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Extrime Mass Ratio Inspiral(EMRI) 

•  Inspiral of 1～100Msol BH of NS into the super 
massive BH at galactic center (typically 106Msol) 

•  Many cycles before the coalescence ～O(M/µ) 
allow us to determine the orbit precisely. 

The best place to test GR.	


•  Very relativistic wave form can be calculated 
using BH perturbation 

•  Clean system 
BH 
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Leading order wave form 

( ) ( )2        0        µµ OO
dt
dEorbit ++=

dt
df

≡

Energy balance argument is sufficient.  

dt
dE

dt
dE orbitGW =

Wave form         for quasi-circular orbits, for example.  

df
dE

dt
dE

dt
df orbitorbit=

( ) ( ) ( )2 geodesic µµ OO
df
dEorbit ++=

leading order  

Here E is energy divided by mass. 



Killing tensor 

Killing vector for rotational sym. 
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Evolution of general orbits 

µ
µuu=−1

If we know four velocity uµ at each time accurately,      
       we can solve the orbital evolution.  

On Kerr background there are four “constants of motion” 

Normalization of four velocity:  
Energy:  
Angular momentum:  

( )tuE µ
µξ−=

( )φ
µ

µξuLz =
Killing vector for time translation sym. 

Carter constant:  µν
νµ KuuQ =

Quadratic and un-related to Killing vector 

µuQLE z ⇔,,
One-to-one correspondence 

 constant in case of no radiation reaction  

( ) ( )2        0        µµ OO
dt
dEorbit ++=

( ) ( ) ( )2 geodesic µµ OO
df
dEorbit ++=Secular evolution of E,Lz,Q 

is necessary.  
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"  We need to directly evaluate the self-force acting 
on the particle.  

The issue of radiation reaction to Carter constant 

"   E, Lz
 ⇔ Killing vector 

      Conserved current for the field corresponding        
    to Killing vector exists.   
　　　　　 

GWEE  −=

However, Q   ⇔ Killing vector × 

 As a sum conservation law holds.   

( )∫ Σ= ν
µν

µ ξGW
GW tdE
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§3 Adiabatic approximation for Q 
•  T << τRR 
　　T: orbital period 
　τRR : timescale of radiation reaction 
 
 
"   The trajectory of a particle is assumed to be given by 

a geodesic specified by E,Lz,Q. 
"   We evaluate the radiative field       
     instead of the retarded field. 
"   Self-force is computed from the radiative field, and it 

determines the change rates of E,Lz,Q.	


( ) ( ) ( )[ ] 2advretrad hhh µνµνµν −=

( )[ ]radhFdd
dQ

u
Q

T

T

TT µν
α

α
τ

τ µ ∂

∂
∫−∞→

=
2
11 lim

 which is different from energy balance argument. 

Approximation procedure 
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"    For E and Lz the results are equivalent to the 
balance argument. (shown by Gal’tsov ’82) 

"  For Q, the estimate using the radiative field is 
shown to give the correct long time average. 
(shown by Mino ’03) 
"  Key point: Under the transformation 

                   a geodesic is transformed back into itself. 
•  Radiative field is free from divergence at the 

location of the particle and easy to evaluate. 
"  Divergent part is common for both retarded and 

advanced fields. 

( ) ( )φθφθ −−→ ,,,,,, rtrt

Why does this approximation work? 
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Outstanding property of Kerr geodesic  

•  Only discrete Fourier components arise in an orbit 

( ) ( )partdependent -partdependent - θ
λ

+= r
d
dt

( )θθλφλωω θ Ω+Ω+==
− nnddmddt rr

nn
m
r // 1,

( )rR
d
dr

=⎟
⎠

⎞
⎜
⎝

⎛
2

λ
( )θ

λ
θ

Θ=⎟
⎠

⎞
⎜
⎝

⎛
2

d
d

θ
τ

λ 222 cosar
dd

+
≡

 r- and θ -oscillations can be solved independently. 

similar=
λ
φ
d
d

( ) ( ) ( ) λ
λ

λ θ

d
dtttt r ++=

Periodic functions with frequencies θΩΩ ,r

Introducing a new time parameter λ  by 



Final expression for dQ/dt in 
adiabatic approximation  

( ) ( )
2

,,
,,

,
,

222 ∑
=

Ω
+−=

θωω
ωωnrn

mlml
ml

rrz An
dt
dLrg

dt
dErf

dt
dQ

The resulting formula is so simple.  
     

This expression is as easy to evaluate as dE/dt and dL/dt. 

( ) ( )∫ ×= xdA mlml
4

,,,,  termsourcefunction mode ωω

 amplitude of the partial wave 

2

,,
,,∑−≈

ω
ω

ml
mlAdt

dE 2

,,
,,∑−≈

ω
ωωml

mlA
m

dt
dL

(Sago, TT, Hikida, Nakano PTP 115 (2005) 873) 

Analytic formula up to 2.5PN order:  
                      Ganz, Hikida, Nakano, Sago, TT, PTP 117 (2007) 1041 
Numerical calculation:    Fujita, Hikida, Tagoshi, PTP 121 (2009) 843 
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"  Key point: Under Mino’s transformation 

       a geodesic is transformed back into the same 
geodesic. 

( ) ( )φθφθ −−→ ,,,,,, rtrt

 λ (Mino time) 
θ 

r 

Δλ 

θθ Ω=Ω rr jjHowever, for resonant case: 

Δλ 

Δλ  (separation from θmax to rmax) has physical meaning.	


Under Mino’s transformation, a resonant geodesic with 
Δλ transforms into a resonant geodesics with -Δλ.  

 with integer jr & jθ 

Resonant orbit 

θmax 

rmax 
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( ) ( ) ( )( ) ( )( )xxGxxGxxG symradret ʹ′+ʹ′=ʹ′ ,,,

For the radiative part (retarded-advaneced)/2, a formula 
similar to the non-resonant case can be obtained: 

( ) ( )
2

,,,
,,,222 ∑

Ω
+−=

θ

θωnnml
nnml

rr

r

r
An

dt
dLrg

dt
dErf

dt
dQ

∑
Ω

Nml
NmlNml

r BA
,,

,,,,2
ω

θjj
r

r

r Ω
=

Ω
≡Ω

Ω=Ω+Ω Nnn rr θθ

∑= θnnmlNml r
AA ,,,,, ∑= θnnmlrNml r

AnB ,,,,,
Ω=Ω+Ω Nnn rr θθ

(Flanagan, Hughes, Ruangsri, 1208.3906)  

 dQ/dt at resonance  

We recently developed a method to evaluate the 
symmetric part contribution.  

Sum for the same frequency is to be taken first. 

The next Soichiro’s talk 
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Ω

ΔΩ
≈

Δ

dt
d λ 2Ω≈

ΔΩ

Mdt
d µ

Impact of the resonance on the phase evolution  

: duration staying around resonance ( )1−Ω=Δ µMOtres

If               for Δλ = Δλc,  

( )Ω=ΔΩ MOres µ

( )µϕ MOres =Δ : overall phase error due to resonance 

 ≠O((µ/Μ )0) 

0=ΔΩ

dt
d

: frequency shift caused by passing resonance 

( )⎟
⎠

⎞
⎜
⎝

⎛ Δ−ΔΩ=
ΔΩ

cM
O

dt
d

λλ
µ

( )
⎟
⎠

⎞
⎜
⎝

⎛
Ω

ΔΩ
=

Δ−Δ O
dt

d cλλ ( ) ( )cc

Mdt
d

λλ
µ

β
λλ

Δ−ΔΩ≈
Δ−Δ 2

2

2

If β stays negative, resonance 
may persist for a long time.  

Oscillation period is much shorter 
than the radiation reaction time 
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Conclusion 
Adiabatic radiation reaction for the Carter constant is as easy 
to compute as those for energy and angular momentum. 

For the change rate of the Carter constant, we need to 
evaluate the symmetric part in the resonance case.  

( ) ( )2        0        µµ OO
dt
dEorbit ++=

( ) ( ) ( )2 geodesic µµ OO
df
dEorbit ++=

second order  
leading order  

Hence, the leading order waveform whose phase is 
correct at O(M/µ) has already been ready to compute.  

The orbital evolution may cross resonance, which induces 
O((M/µ)1/2) correction to the phase.      

Introduction to the next talk. Sorry for containing nothing new. 


