Extraction of very high precision post-Newtonian parameters from self-force computations

> Abhay Shah John Friedman, Bernard Whiting, Alexandre Le Tiec, Luc Blanchet.

Introduction to Radiation gauge

• We start with the Teukolsky equation which has the form,

$$\mathcal{OT}(h) = \mathcal{SE}(h).$$

• From this we want to extract the perturbed metric, *h*.

Newman-Penrose equations (Bianchi identities):

- Derivative operators acting on Weyl scalars
- = Derivative operators acting on Ricci tensor

Newman-Penrose equations (Bianchi identities):

- Derivative operators acting on Weyl scalars
- = Derivative operators acting on Ricci tensor

A combination of them gives us:

Derivative operators acting on ψ_0 = Derivative operators acting on $R_{\mu\nu} \propto T_{\mu\nu}$

Newman-Penrose equations (Bianchi identities):

- Derivative operators acting on Weyl scalars
- = Derivative operators acting on Ricci tensor

A combination of them gives us:

Derivative operators acting on ψ_0 = Derivative operators acting on $R_{\mu\nu} \propto T_{\mu\nu}$

$$\mathcal{OT}(h) = \mathcal{SE}(h)$$

 $\mathcal{O}[\mathcal{T}(h)] = \mathcal{SE}(h)$

perturbed Weyl tensor dotted with the background null tetrad, i.e., ψ_0

Teukolsky equation $\mathcal{OT}(h) = \mathcal{SE}(h)$ 2nd order derivative operator acting on $T_{\mu\nu}$

Finding $h^{\rm ren}$ from $\psi_0^{\rm ren}$

Chrzanowski-Cohen-Kegeles-Wald

Theorem: Suppose $\mathcal{SE} = \mathcal{OT}$ holds, and suppose Ψ satisfies $\mathcal{O}^{\dagger}\Psi = 0$. If \mathcal{E} is self-adjoint, then $\mathcal{S}^{\dagger}\Psi$ satisfies $\mathcal{E}(f) = 0$.

Finding $h^{\rm ren}$ from $\psi_0^{\rm ren}$

Theorem: Suppose $\mathcal{SE} = \mathcal{OT}$ holds, and suppose Ψ satisfies $\mathcal{O}^{\dagger}\Psi = 0$. If \mathcal{E} is self-adjoint, then $\mathcal{S}^{\dagger}\Psi$ satisfies $\mathcal{E}(f) = 0$.

Proof: Taking adjoint of $S\mathcal{E} = \mathcal{OT}$, gives us $\mathcal{E}^{\dagger}S^{\dagger} = \mathcal{T}^{\dagger}\mathcal{O}^{\dagger}$ $\mathcal{ES}^{\dagger} = \mathcal{T}^{\dagger}\mathcal{O}^{\dagger}$ If $\mathcal{O}^{\dagger}\Psi = 0$, then $\mathcal{E}(S^{\dagger}\Psi) = 0$, i.e., $h = S^{\dagger}\Psi$

How do we connect the solution to the Teukolsky equation, ψ_0 or $\mathcal{T}(h)$, to this Ψ ?

How do we connect the solution to the Teukolsky equation, ψ_0 or $\mathcal{T}(h)$, to this Ψ ? Lets substitute $\mathcal{S}^{\dagger}\Psi$ back into the Teukolsky equation, $\mathcal{SE}(\mathcal{S}^{\dagger}\Psi) = \mathcal{OT}(\mathcal{S}^{\dagger}\Psi)$

 $0 = \mathcal{O}[\mathcal{T}\mathcal{S}^{\dagger}\Psi]$

How do we connect the solution to the Teukolsky equation, ψ_0 or $\mathcal{T}(h)$, to this Ψ ?

Lets substitute $S^{\dagger}\Psi$ back into the Teukolsky equation, $S\mathcal{E}(S^{\dagger}\Psi) = \mathcal{OT}(S^{\dagger}\Psi)$ $0 = \mathcal{O}[\mathcal{T}S^{\dagger}\Psi]$

 \mathcal{TS}^{\dagger} maps solutions of $\mathcal{O}^{\dagger}\Psi = 0$ to $\mathcal{O}\psi = 0$.

How do we connect the solution to the Teukolsky equation, ψ_0 or $\mathcal{T}(h)$, to this Ψ ?

Lets substitute $S^{\dagger}\Psi$ back into the Teukolsky equation, $S\mathcal{E}(S^{\dagger}\Psi) = \mathcal{OT}(S^{\dagger}\Psi)$ $0 = \mathcal{O}[\mathcal{TS}^{\dagger}\Psi]$

> \mathcal{TS}^{\dagger} maps solutions of $\mathcal{O}^{\dagger}\Psi = 0$ to $\mathcal{O}\psi = 0$. $\psi_0 = \mathcal{TS}^{\dagger}\Psi \qquad \qquad h = \mathcal{S}^{\dagger}\Psi$

Finding $h^{\rm ren}$ from $\psi_0^{\rm ren}$

How do we connect the solution to the Teukolsky equation, ψ_0 or $\mathcal{T}(h)$, to this Ψ ?

Lets substitute $S^{\dagger}\Psi$ back into the Teukolsky equation, $S\mathcal{E}(S^{\dagger}\Psi) = \mathcal{OT}(S^{\dagger}\Psi)$ $0 = \mathcal{O}[\mathcal{TS}^{\dagger}\Psi]$

 \mathcal{TS}^{\dagger} maps solutions of $\mathcal{O}^{\dagger}\Psi = 0$ to $\mathcal{O}\psi = 0$.

Weyl scalar $\psi_0 \operatorname{or} \mathcal{T}(h)$

Blanchet et al

coeff.	value
$lpha_4$	-114.34747(5)
$lpha_5$	-245.53(1)
$lpha_6$	-695(2)
β_6	+339.3(5)
$lpha_7$	-5837(16)

How its done?

MST (Mano-Suzuki-Takasugi) algorithm for the radial harmonics as a sum over known analytic functions with good convergence

Analytical form of the angular harmonics, ${}_{s}Y_{\ell m}(\frac{\pi}{2},0)$

We use *Mathematica* which can handle very high precision computations

The accuracy is

about 1 part in 10^{227} for $r = 10^{20}M$ about 1 part in 10^{242} for $r = 10^{25}M$ about 1 part in 10^{252} for $r = 10^{30}M$ (Expected) pN expansion of u_1^t

(Expected) pN expansion of u_1^t

$$u_{1}^{t} = \frac{\alpha_{0}}{r} + \frac{\alpha_{1}}{r^{2}} + \frac{\alpha_{2}}{r^{3}} + \frac{\alpha_{3}}{r^{4}} + \frac{\alpha_{4}}{r^{5}} + \frac{\beta_{4}\log(r)}{r^{5}} + \frac{\alpha_{5}}{r^{5}} + \frac{\beta_{5}\log(r)}{r^{5}} + \frac{\alpha_{6}}{r^{7}} + \frac{\beta_{6}\log(r)}{r^{7}} + \cdots$$

Notice the absence of 5.5-pN term

no
$$\frac{\alpha_{5.5}}{r^{6.5}}$$

Analytically known pN coefficients (from literature)

* Thanks to Alexandre Le Tiec

 u_1^t at $r = 10^{30} M$

$$u_1^t = \frac{-1}{r} + \frac{-2}{r^2} + \frac{-5}{r^3} + \frac{\left(\frac{-121}{3} + \frac{41}{32}\pi^2\right)}{r^4} + \cdots$$

 u_1^t at $r = 10^{30} M$

$$u_1^t = \frac{-1}{r} + \left| \frac{-2}{r^2} + \frac{-5}{r^3} + \frac{\left(\frac{-121}{3} + \frac{41}{32}\pi^2\right)}{r^4} + \cdots \right|$$

 u_1^t at $r = 10^{30} M$

$$u_1^t = \frac{-1}{r} + \frac{-2}{r^2} + \frac{-5}{r^3} + \frac{\left(\frac{-121}{3} + \frac{41}{32}\pi^2\right)}{r^4} + \cdots$$

 u_1^t at $r = 10^{30} M$

$$u_1^t = \frac{-1}{r} + \frac{-2}{r^2} + \frac{-5}{r^3} + \frac{\left(\frac{-121}{3} + \frac{41}{32}\pi^2\right)}{r^4} + \cdots$$

$$u_1^t = \frac{-1}{r} + \frac{-2}{r^2} + \frac{-5}{r^3} + \frac{\left(\frac{-121}{3} + \frac{41}{32}\pi^2\right)}{r^4} + \cdots$$

$$u_1^t = \frac{-1}{r} + \frac{-2}{r^2} + \frac{-5}{r^3} + \frac{\left(\frac{-121}{3} + \frac{41}{32}\pi^2\right)}{r^4} + \cdots$$

$$u_1^t = \frac{-1}{r} + \frac{-2}{r^2} + \frac{-5}{r^3} + \frac{(\frac{-121}{3} + \frac{41}{32}\pi^2)}{r^4} + \cdots$$

$$u_1^t = \frac{-1}{r} + \frac{-2}{r^2} + \frac{-5}{r^3} + \frac{(\frac{-121}{3} + \frac{41}{32}\pi^2)}{r^4} + \cdots$$

<u>94437592602951641738972170966870515028095201627087</u> 282 X 10⁻³⁰

$$u_1^t = \frac{-1}{r} + \frac{-2}{r^2} + \frac{-5}{r^3} + \frac{(\frac{-121}{3} + \frac{41}{32}\pi^2)}{r^4} + \cdots$$

94437592602951641738972170966870515028095201627087 89906276810574330937660318294188027816361571144500 463025987555823873 13659997027786 575686074084 49252423 572016517/ 2662201925 0107477196 Read off the first 4 coefficients to $\sqrt{27}$ 71980 9144432 ∖346 30 places of accuracy 282 X 10⁻³⁰

 u_1^t at $r = 10^{30} M$

Lets look at $u_1^t - \left(\frac{-1}{r} + \frac{-2}{r^2} + \frac{-5}{r^3} + \frac{\left(\frac{-121}{3} + \frac{41}{32}\pi^2\right)}{r^4} + \frac{\frac{64}{5}\log(r)}{r^5} + \frac{\frac{956}{105}\log(r)}{r^6}\right)$

= -114.34895136757260295204000244483653876441286 5284407038869234848092925596369282766597634376 1937212552305416054218993704569382600204271482 5538690979057075189... X 10⁻¹⁵⁰
u_1^t at $r = 10^{30} M$

Lets look at $u_{1}^{t} - \left(\frac{-1}{r} + \frac{-2}{r^{2}} + \frac{-5}{r^{3}} + \frac{\left(\frac{-121}{3} + \frac{41}{32}\pi^{2}\right)}{r^{4}} + \frac{\frac{64}{5}\log(r)}{r^{5}} + \frac{\frac{956}{105}\log(r)}{r^{6}}\right)$

= -114.34895136757260295204000244483653876441286 5284407038869234848092925596369282766597634376 1937212552305416054218993704569382600204271482 5538690979057075189... X 10⁻¹⁵⁰

$$u_{1}^{t} = \frac{-1}{r} + \frac{-2}{r^{2}} + \frac{-5}{r^{3}} + \frac{\left(\frac{-121}{3} + \frac{41}{32}\pi^{2}\right)}{r^{4}} + \frac{\frac{-592384 - 196608\gamma + 10155\pi^{2} - 393216\log(2)}{7680}}{r^{5}} + \frac{\frac{64}{5}\log(r)}{r^{5}} + \frac{\frac{956}{105}\log(r)}{r^{6}} + \cdots$$

 u_1^t at $r = 10^{30} M$

pN theory didn't expect n.5-pN terms.

pN theory didn't expect n.5-pN terms.

And we got those terms starting at 5.5 pN in our numerical matching.

pN theory didn't expect n.5-pN terms. And we got those terms starting at 5.5 pN.

5.5pN comes from ℓ = 2 multipole,
6.5pN comes from ℓ = 2, 3 multipole,
7.5pN comes from ℓ = 2, 3, 4 multipole ···

pN theory didn't expect n.5-pN terms. And we got those terms starting at 5.5 pN.

5.5pN comes from l = 2 multipole,
6.5pN comes from l = 2, 3 multipole,
7.5pN comes from l = 2, 3, 4 multipole ···
Specifically,
5.5pN comes from l = 2, m = ±2 multipole,
6.5pN comes from l = 2, m = ±1, ±2 and
l = 3, m = ±1, ±3 multipoles.

pN theory didn't expect n.5-pN terms. And we got those terms starting at 5.5 pN.

This was very puzzling!!

To confirm its presence, we performed the whole calculation in the RWZ gauge which agreed with the radiation gauge.

To confirm its presence, we performed the whole calculation in the RWZ gauge which agreed with the radiation gauge.

A successful comparison with the UC-Dublin group (compared the source, I=2 multipole, of 5.5pN term): 23-24 digits of agreement at r = 10³M 43 digits of agreement at r = 10⁶M

To confirm its presence, we performed the whole calculation in the RWZ gauge which agreed with the radiation gauge.

A successful comparison with the UC-Dublin group (compared the source, I=2 multipole, of 5.5pN term): 23-24 digits of agreement at r = 10³M 43 digits of agreement at r = 10⁶M

To further confirm its presence, we computed analytical value of the 5.5pN coefficient using the self-force recipe in a radiation gauge, and found that the numerically extracted value agrees with it to **113** significant digits!!

pN theory didn't expect n.5-pN terms. And we got those terms starting at 5.5 pN.

About a month ago, it was understood that the origin of these n.5pN terms come from the "tails-of-tails" terms in pN theory (Luc Blanchet).

Revised pN-series

Analytical value of other terms possible from high precision number?

Analytical value of other terms possible from high precision number?

What about other terms? If possible, it will save us a number of long, tedious, analytical calculations, and help extract further terms with higher accuracy.

Analytical value of other terms possible from high precision number?

What about other terms?

YES!! INDEED!!

Lets look at the value of the 6-pN log term

$$u_{1}^{t} = \frac{\alpha_{0}}{r} + \frac{\alpha_{1}}{r^{2}} + \frac{\alpha_{2}}{r^{3}} + \frac{\alpha_{3}}{r^{4}} + \frac{\alpha_{4}}{r^{5}} + \frac{\beta_{4}\log(r)}{r^{5}} \\ + \frac{\alpha_{5}}{r^{6}} + \frac{\beta_{5}\log(r)}{r^{6}} + \frac{\alpha_{5.5}}{r^{6.5}} + \frac{\alpha_{6}}{r^{7}} + \frac{\beta_{6}\log(r)}{r^{7}} \\ + \frac{\alpha_{6.5}}{r^{7.5}} + \frac{\alpha_{7}}{r^{8}} + \frac{\beta_{7}\log(r)}{r^{8}} + \frac{\gamma_{7}\log^{2}(r)}{r^{8}} + \cdots$$

 $\beta_6 = -90.398589065255731922398589065255731922$ 398589065255731922398589065255731922 $3985890652557319223985890485251879955\cdots$

 $\beta_6 = -90.398589065255731922398589065255731922$

398589065255731922398589065255731922

 $3985890652557319223985890485251879955\cdots$

 $\beta_6 = -90.398589065255731922398589065255731922$

398589065255731922<mark>398589065255731922</mark>

 $3985890652557319223985890485251879955\cdots$

More than 5 repetition cycles

$$\beta_6 = \frac{-51256}{567}$$

Another example

$$\begin{split} \gamma_7 &= 52.17523809523809523809523809523809523809\\ &\quad 523809523809523809523809523809523809\\ &\quad 5238095237538043489164331 \cdots \end{split}$$

$$\begin{split} \gamma_7 &= 52.17 \\ 523809 \\ 523809 \\ 523809 \\ 523809 \\ 523809 \\ 523809 \\ 523809 \\ 52380 \\ 43489164331 \\ \cdots \end{split}$$

$$\gamma_7 = 52.17523809523809523809523809523809523809$$

$$523809523809523809523809523809523809$$

$$5238095237538043489164331\cdots$$

More than 11 repetition cycles

$$\gamma_7 = \frac{27392}{525}$$

6.5-pN term

$\begin{aligned} \alpha_{6.5} &= 69.30909049662575956322060886698020553525276282 \\ &\quad 80640692917511789688546478292427121038828291 \\ &\quad 6578039346534682043068130080764 \cdots \end{aligned}$

6.5-pN term

 $\alpha_{6.5} = 69.30909049662575956322060886698020553525276282 \\ 80640692917511789688546478292427121038828291 \\ 6578039346534682043068130080764 \cdots$

 $\frac{\alpha_{6.5}}{\pi} = 22.06176870748299319727891156462585034013605442$ 1768707482993197278911564625850340136054787080...

6.5-pN term

 $\begin{aligned} \alpha_{6.5} &= 69.30909049662575956322060886698020553525276282 \\ &\quad 80640692917511789688546478292427121038828291 \\ &\quad 6578039346534682043068130080764 \cdots \end{aligned}$

 $\frac{\alpha_{6.5}}{\pi} = 22.06 \underbrace{176870748299319727891156462585034013605442}_{1768707482993197278911564625850340136054787080\cdots}$

Almost 2 repetition cycles here

$$\alpha_{6.5} = \frac{81077\pi}{3675}$$

One is not always lucky to have such repetition cycles...

 $\frac{\alpha_{7.5}}{\pi} = 176.4975875153652931430709208486986264764042541820319598$

 $0973759881572859646496135482085019945242682178\cdots$

One is not always lucky to have such repetition cycles...

 $\frac{\alpha_{7.5}}{\pi} = 176.4975875153652931430709208486986264764042541820319598$

 $0973759881572859646496135482085019945242682178\cdots$

Multiplying it with appropriate powers of the first few prime numbers clear things up

$$\frac{\alpha_{7.5}}{\pi} \times 5^2 \times 3^5 \times 7 \times 11 =$$

One is not always lucky to have such repetition cycles...

 $\frac{\alpha_{7.5}}{\pi} = 176.4975875153652931430709208486986264764042541820319598$

 $0973759881572859646496135482085019945242682178\cdots$

Multiplying it with appropriate powers of the first few prime numbers clears things up

$$\frac{\alpha_{7.5}}{\pi} \times 5^2 \times 3^5 \times 7 \times 11 =$$

Consistent with the accuracy with which we extracted this number

Final list of analytically known pN terms

Final list of analytically known pN terms

^{*} Thanks to Alexandre Le Tiec

Final list of analytically known pN terms

Flux at future horizon

Recent work by Fujita calculated the pN series of flux at future null infinity to 22pN order!

Tagoshi et al calculated the pN series of flux at future horizon to 6pN order.

Using Flux lost = Flux at infinity + Flux at horizon we extract the 7,8,9,10-pN orders of flux at horizon

Flux lost = Flux at infinity + Flux at horizon

pN order	Lost by particle	∞	r_+
			0
2			0
3			0
4			
5			
6			
7			?
8			?
9			?
10			?

Green tick-marks show what we know from literature and that our result agrees with previous work Red question marks show what is unknown and how we extract the unknown coefficients.

Flux lost = Flux at infinity + Flux at horizon

pN order	Lost by particle	∞	r_+
			0
2			0
3			0
4			
5			
6			
7			
8			
9			
10			

Green tick-marks show what we know from literature and that our result agrees with previous work Red question marks show what is unknown and how we extract the unknown coefficients.

Matching in Kerr

