Scalar self-force for highly eccentric orbits in Kerr spacetime

Jonathan Thornburg

in collaboration with

Barry Wardell
Outline

Goals, overall plan of the computation
Outline

Goals, overall plan of the computation

Brief review of effective-source (puncture-function) regularization
Outline

Goals, overall plan of the computation

Brief review of **effective-source (puncture-function) regularization**

Some details of the computation

- \(m \)-mode decomposition
- separate 2+1D time-domain evolution for each mode
- worldtube scheme
 - finite differencing across the worldtube boundary
 - moving the worldtube
- computing the effective source and puncture function
- finite differencing near the particle (where fields are only \(C^2 \))
- mesh refinement
Outline

Goals, overall plan of the computation

Brief review of effective-source (puncture-function) regularization

Some details of the computation

- m-mode decomposition
- separate 2+1D time-domain evolution for each mode
- worldtube scheme
 - finite differencing across the worldtube boundary
 - moving the worldtube
- computing the effective source and puncture function
- finite differencing near the particle (where fields are only C^2)
- mesh refinement

Sample results

Conclusions, Plans, Lessons Learned
Goals

- Kerr
Goals

• Kerr

• scalar field for now
develop techniques for future work with gravitational field
Goals

• Kerr

• scalar field for now
develop techniques for future work with gravitational field

• be able to handle generic orbits (inclined & highly-eccentric)
 • astrophysical EMRI s likely have inclined orbits, any e up to ~ 0.99
Goals

- Kerr

- scalar field for now
 develop techniques for future work with gravitational field

- be able to handle generic orbits (inclined & highly-eccentric)
 - astrophysical EMRIs likely have inclined orbits, any \(e \) up to \(\sim 0.99 \)
 - low to moderately eccentric orbits
 \(\Rightarrow \) frequency-domain is fast & accurate
Goals

- Kerr
- scalar field for now
 develop techniques for future work with gravitational field
- be able to handle generic orbits (inclined & highly-eccentric)
 - astrophysical EMRIs likely have inclined orbits, any e up to ~ 0.99
 - low to moderately eccentric orbits
 \Rightarrow frequency-domain is fast & accurate
- highly-eccentric orbits \Rightarrow need time-domain
Goals

- Kerr
- **scalar field** for now
devolve techniques for future work with gravitational field
- be able to handle generic orbits (**inclined** & **highly-eccentric**)
 - astrophysical EMRIIs likely have inclined orbits, any e up to ~ 0.99
 - low to moderately eccentric orbits
 \Rightarrow **frequency-domain** is fast & accurate
 - highly-eccentric orbits \Rightarrow need **time-domain**
- compute self-force **very accurately**
 - eLISA/NGO will eventually need parameter-estimation templates with phase error $\lesssim 0.01$ radians over $\sim 10^5$ orbits of inspiral
Goals

- Kerr
- **scalar field** for now
develop techniques for future work with gravitational field
- be able to handle generic orbits (inclined & highly-eccentric)
 - astrophysical EMRIs likely have inclined orbits, any e up to ~ 0.99
 - low to moderately eccentric orbits
 \Rightarrow frequency-domain is fast & accurate
 - highly-eccentric orbits \Rightarrow need time-domain
- compute self-force very accurately
 - eLISA/NGO will eventually need parameter-estimation templates with phase error $\lesssim 0.01$ radians over $\sim 10^5$ orbits of inspiral
- as efficient as possible (orbital evolution!)
 - (but still much less accurate/efficient than frequency-domain for orbits where frequency-domain works)
- geodesic approximation (at least for now)
Goals

- Kerr

- **scalar field** for now
develop techniques for future work with gravitational field

- be able to handle generic orbits (**inclined & highly-eccentric**)
 - astrophysical EMRIs likely have inclined orbits, any e up to ~ 0.99
 - low to moderately eccentric orbits
 \Rightarrow **frequency-domain** is fast & accurate
 - highly-eccentric orbits \Rightarrow need **time-domain**

- compute self-force **very accurately**
 - eLISA/NGO will eventually need parameter-estimation templates with phase error $\lesssim 0.01$ radians over $\sim 10^5$ orbits of inspiral

- as efficient as possible (**orbital evolution!**)
 - (but still much less accurate/efficient than frequency-domain for orbits where frequency-domain works)

- geodesic approximation (at least for now)

Work in progress: some goals accomplished, some not yet!
Overall Plan of the Computation

Effective-Source (also known as puncture-function) regularization
Overall Plan of the Computation

Effective-Source (also known as puncture-function) regularization

- use Barry Wardell’s 4th order effective src and puncture fn
- scalar field for now
- gravitational field in the future? \((m = 0,1\) Lorenz-gauge instabilities)
Overall Plan of the Computation

Effective-Source (also known as puncture-function) regularization
 • use Barry Wardell's 4th order effective src and puncture fn
 • scalar field for now
 • gravitational field in the future? ($m = 0,1$ Lorenz-gauge instabilities)

m-mode decomposition, time domain
⇒ separate 2+1D numerical evolution for each m
 • can handle (almost) any orbit, including high eccentricity
Overall Plan of the Computation

Effective-Source (also known as puncture-function) regularization
 • use Barry Wardell's 4th order effective src and puncture fn
 • scalar field for now
 • gravitational field in the future? ($m = 0, 1$ Lorenz-gauge instabilities)

m-mode decomposition, time domain
⇒ separate 2+1D numerical evolution for each m
 • can handle (almost) any orbit, including high eccentricity
 • worldtube scheme
Overall Plan of the Computation

Effective-Source (also known as puncture-function) regularization

- use Barry Wardell's 4th order effective src and puncture fn
- scalar field for now
- gravitational field in the future? ($m = 0,1$ Lorenz-gauge instabilities)

m-mode decomposition, time domain

\Rightarrow separate 2+1D numerical evolution for each m

- can handle (almost) any orbit, including high eccentricity
- worldtube scheme
- worldtube moves in (r, θ) to follow the particle around the orbit
Overall Plan of the Computation

Effective-Source (also known as puncture-function) regularization

- use Barry Wardell’s 4th order effective src and puncture fn
- scalar field for now
- gravitational field in the future? ($m = 0, 1$ Lorenz-gauge instabilities)

m-mode decomposition, time domain
⇒ separate 2+1D numerical evolution for each m

- can handle (almost) any orbit, including high eccentricity
- worldtube scheme
- worldtube moves in (r, θ) to follow the particle around the orbit
- Cauchy evolution
- fixed mesh refinement; some (finer) grids follow the worldtube/particle
- (almost) causally-disconnected spatial boundaries
 (with mesh refinement this isn’t very expensive)
Effective-src (puncture-fn) regularization: Outline

The particle’s physical (retarded) field \(\varphi \) satisfies

\[
\square \varphi = \delta(x - x_{\text{particle}}(t))
\]
Effective-src (puncture-fn) regularization: Outline

The particle’s physical (retarded) field φ satisfies $\Box \varphi = \delta(x - x_{\text{particle}}(t))$

Detwiler and Whiting (2003) showed that φ can be decomposed into a singular field $\varphi_{\text{singular}}$ which is spherically symmetric at the particle (and hence exerts no self-force), and a finite regular part φ_{regular} which exerts the self-force
Effective-src (puncture-fn) regularization: Outline

The particle’s physical (retarded) field φ satisfies $\Box \varphi = \delta(x - x_\text{particle}(t))$

Detwiler and Whiting (2003) showed that φ can be decomposed into a singular field $\varphi_{\text{singular}}$ which is spherically symmetric at the particle (and hence exerts no self-force), and a finite regular part φ_{regular} which exerts the self-force.

It’s very hard to explicitly compute φ_{regular}.
Effective-src (puncture-fn) regularization: Outline

The particle’s physical (retarded) field \(\varphi \) satisfies \(\Box \varphi = \delta(x - x_{\text{particle}}(t)) \)

Detwiler and Whiting (2003) showed that \(\varphi \) can be decomposed into a singular field \(\varphi_{\text{singular}} \) which is spherically symmetric at the particle (and hence exerts no self-force), and a finite regular part \(\varphi_{\text{regular}} \) which exerts the self-force

It's very hard to explicitly compute \(\varphi_{\text{regular}} \)

Instead (Barack & Golbourn (2007), Vega & Detweiler (2008)) we construct a “puncture function” \(\varphi_p \) which closely approximates \(\varphi_{\text{singular}} \) near the particle, then numerically compute the (finite) “residual field” \(\varphi_r := \varphi - \varphi_p \) by solving

\[
\Box \varphi_r = \Box (\varphi - \varphi_p) = \Box \varphi - \Box \varphi_p
\]

\[
= \delta(x - x_{\text{particle}}(t)) - \Box \varphi_p
\]

\[
= \begin{cases}
0 & \text{at the particle} \\
-\Box \varphi_p & \text{elsewhere}
\end{cases} =: S_{\text{effective}}
\]
Effective-src (puncture-fn) regularization: Outline

The particle’s physical (retarded) field \(\varphi\) satisfies \(\Box \varphi = \delta(x - x_{\text{particle}}(t))\)

Detwiler and Whiting (2003) showed that \(\varphi\) can be decomposed into a singular field \(\varphi_{\text{singular}}\) which is spherically symmetric at the particle (and hence exerts no self-force), and a finite regular part \(\varphi_{\text{regular}}\) which exerts the self-force.

It’s very hard to explicitly compute \(\varphi_{\text{regular}}\).

Instead (Barack & Golbourn (2007), Vega & Detweiler (2008)) we construct a “puncture function” \(\varphi_p\) which closely approximates \(\varphi_{\text{singular}}\) near the particle, then numerically compute the (finite) “residual field” \(\varphi_r := \varphi - \varphi_p\) by solving

\[
\Box \varphi_r = \Box (\varphi - \varphi_p) = \Box \varphi - \Box \varphi_p = \delta(x - x_{\text{particle}}(t)) - \Box \varphi_p = \begin{cases} 0 & \text{at the particle} \\ -\Box \varphi_p & \text{elsewhere} \end{cases} =: S_{\text{effective}}
\]

If \(\varphi_p\) “closely-enough” approximates \(\varphi_{\text{singular}}\) near the particle, then the self-force is given by \(F^a = q (\nabla^a \varphi_r)\bigg|_{\text{particle}}\).
Effective-src (puncture-fn) regularization: Outline

The particle’s physical (retarded) field φ satisfies $\Box \varphi = \delta(x - x_{\text{particle}}(t))$

Detwiler and Whiting (2003) showed that φ can be decomposed into a singular field $\varphi_{\text{singular}}$ which is spherically symmetric at the particle (and hence exerts no self-force), and a finite regular part φ_{regular} which exerts the self-force.

It’s very hard to explicitly compute φ_{regular}.

Instead (Barack & Golbourn (2007), Vega & Detweiler (2008)) we construct a “puncture function” φ_p which closely approximates $\varphi_{\text{singular}}$ near the particle, then numerically compute the (finite) “residual field” $\varphi_r := \varphi - \varphi_p$ by solving

$$\Box \varphi_r = \Box (\varphi - \varphi_p) = \Box \varphi - \Box \varphi_p$$

$$= \delta(x - x_{\text{particle}}(t)) - \Box \varphi_p$$

$$= \begin{cases} 0 & \text{at the particle} \\ -\Box \varphi_p & \text{elsewhere} \end{cases} =: S_{\text{effective}}$$

If φ_p “closely-enough” approximates $\varphi_{\text{singular}}$ near the particle, then the self-force is given by $F^a = q (\nabla^a \varphi_r)|_{\text{particle}}$

Even though $\varphi_p \neq \varphi_{\text{singular}}$, then self-force is exact to $O(\mu)$.
The worldtube

Problems:

- \(\varphi_p \) and \(S_{\text{effective}} \) are only defined in a neighbourhood of the particle.
The worldtube

Problems:

- φ_p and $S_{\text{effective}}$ are only defined in a neighbourhood of the particle.
- far-field outgoing-radiation BCs apply to φ, not φ_r.
The worldtube

Problems:

• φ_p and $S_{\text{effective}}$ are only defined in a neighbourhood of the particle
• far-field outgoing-radiation BCs apply to φ, not φ_r

Solution:
introduce finite worldtube containing the particle worldline

• define “numerical field” $\varphi_{\text{num}} = \begin{cases} \varphi_r & \text{inside the worldtube} \\ \varphi & \text{outside the worldtube} \end{cases}$

 (this has a jump discontinuity by $\pm \varphi_p$ across the worldtube boundary)
The worldtube

Problems:

- φ_p and $S_{\text{effective}}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to φ, not φ_r

Solution:

introduce finite worldtube containing the particle worldline

- define “numerical field” $\varphi_{\text{num}} = \begin{cases} \varphi_r & \text{inside the worldtube} \\ \varphi & \text{outside the worldtube} \end{cases}$
 (this has a jump discontinuity by $\pm \varphi_p$ across the worldtube boundary)
- compute φ_{num} by numerically solving

$$\Box \varphi_{\text{num}} = \begin{cases} S_{\text{effective}} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$$
The worldtube

Problems:

• φ_p and $S_{\text{effective}}$ are only defined in a neighbourhood of the particle
• far-field outgoing-radiation BCs apply to φ, not φ_r

Solution:
introduce finite worldtube containing the particle worldline

• define “numerical field” $\varphi_{\text{num}} = \begin{cases} \varphi_r & \text{inside the worldtube} \\ \varphi & \text{outside the worldtube} \end{cases}$
 (this has a jump discontinuity by $\pm \varphi_p$ across the worldtube boundary)
• compute φ_{num} by numerically solving

$$\Box \varphi_{\text{num}} = \begin{cases} S_{\text{effective}} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$$

• $S_{\text{effective}}$ is only needed inside the worldtube
The worldtube

Problems:

- φ_p and $S_{\text{effective}}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to φ, not φ_r

Solution:

introduce finite worldtube containing the particle worldline

- define “numerical field” $\varphi_{\text{num}} = \begin{cases}
\varphi_r & \text{inside the worldtube} \\
\varphi & \text{outside the worldtube}
\end{cases}$

 (this has a jump discontinuity by $\pm \varphi_p$ across the worldtube boundary)
- compute φ_{num} by numerically solving

$$\Box \varphi_{\text{num}} = \begin{cases}
S_{\text{effective}} & \text{inside the worldtube} \\
0 & \text{outside the worldtube}
\end{cases}$$

- $S_{\text{effective}}$ is only needed inside the worldtube
- the self-force is given by $F^a = q \left(\nabla^a \varphi_{\text{num}} \right)_{\text{particle}}$
The worldtube

Problems:

- φ_p and $S_{\text{effective}}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to φ, not φ_r

Solution:
introduce finite worldtube containing the particle worldline

- define “numerical field” $\varphi_{\text{num}} = \begin{cases}
\varphi_r & \text{inside the worldtube} \\
\varphi & \text{outside the worldtube}
\end{cases}$
 (this has a jump discontinuity by $\pm \varphi_p$ across the worldtube boundary)
- compute φ_{num} by numerically solving
 \[
 \square \varphi_{\text{num}} = \begin{cases}
 S_{\text{effective}} & \text{inside the worldtube} \\
 0 & \text{outside the worldtube}
 \end{cases}
 \]
- $S_{\text{effective}}$ is only needed inside the worldtube
- the self-force is given by $F^a = q \left(\nabla^a \varphi_{\text{num}} \right) \bigg|_{\text{particle}}$
- finite differencing must locally “adjust” (a copy of) φ_{num} by $\mp \varphi_p$
 across the worldtube bndry to undo the jump discontinuity in φ_{num}
\textit{m}-mode decomposition

Instead of numerically solving $\Box \varphi_{\text{num}} = \begin{cases} S_{\text{effective}} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D:
m-mode decomposition

Instead of numerically solving $\Box \varphi_{\text{num}} = \begin{cases} S_{\text{effective}} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D:

- $\varphi_{\text{num}}(t, r, \theta, \varphi) = \sum_m e^{im\tilde{\phi}} \varphi_{\text{num}, m}(t, r, \theta)$

(where $\tilde{\phi} := \phi + f(r)$ to avoid Kerr infinite-twisting at horizon)
Instead of numerically solving $\Box \varphi_{\text{num}} = \begin{cases} S_{\text{effective}} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D:

- $\varphi_{\text{num}}(t, r, \theta, \phi) = \sum_{m} e^{im\tilde{\phi}} \varphi_{\text{num}, m}(t, r, \theta)$ (where $\tilde{\phi} := \phi + f(r)$ to avoid Kerr infinite-twisting at horizon)

- now each $\varphi_{\text{num}, m}$ satisfies

$$\Box_{m} \varphi_{\text{num}, m} = \begin{cases} S_{\text{effective}, m} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$$

where

$$S_{\text{effective}, m} = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_{\text{effective}} e^{-im\tilde{\phi}} d\tilde{\phi}$$

[numerically solve this for each m in 2+1D]
\textit{m}-mode decomposition

Instead of numerically solving $\Box \varphi_{\text{num}} = \begin{cases} S_{\text{effective}} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D:

- $\varphi_{\text{num}}(t, r, \theta, \varphi) = \sum_m e^{im\tilde{\phi}} \varphi_{\text{num}, m}(t, r, \theta)$

 (where $\tilde{\phi} := \phi + f(r)$ to avoid Kerr infinite-twisting at horizon)

- now each $\varphi_{\text{num}, m}$ satisfies

 $\Box_m \varphi_{\text{num}, m} = \begin{cases} S_{\text{effective}, m} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$

 where

 $S_{\text{effective}, m} = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_{\text{effective}} e^{-im\tilde{\phi}} d\tilde{\phi}$

- the self-force is given by $F^a = q \sum_{m=0}^{\infty} (\nabla^a \varphi_{\text{num}, m})_{\text{particle}}$
\textit{m}-mode decomposition

Instead of numerically solving $\Box \varphi_{\text{num}} = \begin{cases} S_{\text{effective}} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D:

- $\varphi_{\text{num}}(t, r, \theta, \varphi) = \sum_m e^{im\tilde{\phi}} \varphi_{\text{num}, m}(t, r, \theta)$
 (where $\tilde{\phi} := \phi + f(r)$ to avoid Kerr infinite-twisting at horizon)

- now each $\varphi_{\text{num}, m}$ satisfies
 $\Box_m \varphi_{\text{num}, m} = \begin{cases} S_{\text{effective}, m} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$
 numerically solve this for each m in 2+1D

 where
 \[S_{\text{effective}, m} = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_{\text{effective}} e^{-im\tilde{\phi}} d\tilde{\phi} \]

- the self-force is given by $F^a = q \sum_{m=0}^{\infty} (\nabla^a \varphi_{\text{num}, m})\big|_{\text{particle}}$

- in practice, solve numerically for $0 \leq m \leq m_{\text{max}} \sim 20$;
 fit large-m asymptotic series to estimate “tail sum” $\sum_{m=m_{\text{max}}+1}^{\infty}$
Initial data, boundary conditions

Initial data:
Initial data, boundary conditions

Initial data:

- start evolution with arbitrary initial data \((\varphi_{num,m} = 0) \)
- evolution then produces an initial burst of “junk radiation”
- junk radiation quickly propagates out of the system, field configuration settles down to a quasi-equilibrium state
Initial data, boundary conditions

Initial data:

- start evolution with arbitrary initial data \((\varphi_{num,m} = 0)\)
- evolution then produces an initial burst of “junk radiation”
- junk radiation quickly propagates out of the system, field configuration settles down to a quasi-equilibrium state
- how to detect “quasi-equilibrium state”?
 - equatorial orbit: see if \(\varphi_{num,m}\) is periodic (with orbital period)
Initial data, boundary conditions

Initial data:

- start evolution with arbitrary initial data ($\varphi_{num,m} = 0$)
- evolution then produces an initial burst of “junk radiation”
- junk radiation quickly propagates out of the system, field configuration settles down to a quasi-equilibrium state
- how to detect “quasi-equilibrium state”?
 - equatorial orbit: see if $\varphi_{num,m}$ is periodic (with orbital period)
 - generic orbit: see if $\varphi_{num,m}$ is the same for different initial data choices (integrated concurrently)
Initial data, boundary conditions

Initial data:

- start evolution with arbitrary initial data ($\varphi_{num,m} = 0$)
- evolution then produces an initial burst of “junk radiation”
- junk radiation quickly propagates out of the system, field configuration settles down to a quasi-equilibrium state
- how to detect “quasi-equilibrium state”?
 - equatorial orbit: see if $\varphi_{num,m}$ is periodic (with orbital period)
 - generic orbit: see if $\varphi_{num,m}$ is the same for different initial data choices (integrated concurrently)

Boundary Conditions:

- in theory: use domain large enough that inner/outer boundaries are causally disconnected from particle worldline
Initial data, boundary conditions

Initial data:

- start evolution with arbitrary initial data \((\varphi_{num,m} = 0)\)
- evolution then produces an initial burst of “junk radiation”
- junk radiation quickly propagates out of the system, field configuration settles down to a quasi-equilibrium state
- how to detect “quasi-equilibrium state”?
 - equatorial orbit: see if \(\varphi_{num,m}\) is periodic (with orbital period)
 - generic orbit: see if \(\varphi_{num,m}\) is the same for different initial data choices (integrated concurrently)

Boundary Conditions:

- in theory: use domain large enough that inner/outer boundaries are causally disconnected from particle worldline
- in practice: for \(\varphi_{num,m} = 0\) initial data, boundary reflections are only significant when outgoing junk radiation reaches the boundaries
 \(\Rightarrow\) domain only needs to be about \(\frac{1}{2}\) the causally-disconnected size to reduce boundary reflections to a negligible level
Initial data, boundary conditions

Initial data:

- start evolution with arbitrary initial data ($\varphi_{num,m} = 0$)
- evolution then produces an initial burst of “junk radiation”
- junk radiation quickly propagates out of the system, field configuration settles down to a quasi-equilibrium state
- how to detect “quasi-equilibrium state”?
 - equatorial orbit: see if $\varphi_{num,m}$ is periodic (with orbital period)
 - generic orbit: see if $\varphi_{num,m}$ is the same for different initial data choices (integrated concurrently)

Boundary Conditions:

- in theory: use domain large enough that inner/outer boundaries are causally disconnected from particle worldline
- in practice: for $\varphi_{num,m} = 0$ initial data, boundary reflections are only significant when outgoing junk radiation reaches the boundaries
 \Rightarrow domain only needs to be about $\frac{1}{2}$ the causally-disconnected size to reduce boundary reflections to a negligible level
- with mesh refinement, having very large domain is not expensive
Moving the worldtube

The worldtube must contain the particle in \((r, \theta)\).
But for a non-circular orbit, the particle moves in \((r, \theta)\) during the orbit.
Moving the worldtube

The worldtube must contain the particle in \((r, \theta)\).
But for a non-circular orbit, the particle moves in \((r, \theta)\) during the orbit.

Small eccentricity:

- can use a worldtube big enough to contain the entire orbit
Moving the worldtube

The worldtube must contain the particle in (r, θ). But for a non-circular orbit, the particle moves in (r, θ) during the orbit.

Small eccentricity:
- can use a worldtube big enough to contain the entire orbit

Large eccentricity:
- must move the worldtube in (r, θ) to follow the particle around the orbit
Moving the worldtube

The worldtube must contain the particle in \((r, \theta)\).
But for a non-circular orbit, the particle moves in \((r, \theta)\) during the orbit.

Small eccentricity:
- can use a worldtube big enough to contain the entire orbit

Large eccentricity:
- must move the worldtube in \((r, \theta)\) to follow the particle around the orbit
- recall that our numerically-evolved field is
 \[
 \varphi_{\text{num}} := \begin{cases}
 \varphi - \varphi_p & \text{inside the worldtube} \\
 \varphi & \text{outside the worldtube}
 \end{cases}
 \]
 this means then if we move the worldtube,
 - a given \((r, \theta)\) may change from being inside the worldtube to being outside \(\Rightarrow\) must add \(\varphi_p\)
 - a given \((r, \theta)\) may change from being outside the worldtube to being inside \(\Rightarrow\) must subtract \(\varphi_p\)
- I was worried that this would be a source of numerical noise
 \(\Rightarrow\) not a problem in practice (modulo bugs!)
Current Status

Equatorial eccentric orbits:

- elliptic-integral puncture fn & effective src
- worldtube moves in \((r, \theta)\) to follow the particle around the orbit
- fixed mesh refinement with “hollow grids”; some (finer) grids follow the worldtube
- typical worldtube size particle \(\pm 5M\) in \(r_\ast\), particle \(\pm \pi/8\) (22.5\(^\circ\)) in \(\theta\)
- 4th order finite differencing in space & time
Current Status

Equatorial eccentric orbits:

- elliptic-integral puncture fn & effective src
- worldtube moves in \((r, \theta)\) to follow the particle around the orbit
- fixed mesh refinement with “hollow grids”; some (finer) grids follow the worldtube
- typical worldtube size particle \(\pm 5M\) in \(r_*\), particle \(\pm \pi/8 (22.5^\circ)\) in \(\theta\)
- 4th order finite differencing in space & time
- effective source is \(\sim \frac{1}{2}\) million terms
 \(\Rightarrow\) painful to compile machine-generated C code
Current Status

Equatorial eccentric orbits:

- elliptic-integral puncture fn & effective src
- **worldtube moves** in \((r, \theta)\) to follow the particle around the orbit
- fixed mesh refinement with “hollow grids”;
 some (finer) grids follow the worldtube
- typical worldtube size particle \(\pm 5M\) in \(r_\ast\), particle \(\pm \pi/8\) (22.5\(^\circ\)) in \(\theta\)
- 4th order finite differencing in space & time
- **effective source is** \(\sim \frac{1}{2}\) million terms
 \(\Rightarrow\) painful to compile machine-generated C code

Generic (inclined eccentric) orbits:

- our first attempt at an effective source had \(\sim 20\) million terms
 \(\Rightarrow\) impractical to compile machine-generated C code
- we are starting to explore various ideas to reduce the complexity,
 and are optimistic we can solve this
Self-force for $e = 0.4$ orbit

BH spin 0.6 orbit: $p=8M$, $e=0.4$

$10^3 \times r^3 F_r$

- Outwards
- Inwards
Self-force for $e = 0.8$ orbit (preliminary)

BH spin 0.6 orbit: $p=8M$, $e=0.8$

$10^3 r^3 F_r$

outwards

inwards
Self-force for $e = 0.9$ orbit (very preliminary)

BH spin 0.6 orbit: $p=8M$, $e=0.9$

$10^3 r^3 F_r$

outwards

inwards

$5 10 20 50 100$

$-250 -200 -150 -100 -50 0 50 100 150 200 250 300$

July 16, 2013 13 / 14
Conclusions

Things that work well:

- puncture-function regularization
- worldtube
- m-mode decomposition and 2+1D evolution
 - gives moderate parallelism “for free”
 - allows different numerical parameters for different m
- moving worldtube (allows highly eccentric orbits)
- mesh refinement (moving with particle & worldtube)
Conclusions

Things that work well:

- puncture-function regularization
- worldtube
- \(m\)-mode decomposition and 2+1D evolution
 - gives moderate parallelism “for free”
 - allows different numerical parameters for different \(m\)
- moving worldtube (allows highly eccentric orbits)
- mesh refinement (moving with particle & worldtube)

Highly eccentric orbits:

- numerical errors & cost per \(M\) of evolution seem to be only weakly dependent on eccentricity
- I think \(e \sim 0.99\) is achievable; (long evolution time: orbital period \(\sim 10^5 M\))
Conclusions

Things that work well:

- puncture-function regularization
- worldtube
- m-mode decomposition and 2+1D evolution
 - gives moderate parallelism “for free”
 - allows different numerical parameters for different m
- moving worldtube (allows highly eccentric orbits)
- mesh refinement (moving with particle & worldtube)

Highly eccentric orbits:

- numerical errors & cost per M of evolution seem to be only weakly dependent on eccentricity
- I think $e \sim 0.99$ is achievable; (long evolution time: orbital period $\sim 10^5 M$)

Things that don’t yet work well (a.k.a. directions for further research)

- evolved fields only $C^2 \Rightarrow$ hard to get higher-order finite-diff convergence
- inclined eccentric orbits \Rightarrow effective src is too complicated to be usable

()