Extraction of very high precision post-Newtonian parameters from self-force computations

Abhay Shah
John Friedman,
Bernard Whiting,
Alexandre Le Tiec,
Luc Blanchet.

Introduction to Radiation gauge

- We start with the Teukolsky equation which has the form,

$$
\mathcal{O} \mathcal{T}(h)=\mathcal{S E}(h)
$$

- From this we want to extract the perturbed metric, h.

Teukolsky equation

Newman-Penrose equations (Bianchi identities):
Derivative operators acting on Weyl scalars $=$ Derivative operators acting on Ricci tensor

Teukolsky equation

Newman-Penrose equations (Bianchi identities):
Derivative operators acting on Weyl scalars
$=$ Derivative operators acting on Ricci tensor
A combination of them gives us:
Derivative operators acting on ψ_{0}
$=$ Derivative operators acting on $R_{\mu \nu} \propto T_{\mu \nu}$

Teukolsky equation

Newman-Penrose equations (Bianchi identities):
Derivative operators acting on Weyl scalars
$=$ Derivative operators acting on Ricci tensor
A combination of them gives us:
Derivative operators acting on ψ_{0}
$=$ Derivative operators acting on $R_{\mu \nu} \propto T_{\mu \nu}$

$$
\mathcal{O T}(h)=\mathcal{S E}(h)
$$

Teukolsky equation

$\mathcal{O T}(h)=\mathcal{S E}(h)$

perturbed Weyl tensor dotted with the background null tetrad, i.e., ψ_{0}

Teukolsky equation

$\mathcal{O} \mathcal{T}(h)=\mathcal{S E}$

Einstein operator acting on $h=8 \pi T_{\mu \nu}$

Teukolsky equation

$\mathcal{O} \mathcal{T}(h)=\underset{\mathcal{S} \mathcal{E}(h))}{ }$

$2^{n d}$ order derivative operator acting on $T_{\mu \nu}$

Teukolsky equation

$$
\underbrace{\mathcal{O} \mathcal{T}(h)=\mathcal{S} \mathcal{E}(h)}_{2^{n d}}
$$

Finding $h^{\text {ren }}$ from $\psi_{0}^{\text {ren }}$
 Chrzanowski-Cohen-Kegeles-Wald

Theorem: Suppose $\mathcal{S E}=\mathcal{O} \mathcal{T}$ holds,
and suppose Ψ satisfies $\mathcal{O}^{\dagger} \Psi=0$.
If \mathcal{E} is self-adjoint, then $\mathcal{S}^{\dagger} \Psi$ satisfies $\mathcal{E}(f)=0$.

Finding $h^{\text {ren }}$ from $\psi_{0}^{\text {ren }}$

Theorem: Suppose $\mathcal{S E}=\mathcal{O} \mathcal{T}$ holds,
and suppose Ψ satisfies $\mathcal{O}^{\dagger} \Psi=0$.
If \mathcal{E} is self-adjoint, then $\mathcal{S}^{\dagger} \Psi$ satisfies $\mathcal{E}(f)=0$.
Proof: Taking adjoint of $\mathcal{S E}=\mathcal{O} \mathcal{T}$, gives us

$$
\begin{gathered}
\mathcal{E}^{\dagger} \mathcal{S}^{\dagger}=\mathcal{T}^{\dagger} \mathcal{O}^{\dagger} \\
\mathcal{E} \mathcal{S}^{\dagger}=\mathcal{T}^{\dagger} \mathcal{O}^{\dagger}
\end{gathered}
$$

If $\mathcal{O}^{\dagger} \Psi=0$, then $\mathcal{E}\left(\mathcal{S}^{\dagger} \Psi\right)=0$, i.e., $h=\mathcal{S}^{\dagger} \Psi$

Wait a minute...

How do we connect the solution to the Teukolsky equation, ψ_{0} or $\mathcal{T}(h)$, to this Ψ ?

Wait a minute...

How do we connect the solution to the Teukolsky equation, ψ_{0} or $\mathcal{T}(h)$, to this Ψ ?

Lets substitute $\mathcal{S}^{\dagger} \Psi$ back into the Teukolsky equation,

$$
\begin{aligned}
\mathcal{S E}\left(\mathcal{S}^{\dagger} \Psi\right) & =\mathcal{O} \mathcal{T}\left(\mathcal{S}^{\dagger} \Psi\right) \\
0 & =\mathcal{O}\left[\mathcal{T} \mathcal{S}^{\dagger} \Psi\right]
\end{aligned}
$$

Wait a minute...

How do we connect the solution to the Teukolsky equation, ψ_{0} or $\mathcal{T}(h)$, to this Ψ ?
Lets substitute $\mathcal{S}^{\dagger} \Psi$ back into the Teukolsky equation,

$$
\begin{aligned}
\mathcal{S E}\left(\mathcal{S}^{\dagger} \Psi\right) & =\mathcal{O} \mathcal{T}\left(\mathcal{S}^{\dagger} \Psi\right) \\
0 & =\mathcal{O}\left[\underline{\mathcal{S}}^{\dagger} \Psi\right]
\end{aligned}
$$

$\mathcal{T} \mathcal{S}^{\dagger}$ maps solutions of $\mathcal{O}^{\dagger} \Psi=0$ to $\mathcal{O} \psi=0$.

Wait a minute...

How do we connect the solution to the Teukolsky equation, ψ_{0} or $\mathcal{T}(h)$, to this Ψ ?
Lets substitute $\mathcal{S}^{\dagger} \Psi$ back into the Teukolsky equation,

$$
\begin{aligned}
\mathcal{S E}\left(\mathcal{S}^{\dagger} \Psi\right) & =\mathcal{O} \mathcal{T}\left(\mathcal{S}^{\dagger} \Psi\right) \\
0 & =\mathcal{O}\left[\mathcal{T} \mathcal{S}^{\dagger} \Psi\right]
\end{aligned}
$$

$\mathcal{T} \mathcal{S}^{\dagger}$ maps solutions of $\mathcal{O}^{\dagger} \Psi=0$ to $\mathcal{O} \psi=0$.

$$
\psi_{0}=\mathcal{T} \mathcal{S}^{\dagger} \Psi \quad h=\mathcal{S}^{\dagger} \Psi
$$

Finding $h^{\text {ren }}$ from $\psi_{0}^{\text {ren }}$

How do we connect the solution to the Teukolsky equation, ψ_{0} or $\mathcal{T}(h)$, to this Ψ ?
Lets substitute $\mathcal{S}^{\dagger} \Psi$ back into the Teukolsky equation,

$$
\begin{aligned}
\mathcal{S E}\left(\mathcal{S}^{\dagger} \Psi\right) & =\mathcal{O} \mathcal{T}\left(\mathcal{S}^{\dagger} \Psi\right) \\
0 & =\mathcal{O}\left[\mathcal{T} \mathcal{S}^{\dagger} \Psi\right]
\end{aligned}
$$

$\mathcal{T} \mathcal{S}^{\dagger}$ maps solutions of $\mathcal{O}^{\dagger} \Psi=0$ to $\mathcal{O} \psi=0$.

Summary

Weyl scalar ψ_{0} or $\mathcal{T}(h)$

Summary

| $\substack{\text { Weyl scalar } \\ \psi_{0} \text { or } \mathcal{T}(h)}$ | $\psi_{0}=\mathcal{T S}^{\dagger} \Psi$ |
| :---: | :---: | | invert |
| :---: | | Hertz Potential |
| :---: |
| Ψ |

Summary

Weyl scalar ψ_{0} or $\mathcal{T}(h)$	invert $\psi_{0}=\mathcal{T S}^{\dagger} \Psi$	Hertz Potential Ψ	

Summary

Summary

Weyl scalar ψ_{0} or $\mathcal{T}(h)$	$\xrightarrow[\psi_{0}=\mathcal{T S} \mathcal{S}^{\dagger} \Psi]{\text { invert }}$	Hertz Potential Ψ	$\xrightarrow{h=\mathcal{S}^{\dagger} \Psi}$	Perturbed metric $h_{\alpha \beta}$
				+
$u^{\alpha} u^{\beta}\left(g_{\alpha \beta}+h_{\alpha \beta}\right)=1$				
$u^{\alpha}=\left[u_{0}^{t}+u_{1}^{t}+O\left(\mu^{2}\right)\right] k^{\alpha}$				Non-radiative contributions to $h_{\alpha \beta}$ $\delta m, \delta J$

$$
\begin{aligned}
\Delta U & =u_{1}^{t}=u_{0}^{t} H \\
H & :=\frac{1}{2} h_{\alpha \beta}^{\mathrm{R}} u_{0}^{\alpha} u_{0}^{\beta}
\end{aligned}
$$

|I
u_{1}^{t}

Blanchet et al

coeff.	value
α_{4}	$-114.34747(5)$
α_{5}	$-245.53(1)$
α_{6}	$-695(2)$
β_{6}	$+339.3(5)$
α_{7}	$-5837(16)$

How its done?

MST (Mano-Suzuki-Takasugi) algorithm for the radial harmonics as a sum over known analytic functions with good convergence

Analytical form of the angular harmonics, ${ }_{s} Y_{\ell m}\left(\frac{\pi}{2}, 0\right)$

We use Mathematica which can handle very high precision computations

The accuracy is

$$
\begin{aligned}
& \text { about } 1 \text { part in } 10^{227} \text { for } r=10^{20} M \\
& \text { about } 1 \text { part in } 10^{242} \text { for } r=10^{25} M \\
& \text { about } 1 \text { part in } 10^{252} \text { for } r=10^{30} M
\end{aligned}
$$

(Expected) pN expansion of u_{1}^{t}

$$
\begin{aligned}
u_{1}^{t}= & \frac{\alpha_{0}}{r}+\frac{\alpha_{1}}{r^{2}}+\frac{\alpha_{2}}{r^{3}}+\frac{\alpha_{3}}{r^{4}}+\frac{\alpha_{4}}{r^{5}}+\frac{\beta_{4} \log (r)}{r^{5}} \\
& +\frac{\alpha_{5}}{r^{6}}+\frac{\beta_{5} \log (r)}{r^{6}}+\frac{\alpha_{6}}{r^{7}}+\frac{\beta_{6} \log (r)}{r^{7}}+\cdots
\end{aligned}
$$

(Expected) pN expansion of u_{1}^{t}

$$
\begin{aligned}
u_{1}^{t}= & \frac{\alpha_{0}}{r}+\frac{\alpha_{1}}{r^{2}}+\frac{\alpha_{2}}{r^{3}}+\frac{\alpha_{3}}{r^{4}}+\frac{\alpha_{4}}{r^{5}}+\frac{\beta_{4} \log (r)}{r^{5}} \\
& +\frac{\alpha_{5}}{r^{6}}+\frac{\beta_{5} \log (r)}{r^{6}}+\frac{\alpha_{6}}{r^{7}}+\frac{\beta_{6} \log (r)}{r^{7}}+\cdots
\end{aligned}
$$

Notice the absence of $5.5-\mathrm{pN}$ term

$$
\text { no } \frac{\alpha_{5.5}}{r^{6.5}}
$$

Analytically known pN coefficients

(from literature)

$$
\begin{aligned}
& u_{1}^{t}= \frac{-1}{r}+\frac{-2}{r^{2}}+\frac{-5}{r^{3}}+\frac{\left(\frac{-121}{3}+\frac{41}{32} \pi^{2}\right)}{r^{4}} \\
&+\frac{\frac{-592384-196608 \gamma+10155 \pi^{2}-393216 \log (2)}{7680}}{r^{5}} \\
&+\frac{\frac{64}{5} \log (r)}{r^{5}}+\frac{\frac{956}{105} \log (r)}{r^{6}}+\cdots \\
& \text { Bini \& Damour 'I3* }
\end{aligned}
$$

*Thanks to Alexandre Le Tiec

u_{1}^{t} at $r=10^{30} M$

$-1.00000000000000000000000000000200000000000000000$ 00000000000050000000000000000000000000000276879026 94437592602951641738972170966870515028095201627087 89906276810574330937660318994188027816361571144500 46302598755582387350877373263049881413659997027786 57568607408406791412850807911130634310792849252423 57201651745159732237405685006553928059167553391925 01074771963130952638292729369464281889351107271980 91444305209149244377004135440730531355680584679346 282×10^{-30}

$$
u_{1}^{t}=\frac{-1}{r}+\frac{-2}{r^{2}}+\frac{-5}{r^{3}}+\frac{\left(\frac{-121}{3}+\frac{41}{32} \pi^{2}\right)}{r^{4}}+\cdots
$$

u_{1}^{t} at $r=10^{30} M$

$-1.00000000000000000000000000000200000000000000000$ 00000000000050000000000000000000000000000276879026 94437592602951641738972170966870515028095201627087 89906276810574330937660318994188027816361571144500 46302598755582387350877373263049881413659997027786 57568607408406791412850807911130634310792849252423 57201651745159732237405685006553928059167553391925 01074771963130952638292729369464281889351107271980 91444305209149244377004135440730531355680584679346 282×10^{-30}

$$
u_{1}^{t}=\frac{-1}{r}+\sqrt{\frac{-2}{r^{2}}}+\frac{-5}{r^{3}}+\frac{\left(\frac{-121}{3}+\frac{41}{32} \pi^{2}\right)}{r^{4}}+\cdots
$$

$$
u_{1}^{t} \text { at } r=10^{30} M
$$

$-1.00000000000000000000000000000200000000000000000$ 00000000000050000000000000000000000000000276879026 94437592602951641738972170966870515028095201627087 89906276810574330937660318994188027816361571144500 46302598755582387350877373263049881413659997027786 57568607408406791412850807911130634310792849252423 57201651745159732237405685006553928059167553391925 01074771963130952638292729369464281889351107271980 91444305209149244377004135440730531355680584679346 282×10^{-30}

$$
u_{1}^{t}=\frac{-1}{r}+\frac{-2}{r^{2}}+\frac{-5}{r^{3}}+\frac{\left(\frac{-121}{3}+\frac{41}{32} \pi^{2}\right)}{r^{4}}+\cdots
$$

u_{1}^{t} at $r=10^{30} M$

$-1.00000000000000000000000000000200000000000000000$ 00000000000050000000000000000000000000000276879026 94437592602951641738972170966870515028095201627087 89906276810574330937660318994188027816361571144500 46302598755582387350877373263049881413659997027786 57568607408406791412850807911130634310792849252423 57201651745159732237405685006553928059167553391925 01074771963130952638292729369464281889351107271980 91444305209149244377004135440730531355680584679346 282×10^{-30}

$$
u_{1}^{t}=\frac{-1}{r}+\frac{-2}{r^{2}}+\frac{-5}{r^{3}}+\frac{\left(\frac{-121}{3}+\frac{41}{32} \pi^{2}\right)}{r^{4}}+\cdots
$$

$$
u_{1}^{t}=\frac{-1}{r}+\frac{-2}{r^{2}}+\frac{-5}{r^{3}}+\frac{\left(\frac{-121}{3}+\frac{41}{32} \pi^{2}\right)}{r^{4}}+\cdots
$$

$-1.0000000000000000000000000000200000000000000000$ 00000000000050000000000000000000000000000276879026 94437592602951641738972170966870515028095201627087 89906276810574330937660318994188027816361571144500 46302598755582387350877373263049881413659997027786 57568607408406791412850807911130634310792849252423 57201651745159732237405685006553928059167553391925 01074771963130952638292729369464281889351107271980 91444305209149244377004135440730531355680584679346 282×10^{-30}

$$
u_{1}^{t}=\frac{-1}{r}+\frac{-2}{r^{2}}+\frac{-5}{r^{3}}+\frac{\left(\frac{-121}{3}+\frac{41}{32} \pi^{2}\right)}{r^{4}}+\cdots
$$

$-1.0000000000000000000000000000200000000000000000$ 00000000000050000000000000000000000000000276879026 94437592602951641738972170966870515028095201627087 89906276810574330937660318994188027816361571144500 46302598755582387350877373263049881413659997027786 57568607408406791412850807911130634310792849252423 57201651745159732237405685006553928059167553391925 01074771963130952638292729369464281889351107271980 91444305209149244377004135440730531355680584679346 282×10^{-30}

$$
u_{1}^{t}=\boxed{\frac{-1}{r}}+\sqrt{\frac{-2}{r^{2}}}+\frac{-5}{r^{3}}+\frac{\left(\frac{-121}{3}+\frac{41}{32} \pi^{2}\right)}{r^{4}}+\cdots
$$

$-1.00000000000000000000000000000200000000000000000$ 00000000000050000000000000000000000000000276879026 94437592602951641738972170966870515028095201627087 89906276810574330937660318994188027816361571144500 46302598755582387350877373263049881413659997027786 57568607408406791412850807911130634310792849252423 57201651745159732237405685006553928059167553391925 01074771963130952638292729369464281889351107271980 91444305209149244377004135440730531355680584679346 282×10^{-30}

$$
u_{1}^{t}=\frac{-1}{r}+\sqrt{\frac{-2}{r^{2}}}+\frac{-5}{r^{3}}+\frac{\left(\frac{-121}{3}+\frac{41}{32} \pi^{2}\right)}{r^{4}}+\cdots
$$

$-1.00000000000000000000000000000200000000000000000$ 00000000000050000000000000000000000000000276879026 94437592602951641738972170966870515028095201627087 89906276810574330937660318994188027816361571144500 46302598755582387350877373263049881413659997027786 57568607408406791412850807911130634310792849252423 57201651745159732237405685006553928059167553391925 01074771963130952638292729369464281889351107271980 91444305209149244377004135440730531355680584679346 282×10^{-30}

$$
u_{1}^{t}=\frac{-1}{r}+\sqrt{\frac{-2}{r^{2}}}+\frac{-5}{r^{3}}+\frac{\left(\frac{-121}{3}+\frac{41}{32} \pi^{2}\right)}{r^{4}}+\cdots
$$

$-1.00000000000000000000000000000200000000000000000$ 00000000000050000000000000000000000000000276879026 94437592602951641738972170966870515028095201627087 89906276810574330937660318944188027816361571144500 463025987555823873 575686074084
572016517151 d 13659997027786
$\begin{array}{r}49252423 \\ \text { Ger2201925 }\end{array}$ 0107477196 Read off the first 4 coefficients to 1271980 9144430 places of accuracy

282×10^{-30}

$$
u_{1}^{t} \text { at } r=10^{30} \mathrm{M}
$$

Lets look at
$u_{1}^{t}-\left(\frac{-1}{r}+\frac{-2}{r^{2}}+\frac{-5}{r^{3}}+\frac{\left(\frac{-121}{3}+\frac{41}{32} \pi^{2}\right)}{r^{4}}+\frac{\frac{64}{5} \log (r)}{r^{5}}+\frac{\frac{956}{105} \log (r)}{r^{6}}\right)$
$=-114.34895136757260295204000244483653876441286$ 5284407038869234848092925596369282766597634376 1937212552305416054218993704569382600204271482 5538690979057075189... X 10-150

$$
u_{1}^{t} \text { at } r=10^{30} M
$$

Lets look at

$$
u_{1}^{t}-\left(\frac{-1}{r}+\frac{-2}{r^{2}}+\frac{-5}{r^{3}}+\frac{\left(\frac{-121}{3}+\frac{41}{32} \pi^{2}\right)}{r^{4}}+\frac{\frac{64}{5} \log (r)}{r^{5}}+\frac{\frac{956}{105} \log (r)}{r^{6}}\right)
$$

$=-114.34895136757260295204000244483653876441286$ 5284407038869234848092925596369282766597634376 1937212552305416054218993704569382600204271482 5538690979057075189... X 10-150

$$
\begin{aligned}
u_{1}^{t}= & \frac{-1}{r}+\frac{-2}{r^{2}}+\frac{-5}{r^{3}}+\frac{\left(\frac{-121}{3}+\frac{41}{32} \pi^{2}\right)}{r^{4}} \\
& +\frac{\frac{-592384-196608 \gamma+10155 \pi^{2}-393216 \log (2)}{7680}}{r^{5}} \\
& +\frac{\frac{64}{5} \log (r)}{r^{5}}+\frac{\frac{956}{105} \log (r)}{r^{6}}+\cdots
\end{aligned}
$$

$$
u_{1}^{t} \text { at } r=10^{30} M
$$

Lets look at

$$
u_{1}^{t}-\left(\frac{-1}{r}+\frac{-2}{r^{2}}+\frac{-5}{r^{3}}+\frac{\left(\frac{-121}{3}+\frac{41}{32} \pi^{2}\right)}{r^{4}}+\frac{\frac{64}{5} \log (r)}{r^{5}}+\frac{\frac{956}{105} \log (r)}{r^{6}}\right)
$$

$=-114.34895136757260295204000244483653876441286$ 528440703886923 ~248092 -596360282766597634376 553865s Again read off α_{4} to 30 decimal places

Puzzle?

pN theory didn't expect $\mathrm{n} .5-\mathrm{pN}$ terms.

Puzzle?

pN theory didn't expect n.5-pN terms.

And we got those terms starting at 5.5 pN in our numerical matching.

Puzzle?

pN theory didn't expect $\mathrm{n} .5-\mathrm{pN}$ terms. And we got those terms starting at 5.5 pN .
5.5 pN comes from $\ell=2$ multipole,
6.5 pN comes from $\ell=2,3$ multipole,
7.5 pN comes from $\ell=2,3,4$ multipole \cdots

Puzzle?

pN theory didn't expect $\mathrm{n} .5-\mathrm{pN}$ terms. And we got those terms starting at 5.5 pN .
5.5 pN comes from $\ell=2$ multipole, 6.5 pN comes from $\ell=2,3$ multipole,
7.5 pN comes from $\ell=2,3,4$ multipole \cdots

Specifically,

5.5 pN comes from $\ell=2, m= \pm 2$ multipole,
6.5 pN comes from $\ell=2, m= \pm 1, \pm 2$ and

$$
\ell=3, m= \pm 1, \pm 3 \text { multipoles. }
$$

Puzzle?

pN theory didn't expect $\mathrm{n} .5-\mathrm{pN}$ terms. And we got those terms starting at 5.5 pN .

This was very puzzling!!

Puzzle?

To confirm its presence, we performed the whole calculation in the RWZ gauge which agreed with the radiation gauge.

Puzzle?

To confirm its presence, we performed the whole calculation in the RWZ gauge which agreed with the radiation gauge.

A successful comparison with the UC-Dublin group (compared the source, $\mathrm{I}=2$ multipole, of 5.5 pN term):

23-24 digits of agreement at $r=10^{3} \mathrm{M}$
43 digits of agreement at $r=10^{6} \mathrm{M}$

Puzzle?

To confirm its presence, we performed the whole calculation in the RWZ gauge which agreed with the radiation gauge.

A successful comparison with the UC-Dublin group (compared the source, $\mathrm{I}=2$ multipole, of 5.5 pN term):

23-24 digits of agreement at $r=10^{3} \mathrm{M}$
43 digits of agreement at $r=10^{6} \mathrm{M}$
To further confirm its presence, we computed analytical value of the 5.5 pN coefficient using the self-force recipe in a radiation gauge, and found that the numerically extracted value agrees
with it to 113 significant digits!!

Puzzle?

pN theory didn't expect $\mathrm{n} .5-\mathrm{pN}$ terms. And we got those terms starting at 5.5 pN .

About a month ago, it was understood that the origin of these n .5 pN terms come from the "tails-of-tails" terms in pN theory (Luc Blanchet).

Revised pN-series

$$
\begin{aligned}
u_{1}^{t}= & \frac{\alpha_{0}}{r}+\frac{\alpha_{1}}{r^{2}}+\frac{\alpha_{2}}{r^{3}}+\frac{\alpha_{3}}{r^{4}}+\frac{\alpha_{4}}{r^{5}}+\frac{\beta_{4} \log (r)}{r^{5}} \\
& +\frac{\alpha_{5}}{r^{6}}+\frac{\beta_{5} \log (r)}{r^{6}}+\frac{\alpha_{5.5}}{r^{6.5}}+\frac{\alpha_{6}}{r^{7}}+\frac{\beta_{6} \log (r)}{r^{7}} \\
& +\frac{\alpha_{6.5}}{r^{7.5}}+\frac{\alpha_{7}}{r^{8}}+\frac{\beta_{7} \log (r)}{r^{8}}+\frac{\gamma_{7} \log ^{2}(r)}{r^{8}}+\cdots
\end{aligned}
$$

Analytical value of other terms possible
 from high precision number?

$$
\begin{aligned}
u_{1}^{t}= & \boxed{\frac{\alpha_{0}}{r}}+\sqrt{\frac{\alpha_{1}}{r^{2}}}+\sqrt{\frac{\alpha_{2}}{r^{3}}}+\sqrt{\frac{\alpha_{3}}{r^{4}}}+\sqrt{\frac{\alpha_{4}}{r^{5}}}+\sqrt{\frac{\beta_{4} \log (r)}{r^{5}}} \\
& +\frac{\alpha_{5}}{r^{6}}+\frac{\beta_{5} \log (r)}{r^{6}} \sqrt{\frac{\alpha_{5.5}}{r^{6.5}}}+\frac{\alpha_{6}}{r^{7}}+\frac{\beta_{6} \log (r)}{r^{7}} \\
& +\frac{\alpha_{6.5}^{r^{7.5}}+\frac{\alpha_{7}}{r^{8}}+\frac{\beta_{7} \log (r)}{r^{8}}+\frac{\gamma_{7} \log ^{2}(r)}{r^{8}}+\cdots}{}
\end{aligned}
$$

Analytical value of other terms possible from high precision number?

$$
\begin{aligned}
u_{1}^{t}= & \boxed{\frac{\alpha_{0}}{r}}+\sqrt{\frac{\alpha_{1}}{r^{2}}}+\sqrt{\frac{\alpha_{2}}{r^{3}}}+\sqrt{\frac{\alpha_{3}}{r^{4}}}+\sqrt{\frac{\alpha_{4}}{r^{5}}}+\sqrt{\frac{\beta_{4} \log (r)}{r^{5}}} \\
& +\frac{\alpha_{5}}{r^{6}}+\frac{\beta_{5} \log (r)}{r^{6}} \sqrt{\frac{\alpha_{5.5}}{r^{6.5}}}+\frac{\alpha_{6}}{r^{7}}+\frac{\beta_{6} \log (r)}{r^{7}} \\
& +\frac{\alpha_{6.5}}{r^{7.5}}+\frac{\alpha_{7}}{r^{8}}+\frac{\beta_{7} \log (r)}{r^{8}}+\frac{\gamma_{7} \log ^{2}(r)}{r^{8}}+\cdots
\end{aligned}
$$

What about other terms?
If possible, it will save us a number of long, tedious, analytical calculations, and help extract further terms with higher accuracy.

Analytical value of other terms possible from high precision number?

$$
\left.\begin{array}{rl}
u_{1}^{t}= & \boxed{\frac{\alpha_{0}}{r}}+\sqrt{\frac{\alpha_{1}}{r^{2}}}+\sqrt{\frac{\alpha_{2}}{r^{3}}}+\sqrt{\alpha_{3}} \\
r^{4}
\end{array}+\frac{\alpha_{4}}{r^{5}}+\frac{\beta_{4} \log (r)}{r^{5}}\right]
$$

> YES!! INDEED!!

Lets look at the value of the $6-\mathrm{pN}$ log term

$$
\begin{aligned}
u_{1}^{t}= & \frac{\alpha_{0}}{r}+\frac{\alpha_{1}}{r^{2}}+\frac{\alpha_{2}}{r^{3}}+\frac{\alpha_{3}}{r^{4}}+\frac{\alpha_{4}}{r^{5}}+\frac{\beta_{4} \log (r)}{r^{5}} \\
& +\frac{\alpha_{5}}{r^{6}}+\frac{\beta_{5} \log (r)}{r^{6}}+\frac{\alpha_{5.5}}{r^{6.5}}+\frac{\alpha_{6}}{r^{7}}+\frac{\beta_{6} \log (r)}{r^{7}} \\
& +\frac{\alpha_{6.5}}{r^{7.5}}+\frac{\alpha_{7}}{r^{8}}+\frac{\beta_{7} \log (r)}{r^{8}}+\frac{\gamma_{7} \log ^{2}(r)}{r^{8}}+\cdots
\end{aligned}
$$

Numerically extracted value

$\beta_{6}=-90.398589065255731922398589065255731922$ 398589065255731922398589065255731922 3985890652557319223985890485251879955 ...

Numerically extracted value

$\beta_{6}=-90.398589065255731922398589065255731922$ 398589065255731922398589065255731922 $3985890652557319223985890485251879955 \cdots$

Numerically extracted value

$$
\beta_{6}=-90 . \begin{array}{|cc|}
398589065255731922398589065255731922 \\
398589065255731922398589065255731922 \\
39852557319223985890485251879955 \cdots
\end{array}
$$

More than 5 repetition cycles

$$
\beta_{6}=\frac{-51256}{567}
$$

Another example

$$
\begin{aligned}
u_{1}^{t}= & \frac{\alpha_{0}}{r}+\frac{\alpha_{1}}{r^{2}}+\frac{\alpha_{2}}{r^{3}}+\frac{\alpha_{3}}{r^{4}}+\frac{\alpha_{4}}{r^{5}}+\frac{\beta_{4} \log (r)}{r^{5}} \\
& +\frac{\alpha_{5}}{r^{6}}+\frac{\beta_{5} \log (r)}{r^{6}}+\frac{\alpha_{5.5}}{r^{6.5}}+\frac{\alpha_{6}}{r^{7}}+\frac{\beta_{6} \log (r)}{r^{7}} \\
& +\frac{\alpha_{6.5}}{r^{7.5}}+\frac{\alpha_{7}}{r^{8}}+\frac{\beta_{7} \log (r)}{r^{8}}+\frac{\gamma_{7} \log ^{2}(r)}{r^{8}}+\cdots
\end{aligned}
$$

Numerically extracted value

$\gamma_{7}=52.17523809523809523809523809523809$ 523809523809523809523809523809 $5238095237538043489164331 \ldots$

Numerically extracted value

$\gamma_{7}=52.17523809523809523809523809523809$ 523809523809523809523809523809 $5238095237538043489164331 \ldots$

Numerically extracted value

$$
\begin{aligned}
& \gamma_{7}=52.17523809523809523809523809523809 \\
& 523809523809523809523809523809 \\
& \text { (5238095237538043489164331... }
\end{aligned}
$$

More than 11 repetition cycles

$$
\gamma_{7}=\frac{27392}{525}
$$

6.5-pN term

$\alpha_{6.5}=69.30909049662575956322060886698020553525276282$ 80640692917511789688546478292427121038828291 $6578039346534682043068130080764 \ldots$

$6.5-\mathrm{pN}$ term

$\alpha_{6.5}=69.30909049662575956322060886698020553525276282$ 80640692917511789688546478292427121038828291 $6578039346534682043068130080764 \ldots$
$\frac{\alpha_{6.5}}{\pi}=22.06176870748299319727891156462585034013605442$
$1768707482993197278911564625850340136054787080 \ldots$

$6.5-\mathrm{pN}$ term

$\alpha_{6.5}=69.30909049662575956322060886698020553525276282$ 80640692917511789688546478292427121038828291 $6578039346534682043068130080764 \cdots$

Almost 2 repetition cycles here

$$
\alpha_{6.5}=\frac{81077 \pi}{3675}
$$

One is not always lucky to have such repetition cycles...

$\frac{\alpha_{7.5}}{\pi}=176.4975875153652931430709208486986264764042541820319598$ $0973759881572859646496135482085019945242682178 \ldots$

One is not always lucky to have such repetition cycles...

$\frac{\alpha_{7.5}}{\pi}=176.4975875153652931430709208486986264764042541820319598$ $0973759881572859646496135482085019945242682178 \cdots$

Multiplying it with appropriate powers of the first few prime numbers clear things up
$\frac{\alpha_{7.5}}{\pi} \times 5^{2} \times 3^{5} \times 7 \times 11=$
$82561159.0005286027 \ldots$

One is not always lucky to have such repetition cycles...

$\frac{\alpha_{7.5}}{\pi}=176.4975875153652931430709208486986264764042541820319598$ $0973759881572859646496135482085019945242682178 \cdots$

Multiplying it with appropriate powers of the first few prime numbers clears things up
$\frac{\alpha_{7.5}}{\pi} \times 5^{2} \times 3^{5} \times 7 \times 11=$
$82561159.0005286027 \cdots$
Consistent with the accuracy with which we extracted this number

Final list of analytically known pN terms

$$
\begin{aligned}
& \frac{-1}{r}+\frac{-2}{r^{2}}+\frac{-5}{r^{3}}+\frac{\frac{-121}{3}+\frac{41 \pi^{2}}{32}}{r^{4}} \\
& +\frac{-592384-196608 \gamma+10155 \pi^{2}-393216 \log (2)}{7680 r^{5}} \\
& +\frac{64}{5} \frac{\log (r)}{r^{5}}+\frac{-956}{105} \frac{\log (r)}{r^{6}}+\frac{-13696 \pi}{525 r^{6.5}}+\frac{-51256}{567} \frac{\log (r)}{r^{7}} \\
& +\frac{81077 \pi}{3675 r^{7.5}}+\frac{27392}{525} \frac{\log ^{2}(r)}{r^{8}}+\frac{82561159 \pi}{467775 r^{8.5}}+\frac{-27016}{2205} \frac{\log ^{2}(r)}{r^{9}} \\
& +\frac{-11723776 \pi}{55125} \frac{\log (r)}{r^{9.5}}+\frac{-4027582708}{9823275} \frac{\log ^{2}(r)}{r^{10}}+\frac{99186502 \pi}{1157625} \frac{\log (r)}{r^{10.5}} \\
& +\frac{23447552}{165375} \frac{\log ^{3}(r)}{r^{11}}
\end{aligned}
$$

Final list of analytically known pN terms

$$
\begin{aligned}
& \frac{-1}{r}+\frac{-2}{r^{2}}+\frac{-5}{r^{3}}+\frac{\frac{-121}{3}+\frac{41 \pi^{2}}{32}}{r^{4}} \\
& +\frac{-592384-196608 \gamma+10155 \pi^{2}-393216 \log (2)}{7680 r^{5}} \\
& +\frac{64}{5} \frac{\log (r)}{r^{5}}+\frac{-956}{105} \frac{\log (r)}{r^{6}}+\frac{-13696 \pi}{525 r^{6.5}}+\frac{-51256}{567} \frac{\log (r)}{r^{7}} \\
& +\frac{81077 \pi}{3675 r^{7.5}}+\frac{27392}{525} \frac{\log ^{2}(r)}{r^{8}}+\frac{82561159 \pi}{467775}+\frac{-27016}{2205} \frac{\log ^{2}(r)}{r^{9}} \\
& +\frac{-11723776 \pi}{55125} \frac{\log (r)}{r^{9.5}}+\frac{-4027582708}{9823275} \frac{\log ^{2}(r)}{r^{10}}+\frac{99186502 \pi}{1157625} \frac{\log (r)}{r^{10.5}} \\
& +\frac{23447552}{165375} \frac{\log ^{3}(r)}{r^{11}}
\end{aligned}
$$

*Thanks to Alexandre Le Tiec

Final list of analytically known pN terms

$$
\begin{aligned}
& \frac{-1}{r}+\frac{-2}{r^{2}}+\frac{-5}{r^{3}}+\frac{\frac{-121}{3}+\frac{41 \pi^{2}}{32}}{r^{4}} \\
& +\frac{-592384-196608 \gamma+10155 \pi^{2}-393216 \log (2)}{7680 r^{5}} \\
& +\frac{64}{5} \frac{\log (r)}{r^{5}}+\frac{-956}{105} \frac{\log (r)}{r^{6}}+\frac{-13696 \pi}{525 r^{6.5}}+\frac{-51256}{567} \frac{\log (r)}{r^{7}} \\
& +\frac{81077 \pi}{3675 r^{7.5}}+\frac{27392}{525} \frac{\log ^{2}(r)}{r^{8}}+\frac{82561159 \pi}{467775 r^{8.5}}+\frac{-27016}{2205} \frac{\log ^{2}(r)}{r^{9}} \\
& +\frac{-11723776 \pi}{55125} \frac{\log (r)}{r^{9.5}}+\frac{-4027582708}{9823275} \frac{\log ^{2}(r)}{r^{10}}+\frac{99186502 \pi}{1157625} \frac{\log (r)}{r^{10.5}} \\
& +\frac{23447552}{165375} \frac{\log ^{3}(r)}{r^{11}}
\end{aligned}
$$

Flux at future horizon

Recent work by Fujita calculated the pN series of flux at future null infinity to 22 pN order!

Tagoshi et al calculated the pN series of flux at future horizon to 6 pN order.

Using
Flux lost = Flux at infinity + Flux at horizon we extract the $7,8,9,10-\mathrm{pN}$ orders of flux at horizon

Flux lost $=$ Flux at infinity + Flux at horizon

pN order	Lost by particle	∞	r_{+}
1	\checkmark		0
2	\checkmark		0
3			
4			0
5			\checkmark
6			\checkmark
7			\checkmark
8			
9			$?$
10			$?$

Green tick-marks show what we know from literature and that our result agrees with previous work Red question marks show what is unknown and how we extract the unknown coefficients.

Flux lost $=$ Flux at infinity + Flux at horizon

pN order	Lost by particle	∞	r_{+}
1	\checkmark		0
2	\checkmark		0
3			
4			0
5			\checkmark
6			\checkmark
7			\checkmark
8			
9			
10			

Green tick-marks show what we know from literature and that our result agrees with previous work Red question marks show what is unknown and how we extract the unknown coefficients.

Matching in Kerr

