I. Numerical method for generic orbits II. Radial fall evolution

Patxi RITTER

A. Spallicci, S. Cordier, S.Jubertie (Université d'Orléans)

S. Aoudia (Max Planck Institut für Gravitationphysik)

16th CAPRA - 15 july 2013 - University College Dublin

Plan

I. Numerical method for generic orbits

Solve the Regge-Wheeler-Zerilli wave equation in time domain by using jump conditions.

II. Radial fall evolution

Use the code with an osculating method to treat the particular case of radial infall in RW gauge.

Conclusions and perspectives

I. Numerical method for generic orbits

RWZ wave equation

Linear combinations of $h^{(i)\ell m}$ lead to 2 gauge invariant scalar fields (*Moncrief*)

$$\begin{split} \psi_{\text{even}}^{\ell m} &= \frac{r}{\lambda + 1} \bigg[K^{\ell m}(r, t) + \frac{r - 2M}{\lambda r + 3M} \Big(H_2^{\ell m}(t, r) - r \partial_r K^{\ell m}(t, r) \Big) \bigg] \\ \psi_{\text{odd}}^{\ell m} &= \frac{r}{\lambda} \bigg[r^2 \partial_r \bigg(\frac{h_0^{\ell m}(t, r)}{r^2} \bigg) - \partial_t h_1^{\ell m}(t, r) \bigg] \end{split}$$

The 2 functions satisfy Regge-Wheeler-Zerilli equations

$$\left[-\frac{\partial^2}{\partial t^2} + \frac{\partial^2}{\partial r^{*2}} - V(r)_{e/o}^{\ell}\right] \psi_{e/o}^{\ell m}(t,r) = P_{e/o}^{\ell m}(t) \frac{\partial}{\partial r} \delta\left(r - r_p(t)\right) + Q_{e/o}^{\ell m}(t) \delta\left(r - r_p(t)\right)$$

 $V_{e/o}^{\ell}$, $P_{e/o}^{\ell m}$, $Q_{e/o}^{\ell m}$ are known functions $r^* = r + 2M \ln (r/2M - 1)$ is the tortoise coordinate $r_p(t)$ particle trajectory $\lambda = \frac{1}{2}(\ell - 1)(\ell + 2)$

Knowing $\psi_{e/o}^{\ell m}$, metric reconstruction is still possible : $h^{(i)} = h^{(i)} [\psi, \partial \psi, \partial^2 \psi]$.

Jump conditions

Different ways of jump conditions implementation : *Haas, Barack Sago, Hopper Evans, Sopuerta Laguna, Field et al., Spallicci Aoudia (11), Ritter et al. (11).*

 δ' induces a discontinuity at $r = r_p(t)$

$$\psi(t,r) = \psi^+(t,r) \Theta_1 + \psi^-(t,r) \Theta_2$$

Jump of the wave function at the location of the particle

$$[\![\psi]\!]_{r_p} = \psi^+(t, r_p(t)) - \psi^-(t, r_p(t))$$

where $\psi^{\pm}(t, r_p(t)) = \lim_{\varepsilon \to 0} \psi(t, r_p \pm \varepsilon)$

 $\Theta_1 = \Theta(r - r_p), \Theta_2 = \Theta(r_p - r)$ Heaviside distributions $\delta = \delta(r - r_p), \delta' = \frac{\partial}{\partial r} \delta(r - r_p)$ Dirac distribution and its spatial derivative

Jump conditions

$$\llbracket \psi \rrbracket_{r_p} = \frac{P(t)}{f(r_p)^2 - \dot{r}_p^2}$$

$$[\![\partial_r \psi]\!]_{r_p} = \frac{1}{f(r_p)^2 - \dot{r}_p^2} \left[Q(t) + \left(f(r_p) \frac{df}{dr}(r_p) - \ddot{r}_p \right) [\![\psi]\!]_{r_p} - 2\dot{r}_p \frac{d}{dt} [\![\psi]\!]_{r_p} \right]$$

$$\left[\left[\partial_t \psi\right]\right]_{r_p} = \frac{d}{dt} \left[\left[\psi\right]\right]_{r_p} - \dot{r}_p \left[\left[\partial_r \psi\right]\right]_{r_p}$$

 $\left[\!\left[\partial_r^n \partial_t^m \psi\right]\!\right]_{r_p} \dots$

where
$$\dot{r}_p = \frac{dr_p}{dt}$$
, $\ddot{r}_p = \frac{d^2r_p}{dt^2}$ and $f(r_p) = \left(1 - \frac{2M}{r_p}\right)$

For generic orbits $\{t, r_p(t), \theta_p(t), \phi_p(t)\}$

$$\begin{split} P_o^{\ell m}(t) &= \frac{8\kappa}{\lambda} r_p \left(\dot{r}_p^2 - f(r_p)^2 \right) A^{\ell m \star} \\ Q_o^{\ell m}(t) &= -\frac{8\kappa}{\lambda} r_p \dot{r}_p \frac{dA^{\ell m \star}}{dt} - \frac{8\kappa}{\lambda} \left[\frac{r_p}{u^t} \frac{d}{dt} (u^t \dot{r}_p) + \left(\dot{r}_p^2 - f(r_p) \right) \right] A^{\ell m \star} \\ V_o^{\ell}(r) &= 2f(r) \left[(\lambda + 1) r^{-2} - 3M r^{-3} \right] \end{split}$$

$$\begin{split} P_{e}^{\ell m}(t) &= -8\kappa \frac{r_{p}f(r_{p})\left(\dot{r}_{p}^{2}-f(r_{p})^{2}\right)}{\lambda r_{p}+3M}Y^{\ell m \star} \\ Q_{e}^{\ell m}(t) &= 16\kappa \frac{r_{p}\dot{r}_{p}f(r_{p})}{\lambda r_{p}+3M} \frac{dY^{\ell m \star}}{dt} - 16\frac{\kappa}{\lambda}r_{p}f(r_{p})\dot{\theta}_{p}\dot{\phi}_{p}\partial_{\phi}\left(\partial_{\theta}-\cot\theta_{p}\right)Y^{\ell m \star} + 8\kappa \frac{r_{p}^{2}f(r_{p})^{2}}{\lambda r_{p}+3M}\left(\dot{\theta}_{p}^{2}+\sin^{2}\theta_{p}\dot{\phi}_{p}^{2}\right)Y^{\ell m \star} \\ &- 4\kappa\lambda^{-1}r_{p}f(r_{p})\left(\dot{\theta}_{p}^{2}-\sin^{2}\theta_{p}\dot{\phi}_{p}^{2}\right)\left(\partial_{\theta}^{2}-\cot\theta_{p}\partial_{\theta}-\sin^{-2}\theta_{p}\partial_{\phi}^{2}\right)Y^{\ell m \star} \\ &+ 8\kappa \frac{\dot{r}_{p}^{2}\left[(\lambda+1)(6r_{p}M+\lambda r_{p}^{2})+3M^{2}\right]}{r_{p}(\lambda r_{p}+3M)^{2}}Y^{\ell m \star} - 8\kappa \frac{f(r_{p})^{2}\left[r_{p}^{2}\lambda(\lambda+1)+6\lambda r_{p}M+15M^{2}\right]}{r_{p}(\lambda r_{p}+3M)^{2}}Y^{\ell m \star} \\ &V_{e}^{\ell}(r) = 2f(r)\frac{\left[\lambda^{2}(\lambda+1)r^{3}+3\lambda^{2}Mr^{2}+9\lambda M^{2}r+9M^{3}\right]}{r^{3}(\lambda r+3M)^{2}} \end{split}$$

where
$$\kappa = (\pi m_* u^t) / (\lambda + 1), \lambda = \frac{1}{2} (\ell - 1)(\ell + 2), f(r) = 1 - 2M / r \text{ and } A^{\ell m} = \left(\frac{\dot{\theta}_p}{\sin \theta_p} \partial_{\phi} - \sin \theta_p \dot{\phi}_p \partial_{\theta}\right) Y_{-p.8/28}^{\ell m}$$

Empty cells :

2nd order classical finite difference scheme (Lousto Price, Martel Poisson)

$$\psi_{A}^{\ell m} = -\psi_{E}^{\ell m} + \left(\psi_{B}^{\ell m} + \psi_{C}^{\ell m}\right) \left(1 - \frac{\Delta r^{*2}}{2} V^{\ell}(r)\right) + O(\Delta r^{*4})$$

typically $\Delta r^* = \Delta t$

Cells crossed by the world line :

2nd order modified finite difference scheme

 $\psi_A^{\ell m} = \sum_{n \in \{B,C,D,E,F\}} \alpha_n \psi_n^{\ell m} + \sum_{p+q<3} \beta_{pq} \left[\!\!\left[\partial_t^p \partial_{r^*}^q \psi^{\ell m}\right]\!\!\right]_{\!\mathbf{x}} + O(\Delta r^{*3})$

Example : elliptic orbit (e = 0.5) for the quadrupolar mode (ℓ , m) = (2, 2)

Code validation

- 2nd order convergence in time
- Less than 2nd order convergence in space on the trajectory (δ')
- Averaged flux of energy and angular momentum at infinity :

$$\frac{dE}{dt} = \frac{1}{64\pi} \sum_{\ell \ge 2,m} \frac{(\ell+2)!}{(\ell-2)!} \left[\left| \frac{d\psi_e^{\ell m}}{dt} \right|^2 + \left| \frac{d\psi_o^{\ell m}}{dt} \right|^2 \right]$$
$$\frac{dL}{dt} = \frac{im}{64\pi} \sum_{\ell \ge 2,m} \frac{(\ell+2)!}{(\ell-2)!} \left[\psi_e^{\ell m \star} \frac{d\psi_e^{\ell m}}{dt} + \psi_o^{\ell m \star} \frac{d\psi_o^{\ell m}}{dt} \right]$$

Good agreement with previous literature (0.001%<err<1%) *Poisson, Martel, Barack Lousto, Sopuerta Laguna, Cutler et al., Hopper Evans*

II. Radial fall evolution

How to compute the self-force in RW gauge ?

Solution No self-force regularisation procedure in RW gauge for circular or elliptic orbits (not yet) $(h_{\alpha\beta}^{\ell m} \notin \mathscr{C}^{0})$

but

Some mode-sum applicable to a purely radial orbit in RW gauge (*Barack Ori*) i.e

$$F_{\text{self}}^{\alpha(\text{RW})} = \sum_{\ell=0}^{\infty} \left[F_{\text{ret}}^{\alpha\ell(\text{RW})} - A^{\alpha}L - B^{\alpha} - C^{\alpha}L^{-1} \right] - D^{\alpha}$$

with $L = \ell + 1/2$ and A^{α} , B^{α} , C^{α} and D^{α} are regularisation parameters

$$F^{\alpha}[h_{\alpha\beta}^{\text{ret}}] = -\frac{1}{2} \left(g^{\alpha\beta} + u^{\alpha} u^{\beta} \right) \left(2\nabla_{\mu} h_{\beta\nu}^{\text{ret}} - \nabla_{\beta} h_{\mu\nu}^{\text{ret}} \right) u^{\mu} u^{\nu} = \sum_{\ell} F_{\text{ret}}^{\alpha\ell}$$

[Also ζ-regularisation was used in radial fall (Lousto, Spallicci Aoudia)]

Radial fall case

Trajectory:
$$\frac{d^2 r_p}{d t^2} = \frac{1}{2} f(r_p) f'(r_p) \left[1 - \frac{3\dot{r}_p^2}{f(r_p)^2} \right], \quad \theta_p = 0$$

• Only even perturbations $\psi^{\ell} \equiv \psi_{e}^{\ell m = 0}$

$$h_{\alpha\beta}^{\text{ret}\ell} = \begin{pmatrix} fH_2^{\ell} & H_1^{\ell} \\ H_1^{\ell} & f^{-1}H_2^{\ell} \end{pmatrix} Y^{\ell 0} \in \mathscr{C}^0 \text{ on the world line}$$

$$\blacksquare H_1^{\ell}(t,r) = k_0 \partial_t \psi^{\ell} + k_1 \partial_{rt} \psi^{\ell} + k_2 \delta' + k_3 \delta$$

$$\blacksquare H_2^\ell(t,r) = k_4 \psi^\ell + k_5 \partial_r \psi^\ell + k_6 \partial_r^2 \psi^\ell + k_7 \delta' + k_8 \delta$$

Radial fall case

$$= F^{\alpha}[h_{\alpha\beta}^{\text{ret}}] = -\frac{1}{2} \left(g^{\alpha\beta} + u^{\alpha} u^{\beta} \right) \left(2\nabla_{\mu} h_{\beta\nu}^{\text{ret}} - \nabla_{\beta} h_{\mu\nu}^{\text{ret}} \right) u^{\mu} u^{\nu} = \sum_{\ell} F_{\text{ret}}^{\alpha\ell}$$

$$F_{\rm ret}^{\alpha\ell} = -\frac{1}{2} \left[f_0^{\alpha} \left(\frac{\partial H_2^{\ell}}{\partial t} - \frac{df}{dr} H_1^{\ell} \right) + f_1^{\alpha} \left(\frac{\partial H_1^{\ell}}{\partial t} - \frac{df}{dr} H_2^{\ell} \right) + f_2^{\alpha} \frac{\partial H_2^{\ell}}{\partial r} + f_3^{\alpha} \frac{\partial H_1^{\ell}}{\partial r} \right] Y^{\ell 0}$$

where the f_i^{α} are functions of r_p and \dot{r}_p

Consistent with Barack Lousto.

Radial fall case

$$= F^{\alpha}[h_{\alpha\beta}^{\text{ret}}] = -\frac{1}{2} \left(g^{\alpha\beta} + u^{\alpha} u^{\beta} \right) \left(2\nabla_{\mu} h_{\beta\nu}^{\text{ret}} - \nabla_{\beta} h_{\mu\nu}^{\text{ret}} \right) u^{\mu} u^{\nu} = \sum_{\ell} F_{\text{ret}}^{\alpha\ell}$$

$$F_{\rm ret}^{\alpha\ell} = -\frac{1}{2} \left[f_0^{\alpha} \left(\frac{\partial H_2^{\ell}}{\partial t} - \frac{df}{dr} H_1^{\ell} \right) + f_1^{\alpha} \left(\frac{\partial H_1^{\ell}}{\partial t} - \frac{df}{dr} H_2^{\ell} \right) + f_2^{\alpha} \frac{\partial H_2^{\ell}}{\partial r} + f_3^{\alpha} \frac{\partial H_1^{\ell}}{\partial r} \right] Y^{\ell 0}$$

Regularisation parameters given by $F_{ret}^{\alpha \ell \to \infty}$ at the coincidence limit $r = r_p(t)$

$$A^{r} = \pm \frac{E}{r_{p}^{2}} \quad A^{t} = \pm \frac{\dot{r}_{p}}{f(r_{p})r_{p}^{2}} \quad B^{r} = -\frac{E^{2}}{2r_{p}^{2}} \quad B^{t} = -\frac{E\dot{r}_{p}}{2f(r_{p})r_{p}^{2}}$$
$$C^{\alpha} = D^{\alpha} = 0$$

Same expressions as computed in harmonic gauge; consistent with *Barack Ori*.

$$\frac{d^2 x_p^{\alpha}}{d\tau^2} + \Gamma_{\beta\gamma}^{\alpha} \frac{d x_p^{\beta}}{d\tau} \frac{d x_p^{\gamma}}{d\tau} = F_{\text{Self}}^{\alpha}$$

perturbed motion

$$\ddot{r}_p = \frac{1}{2}f(r_p)f'(r_p)\left[1 - \frac{3\dot{r}_p^2}{f(r_p)^2}\right] + \Lambda_{\text{Self}}(r_p, \dot{r}_p)$$

pragmatic approach : $r_p = R + \Delta r$

$$\ddot{\Delta}r = \underbrace{\Lambda_0(R,\dot{R})\Delta r + \Lambda_1(R,\dot{R})\dot{\Delta}r}_{\text{Self}} + \underbrace{\Lambda_{\text{Self}}(R,\dot{R})}_{\text{Self}}$$

background geodesic deviation

where

$$\Lambda_{\text{Self}}(R, \dot{R}) = \sum_{\ell} \frac{f(R)^2}{E^2} \Big[F_{\text{Self}}^{r\ell} - \dot{R} F_{\text{Self}}^{t\ell} \Big]$$

- p. 22/28

 $\Delta r < 0 \ \forall R \rightarrow \text{positive work of the SF, } (m_* dE / d\tau = -F_t > 0)$ Consistent with *Barack Lousto 2002* but Λ_{Self} and $\Delta r \neq \text{with Lousto 2000}$

$$\ddot{r}_p = \frac{1}{2}f(r_p)f'(r_p)\left[1 - \frac{3\dot{r}_p^2}{f(r_p)^2}\right] + \Lambda_{\text{Self}}(r_p, \dot{r}_p)$$

But regularisation parameters A^{α} , B^{α} and C^{α} must be computed on a geodesic \rightarrow **osculating orbit approach**.

phase space

Pragmatic vs osculating approach

As expected almost no difference between pragmatic and osculating (maybe for large R_0).

Pragmatic approach good enough to get the perturbed motion.

Good training for more complex orbits in different gauges.

Conclusions

Satisfactory method based on jump conditions applied for radial fall (*Aoudia Spallicci, Ritter et al.*) and generic orbits (submitted) in good agreement with existing literature.

Osculating-iterative scheme applied to radial infall.

Perspectives

For generic orbits, without self-force, we could explore the effect of a third body.

For radial infall, we are still in the phase of evaluation of the results (sensibility to parameters, R_0 , m/M, perturbed wave forms, quantify SF errors..)

Numerical investigations, space-time compactification..

Thank you!