_{\rm effective}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to φ , not φ_r

Problems:

- φ_p and $S_{\mathrm{effective}}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to φ , not φ_r

Solution:

introduce finite worldtube containing the particle worldline

• define "numerical field" $\varphi_{num} = \begin{cases} \varphi_r & \text{inside the worldtube} \\ \varphi & \text{outside the worldtube} \end{cases}$ (this has a jump discontinuity by $\pm \varphi_p$ across the worldtube boundary)

Problems:

- φ_p and $S_{\mathrm{effective}}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to φ , not φ_r

Solution:

introduce finite worldtube containing the particle worldline

- define "numerical field" $\varphi_{num} = \begin{cases} \varphi_r & \text{inside the worldtube} \\ \varphi & \text{outside the worldtube} \end{cases}$ (this has a jump discontinuity by $\pm \varphi_p$ across the worldtube boundary)
- compute $\varphi_{\rm num}$ by numerically solving

 $\Box \varphi_{\rm num} = \begin{cases} S_{\rm effective} & {\rm inside \ the \ worldtube} \\ 0 & {\rm outside \ the \ worldtube} \end{cases}$

July 16, 2013 6 / 14

Problems:

- φ_p and $S_{\mathrm{effective}}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to φ , not φ_r

Solution:

introduce finite worldtube containing the particle worldline

• define "numerical field" $\varphi_{num} = \begin{cases} \varphi_r & \text{inside the worldtube} \\ \varphi & \text{outside the worldtube} \end{cases}$ (this has a jump discontinuity by $\pm \varphi_p$ across the worldtube boundary)

• compute φ_{num} by numerically solving

 $\Box \varphi_{\rm num} = \begin{cases} S_{\rm effective} & {\rm inside \ the \ worldtube} \\ 0 & {\rm outside \ the \ worldtube} \end{cases}$

• S_{effective} is only needed inside the worldtube

・ロ・・ 4日・ 4日・ 4日・ 4日・

Problems:

- φ_p and $S_{\mathrm{effective}}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to $\varphi,$ not φ_r

Solution:

introduce finite worldtube containing the particle worldline

• define "numerical field" $\varphi_{num} = \begin{cases} \varphi_r & \text{inside the worldtube} \\ \varphi & \text{outside the worldtube} \end{cases}$ (this has a jump discontinuity by $\pm \varphi_P$ across the worldtube boundary)

• compute φ_{num} by numerically solving

 $\Box \varphi_{\rm num} = \begin{cases} S_{\rm effective} & {\rm inside \ the \ worldtube} \\ 0 & {\rm outside \ the \ worldtube} \end{cases}$

- $S_{\text{effective}}$ is only needed inside the worldtube
- the self-force is given by $F^a = q \left(\nabla^a \varphi_{\text{num}} \right) \Big|_{\text{particle}}$

・ロット 4回ッ 4回ッ 4回ッ 4日・

Problems:

- φ_p and $S_{\mathrm{effective}}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to φ , not φ_r

Solution:

introduce finite worldtube containing the particle worldline

- define "numerical field" $\varphi_{num} = \begin{cases} \varphi_r & \text{inside the worldtube} \\ \varphi & \text{outside the worldtube} \end{cases}$ (this has a jump discontinuity by $\pm \varphi_P$ across the worldtube boundary)
- compute φ_{num} by numerically solving

 $\Box \varphi_{\rm num} = \begin{cases} S_{\rm effective} & {\rm inside \ the \ worldtube} \\ 0 & {\rm outside \ the \ worldtube} \end{cases}$

- $S_{\text{effective}}$ is only needed inside the worldtube
- the self-force is given by $F^{a}=q\left(
 abla^{a}arphi_{\mathsf{num}}
 ight)ig|_{\mathsf{particle}}$
- finite differencing must locally "adjust" (a copy of) φ_{num} by $\mp \varphi_p$ across the worldtube bndry to undo the jump discontinuity in φ_{num}

Instead of numerically solving $\Box \varphi_{num} = \begin{cases} S_{effective} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D:

Instead of numerically solving $\Box \varphi_{num} = \begin{cases} S_{effective} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D: • $\varphi_{num}(t, r, \theta, \varphi) = \sum_{m} e^{im\tilde{\phi}} \varphi_{num,m}(t, r, \theta)$ (where $\tilde{\phi} := \phi + f(r)$ to avoid Kerr infinite-twisting at horizon)

Instead of numerically solving $\Box \varphi_{num} = \begin{cases} S_{effective} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D: • $\varphi_{\text{num}}(t, r, \theta, \varphi) = \sum e^{im\bar{\phi}} \varphi_{\text{num}, m}(t, r, \theta)$ (where $\tilde{\phi} := \phi + f(r)$ to avoid Kerr infinite-twisting at horizon) now each φ_{num,m} satisfies $\begin{bmatrix} numerically \\ solve this \\ for each m \\ in 2+1D \end{bmatrix}$ $\Box_m \varphi_{\text{num},m} = \begin{cases} S_{\text{effective},m} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ where $S_{ ext{effective},m} = rac{1}{2\pi} \int_{-\pi}^{\pi} S_{ ext{effective}} e^{-im ilde{\phi}} \, d ilde{\phi}$

July 16, 2013 7 / 14

Instead of numerically solving $\Box \varphi_{num} = \begin{cases} S_{effective} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D: • $\varphi_{\text{num}}(t, r, \theta, \varphi) = \sum e^{im\ddot{\phi}} \varphi_{\text{num},m}(t, r, \theta)$ (where $\tilde{\phi} := \phi + f(r)$ to avoid Kerr infinite-twisting at horizon) now each φ_{num,m} satisfies $\begin{bmatrix} numerically \\ solve this \\ for each m \\ in 2+1D \end{bmatrix}$ $\Box_m \varphi_{\text{num},m} = \begin{cases} S_{\text{effective},m} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ where $S_{ ext{effective},m} = rac{1}{2\pi} \int_{-\pi}^{\pi} S_{ ext{effective}} e^{-im ilde{\phi}} d ilde{\phi}$ • the self-force is given by $F^a = q \sum_{m=0}^{\infty} (\nabla^a \varphi_{\text{num},m}) \Big|_{\text{particle}}$

July 16, 2013 7 / 14

()

Instead of numerically solving $\Box \varphi_{num} = \begin{cases} S_{effective} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D: • $\varphi_{\text{num}}(t, r, \theta, \varphi) = \sum e^{im\ddot{\phi}} \varphi_{\text{num},m}(t, r, \theta)$ (where $\tilde{\phi} := \phi + f(r)$ to avoid Kerr infinite-twisting at horizon) now each φ_{num,m} satisfies $\begin{bmatrix} numerically \\ solve this \\ for each m \\ in 2+1D \end{bmatrix}$ $\Box_m \varphi_{\text{num},m} = \begin{cases} S_{\text{effective},m} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ where $S_{\text{effective},m} = \frac{1}{2\pi} \int_{-}^{\pi} S_{\text{effective}} e^{-im\tilde{\phi}} d\tilde{\phi}$ • the self-force is given by $F^a = q \sum_{m=0}^{\infty} (\nabla^a \varphi_{num,m}) |_{particle}$ • in practice, solve numerically for $0 \le m \le m_{max} \sim 20$; fit large-*m* asymptotic series to estimate "tail sum" $\sum_{m=m_{max}+1}^{\infty}$ () July 16, 2013 7 / 14

Initial data:

Initial data:

- start evolution with arbitrary initial data ($\varphi_{num,m} = 0$)
- evolution then produces an initial burst of "junk radiation"
- junk radiation quickly propagates out of the system, field configuration settles down to a quasi-equilibrium state

Initial data:

- start evolution with arbitrary initial data ($\varphi_{num,m} = 0$)
- evolution then produces an initial burst of "junk radiation"
- junk radiation quickly propagates out of the system, field configuration settles down to a quasi-equilibrium state
- how to detect "quasi-equilibrium state"?
 - equatorial orbit: see if $\varphi_{num,m}$ is periodic (with orbital period)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Initial data:

- start evolution with arbitrary initial data ($\varphi_{num,m} = 0$)
- evolution then produces an initial burst of "junk radiation"
- junk radiation quickly propagates out of the system, field configuration settles down to a quasi-equilibrium state
- how to detect "quasi-equilibrium state"?
 - equatorial orbit: see if $\varphi_{num,m}$ is periodic (with orbital period)
 - generic orbit: see if φ_{num,m} is the same for different initial data choices (integrated concurrently)

Initial data:

- start evolution with arbitrary initial data ($\varphi_{num,m} = 0$)
- evolution then produces an initial burst of "junk radiation"
- junk radiation quickly propagates out of the system, field configuration settles down to a quasi-equilibrium state
- how to detect "quasi-equilibrium state"?
 - equatorial orbit: see if $\varphi_{num,m}$ is periodic (with orbital period)
 - generic orbit: see if φ_{num,m} is the same for different initial data choices (integrated concurrently)

Boundary Conditions:

• in theory: use domain large enough that inner/outer boundaries are causally disconnected from particle worldline

(日)

Initial data:

- start evolution with arbitrary initial data ($\varphi_{num,m} = 0$)
- evolution then produces an initial burst of "junk radiation"
- junk radiation quickly propagates out of the system, field configuration settles down to a quasi-equilibrium state
- how to detect "quasi-equilibrium state"?
 - equatorial orbit: see if $\varphi_{num,m}$ is periodic (with orbital period)
 - generic orbit: see if φ_{num,m} is the same for different initial data choices (integrated concurrently)

Boundary Conditions:

- in theory: use domain large enough that inner/outer boundaries are causally disconnected from particle worldline
- in practice: for φ_{num,m} = 0 initial data, boundary reflections are only significant when outgoing junk radiation reaches the boundaries ⇒ domain only needs to be about ¹/₂ the causally-disconnected size to reduce boundary reflections to a negligible level

(日)

Initial data:

- start evolution with arbitrary initial data ($\varphi_{num,m} = 0$)
- evolution then produces an initial burst of "junk radiation"
- junk radiation quickly propagates out of the system, field configuration settles down to a quasi-equilibrium state
- how to detect "quasi-equilibrium state"?
 - equatorial orbit: see if $\varphi_{num,m}$ is periodic (with orbital period)
 - generic orbit: see if φ_{num,m} is the same for different initial data choices (integrated concurrently)

Boundary Conditions:

- in theory: use domain large enough that inner/outer boundaries are causally disconnected from particle worldline
- in practice: for φ_{num,m} = 0 initial data, boundary reflections are only significant when outgoing junk radiation reaches the boundaries ⇒ domain only needs to be about ¹/₂ the causally-disconnected size to reduce boundary reflections to a negligible level
- with mesh refinement, having very large domain is not expensive

The worldtube must contain the particle in (r, θ) . But for a non-circular orbit, the particle moves in (r, θ) during the orbit.

The worldtube must contain the particle in (r, θ) . But for a non-circular orbit, the particle moves in (r, θ) during the orbit.

Small eccentricity:

• can use a worldtube big enough to contain the entire orbit

The worldtube must contain the particle in (r, θ) . But for a non-circular orbit, the particle moves in (r, θ) during the orbit.

Small eccentricity:

• can use a worldtube big enough to contain the entire orbit

Large eccentricity:

• must move the worldtube in (r, θ) to follow the particle around the orbit

The worldtube must contain the particle in (r, θ) .

But for a non-circular orbit, the particle moves in (r, θ) during the orbit.

Small eccentricity:

can use a worldtube big enough to contain the entire orbit

Large eccentricity:

- must move the worldtube in (r, θ) to follow the particle around the orbit
- recall that our numerically-evolved field is

 $\varphi_{\mathsf{num}} := \begin{cases} \varphi - \varphi_{\textit{p}} & \text{inside the worldtube} \\ \varphi & \text{outside the worldtube} \end{cases}$

this means then if we move the worldtube.

- a given (r, θ) may change from being inside the worldtube to being outside \Rightarrow must add φ_p
- a given (r, θ) may change from being outside the worldtube to being inside \Rightarrow must subtract φ_p
- I was worried that this would be a source of numerical noise \Rightarrow not a problem in practice (modulo bugs!) $(\Box) (\Box) ($ ()

July 16, 2013 9 / 14

Current Status

Equatorial eccentric orbits:

- elliptic-integral puncture fn & effective src
- worldtube moves in (r, θ) to follow the particle around the orbit
- fixed mesh refinement with "hollow grids"; some (finer) grids follow the worldtube
- typical worldtube size particle \pm 5*M* in *r*_{*}, particle \pm $\pi/8$ (22.5°) in heta
- 4th order finite differencing in space & time

Current Status

Equatorial eccentric orbits:

- elliptic-integral puncture fn & effective src
- worldtube moves in (r, θ) to follow the particle around the orbit
- fixed mesh refinement with "hollow grids"; some (finer) grids follow the worldtube
- typical worldtube size particle \pm 5*M* in *r*_{*}, particle \pm $\pi/8$ (22.5°) in heta
- 4th order finite differencing in space & time
- effective source is $\sim \frac{1}{2}$ million terms
 - \Rightarrow painful to compile machine-generated C code

イロト 不得下 イヨト イヨト 二日

Current Status

Equatorial eccentric orbits:

- elliptic-integral puncture fn & effective src
- worldtube moves in (r, θ) to follow the particle around the orbit
- fixed mesh refinement with "hollow grids"; some (finer) grids follow the worldtube
- typical worldtube size particle \pm 5*M* in *r*_{*}, particle \pm $\pi/8$ (22.5°) in heta
- 4th order finite differencing in space & time
- effective source is $\sim \frac{1}{2}$ million terms
 - \Rightarrow painful to compile machine-generated C code

Generic (inclined eccentric) orbits:

- our first attempt at an effective source had \sim 20 million terms \Rightarrow impractical to compile machine-generated C code
- we are starting to explore various ideas to reduce the complexity, and are optimistic we can solve this

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

July 16, 2013 10 / 14

Self-force for e = 0.4 orbit [tail fit]

Self-force for e = 0.8 orbit (preliminary)

Self-force for e = 0.9 orbit (very preliminary)

BH spin 0.6 orbit: p=8M, e=0.9

Conclusions

Things that work well:

- puncture-function regularization
- worldtube
- *m*-mode decomposition and 2+1D evolution
 - gives moderate parallelism "for free"
 - allows different numerical parameters for different m
- moving worldtube (allows highly eccentric orbits)
- mesh refinement (moving with particle & worldtube)

イロト 不得下 イヨト イヨト 二日

Conclusions

Things that work well:

- puncture-function regularization
- worldtube
- *m*-mode decomposition and 2+1D evolution
 - gives moderate parallelism "for free"
 - allows different numerical parameters for different m
- moving worldtube (allows highly eccentric orbits)
- mesh refinement (moving with particle & worldtube)

Highly eccentric orbits:

- numerical errors & cost per *M* of evolution seem to be only weakly dependent on eccentricity
- I think $e \sim 0.99$ is achievable; (long evolution time: orbital period $\sim 10^5 M$)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Conclusions

Things that work well:

- puncture-function regularization
- worldtube
- *m*-mode decomposition and 2+1D evolution
 - gives moderate parallelism "for free"
 - allows different numerical parameters for different m
- moving worldtube (allows highly eccentric orbits)
- mesh refinement (moving with particle & worldtube)

Highly eccentric orbits:

- numerical errors & cost per *M* of evolution seem to be only weakly dependent on eccentricity
- I think $e \sim 0.99$ is achievable; (long evolution time: orbital period $\sim 10^5 M$)

Things that don't yet work well (a.k.a. directions for further research)

- evolved fields only $C^2 \Rightarrow$ hard to get higher-order finite-diff convergence
- inclined eccentric orbits \Rightarrow effective src is too complicated to be usable $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$