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Sample results
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• Kerr

• scalar field for now
develop techniques for future work with gravitational field

• be able to handle generic orbits (inclined & highly-eccentric)
• astrophysical EMRIs likely have inclined orbits, any e up to ∼ 0.99
• low to moderately eccentric orbits

⇒ frequency-domain is fast & accurate
• highly-eccentric orbits ⇒ need time-domain

• compute self-force very accurately
• eLISA/NGO will eventually need parameter-estimation templates with

phase error . 0.01 radians over ∼105 orbits of inspiral

• as efficient as possible (orbital evolution!)
• (but still much less accurate/efficient than frequency-domain

for orbits where frequency-domain works)

• geodesic approximation (at least for now)

Work in progress: some goals accomplished, some not yet!
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Overall Plan of the Computation

Effective-Source (also known as puncture-function) regularization

• use Barry Wardell’s 4th order effective src and puncture fn

• scalar field for now

• gravitational field in the future? (m = 0,1 Lorenz-gauge instabilities)

m-mode decomposition, time domain
⇒ separate 2+1D numerical evolution for each m

• can handle (almost) any orbit, including high eccentricity

• worldtube scheme

• worldtube moves in (r , θ) to follow the particle around the orbit

• Cauchy evolution

• fixed mesh refinement; some (finer) grids follow the worldtube/particle

• (almost) causally-disconnected spatial boundaries
(with mesh refinement this isn’t very expensive)
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Effective-src (puncture-fn) regularization: Outline

The particle’s physical (retarded) field ϕ satisfies �ϕ = δ
(

x − xparticle(t)
)
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−�ϕp
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−�ϕp elsewhere

=: Seffective

If ϕp “closely-enough” approximates ϕsingular near the particle,
then the self-force is given by F a = q (∇aϕr )
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∣

particle

Even though ϕp 6= ϕsingular, then self-force ie exact to O(µ)
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• finite differencing must locally “adjust” (a copy of) ϕnum by ∓ϕp

across the worldtube bndry to undo the jump discontinuity in ϕnum
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• in practice, solve numerically for 0 ≤ m ≤ mmax ∼ 20;

fit large-m asymptotic series to estimate “tail sum”
∑

∞

m=mmax+1

() July 16, 2013 7 / 14



Initial data, boundary conditions

Initial data:

() July 16, 2013 8 / 14



Initial data, boundary conditions

Initial data:

• start evolution with arbitrary initial data (ϕnum,m = 0)

• evolution then produces an initial burst of “junk radiation”

• junk radiation quickly propagates out of the system,
field configuration settles down to a quasi-equilibrium state

() July 16, 2013 8 / 14



Initial data, boundary conditions

Initial data:

• start evolution with arbitrary initial data (ϕnum,m = 0)

• evolution then produces an initial burst of “junk radiation”

• junk radiation quickly propagates out of the system,
field configuration settles down to a quasi-equilibrium statequasi-equilibrium state

• how to detect “quasi-equilibrium state”?
• equatorial orbit: see if ϕnum,m is periodic (with orbital period)

() July 16, 2013 8 / 14



Initial data, boundary conditions

Initial data:

• start evolution with arbitrary initial data (ϕnum,m = 0)

• evolution then produces an initial burst of “junk radiation”

• junk radiation quickly propagates out of the system,
field configuration settles down to a quasi-equilibrium statequasi-equilibrium state

• how to detect “quasi-equilibrium state”?
• equatorial orbit: see if ϕnum,m is periodic (with orbital period)
• generic orbit: see if ϕnum,m is the same for different

initial data choices (integrated concurrently)

() July 16, 2013 8 / 14



Initial data, boundary conditions

Initial data:

• start evolution with arbitrary initial data (ϕnum,m = 0)

• evolution then produces an initial burst of “junk radiation”

• junk radiation quickly propagates out of the system,
field configuration settles down to a quasi-equilibrium statequasi-equilibrium state

• how to detect “quasi-equilibrium state”?
• equatorial orbit: see if ϕnum,m is periodic (with orbital period)
• generic orbit: see if ϕnum,m is the same for different

initial data choices (integrated concurrently)

Boundary Conditions:

• in theory: use domain large enough that inner/outer boundaries
are causally disconnected from particle worldline

() July 16, 2013 8 / 14



Initial data, boundary conditions

Initial data:

• start evolution with arbitrary initial data (ϕnum,m = 0)

• evolution then produces an initial burst of “junk radiation”

• junk radiation quickly propagates out of the system,
field configuration settles down to a quasi-equilibrium statequasi-equilibrium state

• how to detect “quasi-equilibrium state”?
• equatorial orbit: see if ϕnum,m is periodic (with orbital period)
• generic orbit: see if ϕnum,m is the same for different

initial data choices (integrated concurrently)

Boundary Conditions:

• in theory: use domain large enough that inner/outer boundaries
are causally disconnected from particle worldline

• in practice: for ϕnum,m = 0 initial data, boundary reflections
are only significant when outgoing junk radiation reaches the boundaries
⇒ domain only needs to be about 1

2
the causally-disconnected size

to reduce boundary reflections to a negligible level

() July 16, 2013 8 / 14



Initial data, boundary conditions

Initial data:

• start evolution with arbitrary initial data (ϕnum,m = 0)

• evolution then produces an initial burst of “junk radiation”

• junk radiation quickly propagates out of the system,
field configuration settles down to a quasi-equilibrium statequasi-equilibrium state

• how to detect “quasi-equilibrium state”?
• equatorial orbit: see if ϕnum,m is periodic (with orbital period)
• generic orbit: see if ϕnum,m is the same for different

initial data choices (integrated concurrently)

Boundary Conditions:

• in theory: use domain large enough that inner/outer boundaries
are causally disconnected from particle worldline

• in practice: for ϕnum,m = 0 initial data, boundary reflections
are only significant when outgoing junk radiation reaches the boundaries
⇒ domain only needs to be about 1

2
the causally-disconnected size

to reduce boundary reflections to a negligible level

• with mesh refinement, having very large domain is not expensive
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Moving the worldtube

The worldtube must contain the particle in (r , θ).
But for a non-circular orbit, the particle moves in (r , θ) during the orbit.

Small eccentricity:

• can use a worldtube big enough to contain the entire orbit

Large eccentricity:

• must move the worldtube in (r , θ) to follow the particle around the orbit

• recall that our numerically-evolved field is

ϕnum :=

{

ϕ− ϕp inside the worldtube
ϕ outside the worldtube

this means then if we move the worldtube,
• a given (r , θ) may change from being inside the worldtube to being

outside ⇒ must add ϕp

• a given (r , θ) may change from being outside the worldtube to being
inside ⇒ must subtract ϕp

• I was worried that this would be a source of numerical noise
⇒ not a problem in practice (modulo bugs!)
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Current Status

Equatorial eccentric orbits:

• elliptic-integral puncture fn & effective src

• worldtube moves in (r , θ) to follow the particle around the orbit

• fixed mesh refinement with “hollow grids”;
some (finer) grids follow the worldtube

• typical worldtube size particle± 5M in r∗, particle± π/8 (22.5◦) in θ

• 4th order finite differencing in space & time
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Equatorial eccentric orbits:

• elliptic-integral puncture fn & effective src

• worldtube moves in (r , θ) to follow the particle around the orbit

• fixed mesh refinement with “hollow grids”;
some (finer) grids follow the worldtube

• typical worldtube size particle± 5M in r∗, particle± π/8 (22.5◦) in θ

• 4th order finite differencing in space & time

• effective source is ∼ 1
2 million terms

⇒ painful to compile machine-generated C code

Generic (inclined eccentric) orbits:

• our first attempt at an effective source had ∼ 20 million terms
⇒ impractical to compile machine-generated C code

• we are starting to explore various ideas to reduce the complexity,
and are optimistic we can solve this
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Self-force for e = 0.4 orbit

[[tail fit]]
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Self-force for e = 0.8 orbit (preliminary)
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Self-force for e = 0.9 orbit (very preliminary)
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Conclusions

Things that work well:

• puncture-function regularization

• worldtube

• m-mode decomposition and 2+1D evolution
• gives moderate parallelism “for free”
• allows different numerical parameters for different m

• moving worldtube (allows highly eccentric orbits)

• mesh refinement (moving with particle & worldtube)
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• m-mode decomposition and 2+1D evolution
• gives moderate parallelism “for free”
• allows different numerical parameters for different m

• moving worldtube (allows highly eccentric orbits)

• mesh refinement (moving with particle & worldtube)

Highly eccentric orbits:

• numerical errors & cost per M of evolution
seem to be only weakly dependent on eccentricity

• I think e ∼ 0.99 is achievable; (long evolution time: orbital period ∼ 105M)

Things that don’t yet work well (a.k.a. directions for further research)

• evolved fields only C 2 ⇒ hard to get higher-order finite-diff convergence

• inclined eccentric orbits ⇒ effective src is too complicated to be usable
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