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Leading order wave form

Energy balance argument is sufficient.
dE, dE

orbit

dt dt Here E is energy divided by mass.

d
Wave form = ?]; for quasi-circular orbits, for example.

df _ dE orbit / dE orbit
d  dt df leading order
dE

# = 0 +0(u)+ 0(ﬂ2)

dlj{;”ﬁ = (geodesic) + O(ﬂ)+ O(ﬂ2 )




Evolution of general orbits

If we know four velocity u* at each time accurately,
we can solve the orbital evolution.

On Kerr background there are four “constants of motion”

constant in case of no radiation reaction

Normalization of four velocity: —1=u"u,
Energy: £ = _u“?g"g)<— Killing vector for time translation sym.

Angular momentum: L, = u”§£¢)<—Killing vector for rotational sym.

Carter constant: Q =u“u"K < Kiling tensor
Quadratic and un-related to Killing vector

One-to-one correspondence &, _  , 0(u)+ 0i*)

E.L,O<u" di
) . dEorbit _( desi ) 0( ) 0( 2)
Secular evolution of E,L_,Q g geodesic )+ O(u )+ O\u

IS necessary. 4



The issue of radiation reaction to Carter constant

@ L, L. < Killing vector
Conserved current for the field corresponding
to Killing vector exists.

_ u(GW) v
E = _EGW As a sum conservation law holds.

However, O &> Killing vector

& We need to directly evaluate the self-force acting
on the particle.



§3 Adiabatic approximation for O

which is different from energy balance argument.
o I'<< Ty,

T- orbital period
Tpp - timescale of radiation reaction

Approximation procedure

& The trajectory of a particle is assumed to be given by
a geodesic specified by E,L_, Q.
(rad) ret adv
T )

& We evaluate the radiative field
instead of the retarded field.

& Self-force is computed from the radiative field, and it
determines the change rates of £,L Q.

<d_Q> Utim L ar 22 pefpi)]

dt uT—o 2T ou”




Why does this approximation work??

W For £ and L, the results are equivalent to the
balance argument. (shown by Gal'tsov '82)

¥ For O, the estimate using the radiative field is

shown to give the correct long time average.
(shown by Mino '03)

Key point: Under the transformation

(1,7‘,9,¢)% (—t,r,ﬁ,—¢)‘

a geodesic is transformed back into itself.
« Radiative field is free from divergence at the
location of the particle and easy to evaluate.

Divergent part is common for both retarded and
advanced fields.




Outstanding property of Kerr geodesic
dt

r*+a’cos’ 6

Introducing a new time parameter A by di=

D (50l

r- and 6 -oscillations can be solved independently.

<

r -dependent part) + ((9 -dependent part) 49 _ imilar
dA dA

% HA)=1" 419 4 <£>A
A * \dA
Periodic functions with frequencies 2 ,€2,

* Only discrete Fourier components arise in an orbit
w=a" =(dt/dA) " (m(dg/dA)+nQ, +n,Q,)



Final expression for dQ/dt In
adiabatic approximation

The resulting formula is so simple.
(Sago, TT, Hikida, Nakano PTP 115 (2005) 873)

()2 L) -2l L)z 5 ey, |

dt l,m,w=w,""0

A, = f (mode function)l,m,w x (sourceterm)d *x

[, m,w

amplitude of the partial wave
This expression is as easy to evaluate as dE/dt and dL/dkt.

() S ()32

Analytic formula up to 2.5PN order:
Ganz, Hikida, Nakano, Sago, TT, PTP 117 (2007) 1041
Numerical calculation: Fuijita, Hikida, Tagoshi, PTP 121 (2009) 843



Resonant orbit

Key point: Under Mino’s transformation
(t,7,9,¢>%(—f,7",6,—¢)‘

a geodesic is transformed back into the same

geodesic.
However, for resonant case: ;,Q = j Q, with integer J. &Jjg

AA (separation from 6, _tor ) has physical meaning.

r

S NN
/ \\\/ \//\\// \> A (Mino time)

v,

- o
AL AL
Under Mino’s transformation, a resonant geodesic with

AA transforms into a resonant geodesics with -AA.
10



dQ/dt at resonance
G(’"et)(x, x') = G<”“d)(x, x')+ G m)(x, x')

For the radiative part (retarded-advaneced)/2, a formula
similar to the non-resonant case can be obtained:

)] 3 e

( ) E (Flanagan, Hughes Ruangsri, 1208.3906)
l ,m,N l ,m,N
l,m,N
Q. Q
AZ,m,N Al,m,nr,ng Bl,m,N = En Al 1,1, g Q= .
n,Q, +1,Q,=NQ 1,2, +1yQy=NQ Jr Je

Sum for the same frequency is to be taken first.

We recently developed a method to evaluate the
symmetric part contribution.

m==)> The next Soichiro’s talk
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Impact of the resonance on the phase evolution
dAi _AQ  dAQ  u
dt  Q d M

:> At = O( M/ u Q'l} duration staying around resonance

(
\ u/M Q): frequency shift caused by passing resonance

O
:> Ap = 0[ /M/ﬂ) : overall phase error due to resonance

7 O((wWM')’)
If dA_Q — 0 for AA=AA Oscillation period is much shorter
dt - < than the radiation reaction time
4 2
d\AA-AA AQ2 d"\AA-AA
| d C)zO(E) = = ar’ C)zﬁﬁgz(M‘Mc)

dAR O(ﬁ Q(AL- AL )) If B stays negative, resonance

_ di M may persist for a long time.
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Conclusion

Introduction to the next talk. Sorry for containing nothing new.

Adiabatic radiation reaction for the Carter constant is as easy
to compute as those for energy and angular momentum.

dE .
czbu O\QO(M O(ﬂz) second order

M = (geodesiC) + O(H + O(MZ)

daf

Hence, the leading order waveform whose phase is
correct at O(M/u) has already been ready to compute.

The orbital evolution may cross resonance, which induces
O((M/u)'?) correction to the phase.

For the change rate of the Carter constant, we need to

evaluate the symmetric part in the resonance case.
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