Second-order self-force: results and prospects

Adam Pound

University of Southampton

July 15, 2013

Outline

1 Introduction

- 2 General approach: matched asymptotic expansions
- 3 Equation of motion
- 4 Solving the EFE globally: puncture scheme
- 5 Progress toward numerical implementation

Outline

1 Introduction

- 2 General approach: matched asymptotic expansions
- 3 Equation of motion
- ④ Solving the EFE globally: puncture scheme
- 6 Progress toward numerical implementation

Why second order?

Tracking an inspiral

- inspiral occurs very slowly, on radiation-reaction time $t_{rr} \sim 1/m$
- neglecting second-order self-force leads to error in acceleration $\delta a^{\mu} \sim m^2$

 \Rightarrow error in position $\delta z^{\mu} \sim m^2 t^2$

- \Rightarrow after radiation-reaction time $t_{rr}\sim 1/m$, error $\delta z^{\mu}\sim 1$
- \therefore accurately describing orbital evolution requires second-order force

Why second order?

Tracking an inspiral

- inspiral occurs very slowly, on radiation-reaction time $t_{rr} \sim 1/m$
- neglecting second-order self-force leads to error in acceleration $\delta a^{\mu} \sim m^2$

 \Rightarrow error in position $\delta z^{\mu} \sim m^2 t^2$

 \Rightarrow after radiation-reaction time $t_{rr}\sim 1/m$, error $\delta z^{\mu}\sim 1$

... accurately describing orbital evolution requires second-order force

More reasons for second order

Modeling IMRIs and similar-mass binaries

- self-force has surprisingly large domain of validity [Le Tiec et al]
- should be highly accurate model for IMRIs
- potentially accurate even for similar-mass binaries

What's required for a second-order approximation scheme?

The physical problem

- small object creates perturbation $\epsilon h^{(1)}_{\alpha\beta} + \epsilon^2 h^{(2)}_{\alpha\beta} + O(\epsilon^3)$ of external background $g_{\alpha\beta}$
- $\bullet \ \epsilon$ counts powers of object's mass and size
- must solve Einstein equations

$$\delta G_{\alpha\beta}[h^{(1)}] = 8\pi T^{(1)}_{\alpha\beta}$$

$$\delta G_{\alpha\beta}[h^{(2)}] = 8\pi T^{(2)}_{\alpha\beta} - \delta^2 G_{\alpha\beta}[h^{(1)}]$$

where $\delta^2 G_{\alpha\beta}[h^{(1)}] \sim (\nabla h^{(1)})^2 + h^{(1)} \nabla \nabla h^{(1)}$

Two analytical ingredients needed for solution

- **1** concrete method of solving EFE for $h_{\alpha\beta}^{(n)}$
- **2** self-force in terms of $h_{\alpha\beta}^{(n)}$

Apparent obstacles

Solving the EFE: failure of point particle model

• particle in full spacetime: $T_{\mu\nu} \sim m \frac{\delta^3(x^a-z^a)}{\sqrt{q+h}}$

$$\Rightarrow T^{(2)} \sim mh\delta^3(x^a - z^a) \sim m^2 \frac{\delta^3(x^a - z^a)}{x^a - z^a}$$

• also, second-order Einstein tensor

$$\delta^2 G[h^{(1)}] \sim (\partial h^{(1)})^2 \sim 1/(x^a - z^a)^4$$

 \Rightarrow seemingly no distributional meaning

Deriving the self-force: how to define position?

- $\bullet\,$ the mass $m\,$ must be in some way extended
- how do we pick a "good" representative worldline?

Outline

Introduction

2 General approach: matched asymptotic expansions

3 Equation of motion

④ Solving the EFE globally: puncture scheme

5 Progress toward numerical implementation

Matched asymptotic expansions

Inner expansion

Zoom in on object

- in inner region, use scaled coords $\tilde{r}\sim r/\epsilon$ to keep size of object fixed, send other distances to infinity as $\epsilon\to 0$
- unperturbed object defines background spacetime $g_{I\mu
 u}$
- buffer region at asymptotic infinity $r \gg m$ \Rightarrow multipole moments of $g_{I\mu\nu}$ defined there

Intro Method Motion Field Prospects

Outer expansion: Gralla-Wald type ['08]

Expanded worldline

- expand metric in Taylor series $g_{\mu\nu}(x,\epsilon) = g_{\alpha\beta}(x) + \epsilon h^1_{\alpha\beta}(x) + \epsilon^2 h^2_{\alpha\beta}(x) + O(\epsilon^3)$
- expand worldline in Taylor series $z^{\mu}(\tau, \epsilon) = z_0^{\mu}(\tau) + \epsilon z_1^{\mu}(\tau) + \epsilon^2 z_2^{\mu}(\tau) + O(\epsilon^3)$
- z_0^{μ} : remnant of object at $\epsilon = 0$

• z_n^{μ} : deviation vectors on z_0^{μ}

Limitation

• valid only on timescales $t \sim 1$; much shorter than an inspiral

Outer expansion: self-consistent [Pound '10]

Unexpanded worldline

- \bullet rather than finding deviation from $z_0^\mu,$ seek a worldline $z^\mu(\tau,\epsilon)$ that faithfully tracks body's bulk motion
- assume generalized expansion of form

$$\mathbf{g}_{\mu\nu}(x,\epsilon) = g_{\mu\nu}(x) + \epsilon h^{(1)}_{\mu\nu}(x;z^{\alpha}) + \epsilon^2 h^{(2)}_{\mu\nu}(x;z^{\alpha}) + O(\epsilon^3)$$

Advantage

potentially accurate on long timescales

Solving the EFE in the buffer region

Expansion of $h_{\mu\nu}^{(n)}$ for small r

- adopt local coordinates centered on a worldline z^{μ} (or $z^{\mu}_0),$ expand for small r
- inner expansion must not have negative powers of ϵ \Rightarrow terms like $\frac{\epsilon^n}{r^{n+1}} = \frac{1}{\epsilon \tilde{r}^{n+1}}$ not allowed in $\epsilon^n h_{\mu\nu}^{(n)}$

$$\therefore h_{\mu\nu}^{(n)} = \frac{1}{r^n} h_{\mu\nu}^{(n,-n)} + r^{-n+1} h_{\mu\nu}^{(n,-n+1)} + r^{-n+2} h_{\mu\nu}^{(n,-n+2)} + \dots$$

Information from inner expansion

• $1/\tilde{r}^n$ terms arise from large- \tilde{r} expansion of $g_{I\mu\nu}$ $\Rightarrow h_{\mu\nu}^{(n,-n)}$ is determined by multipole moments of $g_{I\mu\nu}$

Form of solution in buffer region (in Lorenz gauge)

What appears in the solution?

- $\bullet\,$ solve EFE in Lorenz gauge order by order in r
- expand each $h^{(n,p)}_{\mu\nu}$ in spherical harmonics
- given a worldline, the solution at all orders is fully characterized by

1 body's multipole moments (and corrections thereto): $\sim \frac{Y^{\ell m}}{r^{\ell+1}}$ 2 smooth solutions to vacuum wave equation: $\sim r^{\ell} Y^{\ell m}$

• everything else made of (linear or nonlinear) combinations of the above

Self-field and regular field

- multipole moments define $h^{{
 m S}(n)}_{\mu
 u}$; interpret as bound field of body
- smooth homogeneous solutions define $h_{\mu\nu}^{{\rm R}(n)}$; free radiation, determined by global boundary conditions

First- and second-order solutions in buffer region

First order

•
$$h_{\mu\nu}^{(1)} = h_{\mu\nu}^{\mathrm{S}(1)} + h_{\mu\nu}^{\mathrm{R}(1)}$$

- self-field $h_{\mu\nu}^{{
 m S}(1)}\sim 1/r+O(r^0)$ defined by ADM mass m of $g_{I\mu\nu}$
- $h^{{\rm R}(1)}_{\mu\nu}$ is undetermined homogenous solution smooth at r=0
- evolution equations: $\dot{m} = 0$ and $a^{\mu}_{(0)} = 0$ $(a^{\mu} = a^{\mu}_{(0)} + \epsilon a^{\mu}_{(1)} + \ldots)$

Second order

•
$$h_{\mu\nu}^{(2)} = h_{\mu\nu}^{S(2)} + h_{\mu\nu}^{R(2)}$$

•
$$h^{
m S(2)}_{\mu
u}\sim 1/r^2+O(1/r)$$
 defined by $mh^{
m R(1)}_{\mu
u}$ and

- **1** monopole correction $\delta m_{\mu\nu}$
- **2** mass dipole M^{μ} of $g_{I\mu\nu}$
- **3** spin dipole S^{μ} of $g_{I\mu\nu}$
- evolution equations: $\dot{S}^{\mu} = 0$, $\dot{\delta m}_{\mu\nu} = \dots$, and $\ddot{M}^{\mu} = \dots$

Outline

1 Introduction

2 General approach: matched asymptotic expansions

3 Equation of motion

- ④ Solving the EFE globally: puncture scheme
- Progress toward numerical implementation

Position at first order: Gralla-Wald definition

Reminder: mass dipole

corresponds to displacement of center of mass from origin of coordinates

- work in coordinates centered on z_0^μ
- calculate mass dipole M^{μ} of inner background $g_{I\mu\nu}$
- first-order correction due to self-force:

$$mz_1^\mu = M^\mu$$

Position at first order: self-consistent definition

Mass dipole about z^{μ}

We want to find worldline z^{μ} for which $M^{\mu}=0$

- work in coordinates centered on unspecified z^{μ}
- calculate mass dipole M^{μ} of inner background $g_{I\mu\nu}$
- first-order acceleration of z^{μ} : whatever ensures $M^{\mu} \equiv 0$

Intro Method Motion Field Prospects

Proceeding to second order: mass-centered gauges

Problem

- mass dipole moment defined for asymptotically flat spacetimes
- beyond zeroth order, inner expansion is not asymptotically flat

Solution

- find gauge in which field is manifestly mass-centered on z_0^{μ} (or z^{μ})
- define position in other gauges by referring to transformation to that mass-centered gauge

Gauge in a Gralla-Wald-type expansion

On short timescales, position relative to z_0^{μ} is pure gauge

- start in gauge mass-centered on z_0^{μ} $\Rightarrow z_1^{\mu} = z_2^{\mu} = 0$
- under a small coordinate transformation, the worldline z^{μ} transforms just as coordinates do
- First order:

$$z_1^{\mu} = \xi_1^{\mu}|_{z_0}$$

$$z_2^{\mu} = \xi_2^{\mu}|_{z_0} + \xi_1^{\nu} \partial_{\nu} \xi_1^{\mu}|_{z_0}$$

Gauge in a Gralla-Wald-type expansion

On short timescales, position relative to z_0^{μ} is pure gauge

- start in gauge mass-centered on z_0^{μ} $\Rightarrow z_1^{\mu} = z_2^{\mu} = 0$
- under a small coordinate transformation, the worldline z^{μ} transforms just as coordinates do
- First order:

$$z_1^{\mu} = \xi_1^{\mu}|_{z_0}$$

$$z_2^{\mu} = \xi_2^{\mu}|_{z_0} + \xi_1^{\nu} \partial_{\nu} \xi_1^{\mu}|_{z_0}$$

Gauge in a Gralla-Wald-type expansion

On short timescales, position relative to z_0^{μ} is pure gauge

- start in gauge mass-centered on z_0^{μ} $\Rightarrow z_1^{\mu} = z_2^{\mu} = 0$
- under a small coordinate transformation, the worldline z^{μ} transforms just as coordinates do
- First order:

$$z_1^{\mu} = \xi_1^{\mu}|_{z_0}$$

$$z_2^{\mu} = \xi_2^{\mu}|_{z_0} + \xi_1^{\nu} \partial_{\nu} \xi_1^{\mu}|_{z_0}$$

Gauge in a Gralla-Wald-type expansion

On short timescales, position relative to z_0^{μ} is pure gauge

- start in gauge mass-centered on z_0^{μ} $\Rightarrow z_1^{\mu} = z_2^{\mu} = 0$
- under a small coordinate transformation, the worldline z^{μ} transforms just as coordinates do
- First order:

$$z_1^{\mu} = \xi_1^{\mu}|_{z_0}$$

$$z_2^{\mu} = \xi_2^{\mu}|_{z_0} + \xi_1^{\nu} \partial_{\nu} \xi_1^{\mu}|_{z_0}$$

Position at second order: self-consistent [Pound '12]

Gauge in a self-consistet expansion

Over a radiation-reaction time, position relative to z_0^{μ} is *not* pure gauge

- start in gauge mass-centered on z^{μ}
- demand that transformation to practical (e.g., Lorenz) gauge does not move z^{μ}

• i.e., insist
$$\lim_{r \to 0} \int \xi^a_{(n)} d\Omega = 0$$

• ensures worldline in the two gauges is the same

Construction of solution in mass-centered "rest gauge"

Start with a particular inner expansion

- specialize to non-spinning $g_{I\mu\nu}$
- adopt metric of tidally perturbed Schwarzschild black hole
- metric is mass-centered (e.g., $\delta M^{\mu} = 0$) —also in a "rest gauge": object centered on non-accelerating origin

Generalize the solution

• generalize to any (approximately non-spinning) compact object; i.e., remove boundary conditions specific to BH

Expand in buffer region

• expand at asymptotic infinity (large \tilde{r}) and switch to unscaled r

Transforming from rest gauge to Lorenz gauge

Comparison of gauges

• metric in "rest gauge":

$$g_{tt} \sim \frac{m^2}{r^2} + \frac{m}{r} + r^0(-1) + r^2 e_1(m/r)\tilde{\mathcal{E}}^{q} + O(r^3)$$

• metric in Lorenz gauge in Fermi coords centered on z^{μ} :

$$\begin{split} \mathbf{g}_{tt} &\sim \frac{m^2}{r^2} + \frac{(m+mh^{\mathrm{R}})}{r} + r^0(-1+h^{\mathrm{R}} + \mathrm{more}) \\ &+ r(a_i + \partial h^{\mathrm{R}} + \mathrm{more}) + r^2(\mathcal{E}^{\mathsf{q}} + \partial \partial h^{\mathrm{R}} + \mathrm{more}) + O(r^3) \end{split}$$

Gauge transformation between them

For a self-consistent solution, seek a unique gauge vector $\epsilon \xi^{\mu}_{(1)} + \epsilon^2 \xi^{\mu}_{(2)}$ that preserves the position of the worldline

Transforming from rest gauge to Lorenz gauge

Comparison of gauges

• metric in "rest gauge":

$$g_{tt} \sim \frac{m^2}{r^2} + \frac{m}{r} + r^0(-1) + r^2 e_1(m/r)\tilde{\mathcal{E}}^{q} + O(r^3)$$

• metric in Lorenz gauge in Fermi coords centered on z^{μ} :

$$\begin{split} \mathbf{g}_{tt} &\sim \frac{m^2}{r^2} + \frac{(m+mh^{\mathrm{R}})}{r} + r^0(-1+h^{\mathrm{R}} + \mathrm{more}) \\ &+ \boxed{r(a_i + \partial h^{\mathrm{R}} + \mathrm{more})} + r^2(\mathcal{E}^{\mathsf{q}} + \partial \partial h^{\mathrm{R}} + \mathrm{more}) + O(r^3) \end{split}$$

Gauge transformation between them

For a self-consistent solution, seek a unique gauge vector $\epsilon\xi^{\mu}_{(1)} + \epsilon^2\xi^{\mu}_{(2)}$ that preserves the position of the worldline

Self-consistent equation of motion in Lorenz gauge

$$\frac{D^2 z^{\mu}}{d\tau^2} = \frac{1}{2} \left(g^{\mu\nu} + u^{\mu} u^{\nu} \right) \left(g_{\nu}{}^{\rho} - h_{\nu}^{\mathrm{R}\rho} \right) \left(h_{\sigma\lambda;\rho}^{\mathrm{R}} - 2h_{\rho\sigma;\lambda}^{\mathrm{R}} \right) u^{\sigma} u^{\lambda} + O(\epsilon^3)$$

• here
$$a^{\mu} = a^{\mu}_{(0)} + \epsilon a^{\mu}_{(1)} + \epsilon^2 a^{\mu}_{(2)} + \dots$$

• and
$$h^{
m R}_{\mu
u}=\epsilon h^{
m R(1)}_{\mu
u}+\epsilon^2 h^{
m R(2)}_{\mu
u}$$

Generalized equivalence principle

- z^{μ} satisfies geodesic equation in $g_{\mu\nu} + h^{\rm R}_{\mu\nu}$
- \bullet recall: here $g_{\mu\nu}+h^{\rm R}_{\mu\nu}$ is a "physical" field in the sense of satisfying vacuum EFE
- extends results of Detweiler-Whiting to second order

Gralla-Wald-type equation of motion in Lorenz gauge

Covariant expansion of worldline

- family of worldlines $z^{\mu}(\tau,\epsilon)$
- tangent vectors: $u^{\mu} = \frac{dz^{\mu}}{d\tau}$, $\xi^{\mu} = \frac{dz^{\mu}}{d\epsilon}$
- first deviation: $z_1^\mu = \xi^\mu|_{z_0}$

• second deviation:
$$z_2^{\mu} = \frac{1}{2} \frac{D\xi^{\mu}}{d\epsilon}|_{z_0}$$

$$\begin{split} \frac{D^2 z_0^{\mu}}{d\tau^2} &= 0\\ \frac{D^2 z_1^{\mu}}{d\tau^2} &= R^{\mu}{}_{\nu\rho\sigma} u_0^{\nu} u_0^{\rho} z_1^{\sigma} - \frac{1}{2} m (g^{\mu\nu} + u_0^{\mu} u_0^{\nu}) (2h^{\mathrm{R}(1)}_{\rho\nu;\sigma} - h^{\mathrm{R}(1)}_{\rho\sigma;\nu}) u_0^{\rho} u_0^{\sigma} \\ \frac{D^2 z_2^{\alpha}}{d\tau^2} &= f_2^{\alpha} + \frac{1}{2} R^{\alpha}{}_{\mu\beta\nu;\gamma} (z_1^{\mu} u_0^{\beta} z_1^{\nu} u_0^{\gamma} - u_0^{\mu} z_1^{\beta} u_0^{\nu} z_1^{\gamma}) \\ &- R^{\alpha}{}_{\mu\beta\nu} (u_0^{\mu} z_2^{\beta} u_0^{\nu} + 2\dot{z}_1^{\mu} z_1^{\beta} u_0^{\nu}) \end{split}$$

Gralla-Wald-type equation of motion in Lorenz gauge

Covariant expansion of worldline

- family of worldlines $z^{\mu}(\tau,\epsilon)$
- tangent vectors: $u^{\mu} = \frac{dz^{\mu}}{d\tau}$, $\xi^{\mu} = \frac{dz^{\mu}}{d\epsilon}$
- first deviation: $z_1^\mu = \xi^\mu|_{z_0}$
- second deviation: $z_2^{\mu} = \frac{1}{2} \frac{D\xi^{\mu}}{d\epsilon}|_{z_0}$

$$\begin{aligned} \frac{D^2 z_0^{\mu}}{d\tau^2} &= 0\\ \frac{D^2 z_1^{\mu}}{d\tau^2} &= R^{\mu}{}_{\nu\rho\sigma} u_0^{\nu} u_0^{\rho} z_1^{\sigma} - \frac{1}{2} m (g^{\mu\nu} + u_0^{\mu} u_0^{\nu}) (2h^{\mathrm{R}(1)}_{\rho\nu;\sigma} - h^{\mathrm{R}(1)}_{\rho\sigma;\nu}) u_0^{\rho} u_0^{\sigma} \end{aligned}$$

$$\begin{aligned} \frac{D^2 z_2^{\alpha}}{d\tau^2} = & f_2^{\alpha} + \frac{1}{2} R^{\alpha}{}_{\mu\beta\nu;\gamma} (z_1^{\mu} u_0^{\beta} z_1^{\nu} u_0^{\gamma} - u_0^{\mu} z_1^{\beta} u_0^{\nu} z_1^{\gamma}) \\ & - R^{\alpha}{}_{\mu\beta\nu} (u_0^{\mu} z_2^{\beta} u_0^{\nu} + 2\dot{z}_1^{\mu} z_1^{\beta} u_0^{\nu}) \end{aligned}$$

Gralla-Wald-type equation of motion in Lorenz gauge

$$f_{2}^{\mu} = \frac{1}{2} P_{0}^{\mu\nu} \left(h_{\sigma\lambda;\rho}^{\mathrm{R}(2)} - 2h_{\rho\sigma;\lambda}^{\mathrm{R}(2)} \right) u_{0}^{\sigma} u_{0}^{\lambda} - P_{0}^{\mu\nu} h_{\nu}^{\mathrm{R}(1)\rho} \left(h_{\sigma\lambda;\rho}^{\mathrm{R}(1)} - 2h_{\rho\sigma;\lambda}^{\mathrm{R}(1)} \right) u_{0}^{\sigma} u_{0}^{\lambda} + \left(h_{\sigma\lambda;\nu}^{\mathrm{R}(1)} - 2h_{\nu\sigma;\lambda}^{\mathrm{R}(1)} \right) \left[(\dot{z}_{1}^{\mu} u_{0}^{\nu} + u_{0}^{\mu} \dot{z}_{1}^{\nu}) u_{0}^{\sigma} u^{\lambda} + P_{0}^{\mu\nu} \left(\dot{z}_{1}^{\sigma} u_{0}^{\lambda} + u_{0}^{\sigma} \dot{z}_{1}^{\lambda} \right) \right]$$

• second deviation: $z_{2}^{\prime} = \frac{1}{2} \frac{-2}{d\epsilon} |z_{0}$

$$\begin{split} \frac{D^2 z_0^{\mu}}{d\tau^2} &= 0\\ \frac{D^2 z_1^{\mu}}{d\tau^2} &= R^{\mu}{}_{\nu\rho\sigma} u_0^{\nu} u_0^{\rho} z_1^{\sigma} - \frac{1}{2} m (g^{\mu\nu} + u_0^{\mu} u_0^{\nu}) (2h^{\mathrm{R}(1)}_{\rho\nu;\sigma} - h^{\mathrm{R}(1)}_{\rho\sigma;\nu}) u_0^{\rho} u_0^{\sigma} \end{split}$$

$$\frac{D^2 z_2^{\alpha}}{d\tau^2} = f_2^{\alpha} + \frac{1}{2} R^{\alpha}{}_{\mu\beta\nu;\gamma} (z_1^{\mu} u_0^{\beta} z_1^{\nu} u_0^{\gamma} - u_0^{\mu} z_1^{\beta} u_0^{\nu} z_1^{\gamma}) - R^{\alpha}{}_{\mu\beta\nu} (u_0^{\mu} z_2^{\beta} u_0^{\nu} + 2\dot{z}_1^{\mu} z_1^{\beta} u_0^{\nu})$$

Outline

1 Introduction

- 2 General approach: matched asymptotic expansions
- 3 Equation of motion
- 4 Solving the EFE globally: puncture scheme
- 5 Progress toward numerical implementation

Effective interior metric

From self-field to singular field

- $h^{\rm S}_{\mu
 u}$ and $h^{\rm R}_{\mu
 u}$ derived only in buffer region
- simply extend them to all r > 0 (and r = 0, for $h_{\mu\nu}^{\rm R}$)
- does not change field in buffer region or beyond

Effective interior metric

From self-field to singular field

- $h^{\rm S}_{\mu
 u}$ and $h^{\rm R}_{\mu
 u}$ derived only in buffer region
- simply extend them to all r > 0 (and r = 0, for $h_{\mu\nu}^{\rm R}$)
- does not change field in buffer region or beyond

Effective interior metric

From self-field to singular field

- $h^{\rm S}_{\mu
 u}$ and $h^{\rm R}_{\mu
 u}$ derived only in buffer region
- simply extend them to all r > 0 (and r = 0, for $h_{\mu\nu}^{\rm R}$)
- does not change field in buffer region or beyond

Obtaining global solution

Puncture/effective source scheme

 \bullet define $h_{\mu\nu}^{\mathcal{P}}$ as small-r expansion of $h_{\mu\nu}^{\mathrm{S}}$ truncated at finite order in r

• define
$$h_{\mu\nu}^{\mathcal{R}} = h_{\mu\nu} - h_{\mu\nu}^{\mathcal{P}} \simeq h_{\mu\nu}^{\mathrm{R}}$$

The point...

• to calculate effective metric "inside" body and full metric everywhere else, all you need is $h^{\rm S}_{\mu\nu}$ found in buffer region

Obtaining global solution

Puncture/effective source scheme

 \bullet define $h_{\mu\nu}^{\mathcal{P}}$ as small-r expansion of $h_{\mu\nu}^{\mathrm{S}}$ truncated at finite order in r

• define
$$h_{\mu\nu}^{\mathcal{R}} = h_{\mu\nu} - h_{\mu\nu}^{\mathcal{P}} \simeq h_{\mu\nu}^{\mathrm{R}}$$

The point...

• to calculate effective metric "inside" body and full metric everywhere else, all you need is $h_{\mu\nu}^{\rm S}$ found in buffer region

More on puncturing

A note on singularities

- derivations of self-force from matched expansions yield an expression for the force in terms of a manifestly finite field outside the object
- we don't begin with an infinity and subtract an infinity
 —we write a known finite field as the difference between two known
 divergent fields

Self-consistent puncture scheme

Let Γ be worldtube around object

and
$$h_{\mu\nu}^{\mathcal{R}(n)} = \begin{cases} h_{\mu\nu}^{(n)} & \text{outside } \Gamma \\ h_{\mu\nu}^{(n)} - h_{\mu\nu}^{\mathcal{P}(n)} & \text{inside } \Gamma \end{cases}$$

Simultaneously solve coupled system

$$\begin{split} \Box h_{\mu\nu}^{\mathcal{R}(1)} &= \begin{cases} 0 & \text{outside } \Gamma \\ -\Box h_{\mu\nu}^{\mathcal{P}(1)} & \text{inside } \Gamma \end{cases} \\ \Box h_{\mu\nu}^{\mathcal{R}(2)} &= \begin{cases} -2\delta^2 R_{\mu\nu}[h^{(1)}] & \text{outside } \Gamma \\ -2\delta^2 R_{\mu\nu}[h^{(1)}] - \Box h_{\mu\nu}^{\mathcal{P}(2)} & \text{inside } \Gamma \end{cases} \\ \frac{D^2 z^{\mu}}{d\tau^2} &= \frac{1}{2} \left(g^{\mu\nu} + u^{\mu} u^{\nu} \right) \left(g_{\nu}{}^{\rho} - h_{\nu}^{\mathcal{R}\rho} \right) \left(h_{\sigma\lambda;\rho}^{\mathcal{R}} - 2h_{\rho\sigma;\lambda}^{\mathcal{R}} \right) u^{\sigma} u^{\lambda}, \end{split}$$

- $h_{\mu\nu}^{\mathcal{P}(2)}$ known analytically in Lorenz gauge [Pound '10, '12]
- puncture moves on z^{μ}

Gralla-Wald-type puncture scheme

Solve sequence of equations

$$\begin{array}{l} \begin{array}{l} \frac{D^{2}z_{0}^{\mu}}{d\tau^{2}} = 0 \\ \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \frac{D^{2}z_{0}^{\mu}}{d\tau^{2}} = 0 \\ \\ \end{array} \\ \begin{array}{l} \frac{D^{2}z_{1}^{\mu}}{d\tau^{2}} = R^{\mu}{}_{\nu\rho\sigma}u_{0}^{\nu}u_{0}^{\rho}z_{1}^{\sigma} - \frac{1}{2}m(g^{\mu\nu} + u_{0}^{\mu}u_{0}^{\nu})(2h_{\rho\nu;\sigma}^{\mathcal{R}(1)} - h_{\rho\sigma;\nu}^{\mathcal{R}(1)})u_{0}^{\rho}u_{0}^{\sigma} \\ \\ \end{array} \\ \begin{array}{l} \frac{D^{2}z_{1}^{\mu}}{d\tau^{2}} = R^{\mu}{}_{\nu\rho\sigma}u_{0}^{\nu}u_{0}^{\rho}z_{1}^{\sigma} - \frac{1}{2}m(g^{\mu\nu} + u_{0}^{\mu}u_{0}^{\nu})(2h_{\rho\nu;\sigma}^{\mathcal{R}(1)} - h_{\rho\sigma;\nu}^{\mathcal{R}(1)})u_{0}^{\rho}u_{0}^{\sigma} \\ \\ \end{array} \\ \begin{array}{l} \frac{D^{2}z_{1}^{\alpha}}{d\tau^{2}} = \left\{ -2\delta^{2}R_{\mu\nu}[h^{(1)}] & \text{outside }\Gamma_{0} \\ -2\delta^{2}R_{\mu\nu}[h^{(1)}] - \Box h_{\mu\nu}^{\mathcal{P}(2)} & \text{inside }\Gamma_{0} \end{array} \right. \\ \\ \end{array} \\ \begin{array}{l} \frac{D^{2}z_{2}^{\alpha}}{d\tau^{2}} = f_{2}^{\alpha} + R \text{ and } \nabla R \text{ terms} \end{array} \end{array}$$

- $h_{\mu\nu}^{\mathcal{P}(2)}$ known analytically in Lorenz gauge [Pound '10,'12] and 'P-smooth' gauges [Gralla '12]
- puncture moves on z_0^{μ}

Outline

1 Introduction

- 2 General approach: matched asymptotic expansions
- 3 Equation of motion
- ④ Solving the EFE globally: puncture scheme
- 5 Progress toward numerical implementation

The two necessary ingredients

1. Method of solving EFE numerically

- puncture/effective-source scheme [Detweiler '12, Pound '12, Gralla '12]
- puncture known explicitly in Lorenz gauge [Pound '10, '12] and 'P-smooth' gauges [Gralla '12]

2. Equation of motion & definition of worldline

- self-consistent formulation in Lorenz gauge [Pound '12]
- Gralla-Wald-type formulation in 'P-smooth' gauges [Gralla '12] and Lorenz gauge [Pound '13]
- in 'Fermi' gauge (though w/o clear definition of worldline) [Rosenthal '06]

Transforming to a more practical puncture

Punctures in Lorenz and 'P-smooth' gauges are written in local coordinates (t,x^a) centered on z^μ or z_0^μ

• impractical for numerical calculations in global coordinates

From local coords to covariant expansion

- use puncture in Fermi coordinates
- write tensor in index-free notation

$$\begin{split} h^{\mathcal{P}}(x) &= h^{\mathcal{P}}_{tt}(t,x^{i}) dt dt \\ &+ 2h^{\mathcal{P}}_{ta}(t,x^{i}) dt dx' \\ &+ h^{\mathcal{P}}_{ab}(t,x^{i}) dx^{a} dx \end{split}$$

• express in covariant quantities:

•
$$t \to \bar{x}$$

• $x^i \to -e^i_{\bar{\alpha}} \nabla^{\bar{\alpha}} \sigma(x, \bar{x})$

• $dt, \ dx^a
ightarrow {
m combinations}$ of $\sigma, \ u^{ar lpha}, \ e^a_{ar lpha}$

b

A practical puncture

From covariant expansion to coordinate expansion

• Expand covariant quantities in coordinate differences $\delta x^{\alpha} = x^{\alpha} - x^{\alpha'}$

•
$$\sigma^{\alpha'} = -\delta x^{\alpha} + O(\delta x)^2$$

• $g^{\alpha'}_{\beta} = \delta^{\alpha'}_{\beta} + O(\delta x)$

- obtain puncture in, e.g., Schwarzschild or Boyer-Lindquist coordinates
- in principle, second-order puncture scheme (self-consistent or Gralla-Wald type) can be immediately implemented in time domain

Obstacle to implementation

Even at first order, puncture scheme in time domain suffers from unresolved problem of growing gauge modes

Second-order puncture scheme in frequency domain

Problem tractable in frequency domain

• second-order conservative effects on circular orbits

- use Gralla-Wald-type puncture scheme
- conservative shift in position is simply shift in radius
- can calculate short-term effects
 - $h^R_{\mu\nu} u^\mu u^\nu$
 - z_2^{μ} , second-order shift in position
 - EOB parameters
- calculation underway w/ Barack, Warburton, Wardell

Conclusion

Benefits of second order

- necessary to model inspiral
- complements and advances PN/NR/EOB

Results

- second-order puncture
- second-order equation of motion

Prospects

- time domain: major obstacle at first order
- frequency domain: calculations of short-term effects should soon be achieved

Longer-term goals

self-consistent evolution or good alternative to it for inspiral

$h^{(1)}h^{(1)}$ terms in $h^{\mathrm{S}(2)}$, Fermi coordinates

$$\begin{split} \bar{h}_{(2)}^{Stt} &= \frac{3m^2}{r^2} - \frac{m}{r} \bar{h}_{(1)}^{\mathrm{R}ij} \hat{n}_{ij} - m \left(\frac{11}{5} \bar{h}_{(1)a,b}^{\mathrm{R}b} + \frac{1}{10} \bar{h}_{(1)b,a}^{\mathrm{R}b} + \bar{h}_{(1)a,t}^{\mathrm{R}t} - \frac{3}{2} \bar{h}_{(1),a}^{\mathrm{R}tt} \right) n^a \\ &- \frac{7}{3} m^2 \mathcal{E}^{ab} \hat{n}_{ab} - \frac{1}{2} m \bar{h}_{(1)}^{\mathrm{R}ab,c} \hat{n}_{abc} \\ &+ r \left[\frac{1}{270} m \left(-252 \bar{h}_{(1),ab}^{\mathrm{R}ab} + 84 \bar{h}_{(1)b}^{\mathrm{R}b} \right)^a - 268 \mathcal{E}^{ab} \bar{h}_{(1)ab}^{\mathrm{R}} + 630 \bar{h}_{(1),bt}^{\mathrm{R}tb} \\ &- 15 \bar{h}_{(1)b,tt}^{\mathrm{R}b} + 675 \bar{h}_{(1),tt}^{\mathrm{R}tt} \right) + \frac{23}{9} m \mathcal{E}^{ab} \bar{h}_{(1)b}^{\mathrm{R}c} \hat{n}_{ac} + \frac{5}{9} m \mathcal{B}^{ac} \epsilon_{bcd} \bar{h}_{(1)}^{\mathrm{R}tb} \hat{n}_{a}^{d} \\ &+ \frac{1}{72} m \left(108 \bar{h}_{(1)}^{\mathrm{R}tt,ab} + \mathcal{E}^{ab} \left(96 \bar{h}_{(1)}^{\mathrm{R}tt} - 76 \bar{h}_{(1)c}^{\mathrm{R}c} \right) \right) \hat{n}_{ab} \\ &+ \frac{1}{42} m \left(26 \bar{h}_{(1)ab}^{\mathrm{R}}, c - 78 \bar{h}_{(1)b,ac}^{\mathrm{R}c} - 9 \bar{h}_{(1)c,ba}^{\mathrm{R}c} - 21 \bar{h}_{(1)b,at}^{\mathrm{R}t} - 7 \bar{h}_{(1)ab,tt}^{\mathrm{R}} \right) \hat{n}^{at} \\ &- \frac{29}{20} m^2 \mathcal{E}^{abc} \hat{n}_{abc} + \frac{1}{6} m \left(-2 \bar{h}_{(1),cd}^{\mathrm{R}ab} + 7 \mathcal{E}^{ba} \bar{h}_{(1)}^{\mathrm{R}cd} \right) \hat{n}_{abcd} \right] + O(r^2) \end{split}$$

Return

$h^{\mathrm{S}(1)}h^{\mathrm{S}(1)}$ terms, covariant puncture

$$\begin{split} h_{\alpha\beta}^{\mathcal{P}(2)} &= \frac{m^2 g_{\mu}^{\alpha'} g_{\nu}^{\beta'}}{\mathbf{s}^4} \left(5 \mathbf{s}^2 g_{\alpha'\beta'} - 14 \mathbf{r} \sigma_{(\alpha'} u_{\beta'}) - 7 \mathbf{r}^2 u_{\alpha'} u_{\beta'} + 3 \mathbf{s}^2 u_{\alpha'} u_{\beta'} - 7 \sigma_{\alpha'} \sigma_{\beta'} \right) \\ &+ \frac{m^2 g_{\mu}^{\alpha'} g_{\nu}^{\beta'}}{150 \mathbf{s}^6} \left[10 \mathbf{s}^4 R_{\alpha'\sigma\beta'\sigma} + 20 \mathbf{r} \mathbf{s}^4 R_{(\alpha'|u|\beta')\sigma} + \mathbf{s}^4 (10 \mathbf{r}^2 + 52 \mathbf{s}^2) R_{\alpha' u\beta' u} \right. \\ &- 350 \mathbf{r} \mathbf{s}^2 \sigma_{(\alpha'} R_{\beta')\sigma u\sigma} - 350 \mathbf{r}^2 \mathbf{s}^2 u_{(\alpha'} R_{\beta')\sigma u\sigma} + 170 \mathbf{s}^4 u_{(\alpha'} R_{\beta')\sigma u\sigma} \\ &+ 700 \mathbf{r}^2 \mathbf{s}^2 \sigma_{(\alpha'} R_{\beta')u\sigma u} - 620 \mathbf{r} \mathbf{s}^4 u_{(\alpha'} R_{\beta')u\sigma u} + 700 \mathbf{r}^3 \mathbf{s}^2 u_{(\alpha'} R_{\beta')u\sigma u} \\ &+ 1120 R_{u\sigma u\sigma} \mathbf{r} \mathbf{s}^2 \sigma_{(\alpha'} u_{\beta'}) + 1060 R_{u\sigma u\sigma} \mathbf{r}^2 \mathbf{s}^2 u_{\alpha'} u_{\beta'} - 700 R_{u\sigma u\sigma} \mathbf{r}^2 \sigma_{\alpha'} \sigma_{\beta'} \\ &- 1400 R_{u\sigma u\sigma} \mathbf{r}^3 \sigma_{(\alpha'} u_{\beta'}) - 700 R_{u\sigma u\sigma} \mathbf{r}^4 u_{\alpha'} u_{\beta'} + 210 R_{u\sigma u\sigma} \mathbf{s}^2 \sigma_{\alpha'} \sigma_{\beta'} \\ &+ 120 R_{u\sigma u\sigma} \mathbf{s}^4 u_{\alpha'} u_{\beta'} + g_{\alpha'\beta'} \left(250 \mathbf{r}^2 \mathbf{s}^2 + 10 \mathbf{s}^4 \right) R_{u\sigma u\sigma} \right] \\ &- \frac{16}{15} m^2 \ln(\mathbf{s}) g_{\mu}^{\alpha'} g_{\nu'}^{\beta'} R_{\alpha' u\beta' u} \\ &+ \text{order } \sqrt{\sigma} \text{ terms} \end{split}$$

$h^{\mathrm{S}(1)}h^{\mathrm{S}(1)}$ terms, circular orbits in Schwarzschild coordinates

$$\begin{split} h_{tt}^{\mathcal{P}(2)} &= \frac{m^2 \left[(3E^2 - 5)r_0 + 10M \right]}{\rho^2 r_0} - \frac{28\delta Q^2 E^4 m^2 r_0^6 \Omega^2}{\rho^4 r_0^2 f_0^2} \\ &- \frac{\delta r m^2}{\rho^4 r_0^4 f_0^3} \left\{ 8\delta Q^2 E^2 r_0^5 \Omega^2 \left[(20 - 13E^2) M r_0 + 5(2E^2 - 1)r_0^2 - 20M^2 \right] \right. \\ &+ r_0 f_0 \left[(3E^2 - 5)r_0 + 10M \right] \left(16\delta Q^2 M^2 r_0 - \delta r^2 M + \delta \theta^2 r_0^3 f_0^2 \right. \\ &- 16\delta Q^2 M r_0^2 + 4\delta Q^2 r_0^3 \right) \right\} + \frac{2\delta r m^2 M \left[(3E^2 - 5)r_0 + 10M \right]}{\rho^2 r_0^3 f_0} \\ &+ \frac{56\delta Q^2 \delta r E^4 m^2 r_0^6 \Omega^2}{\rho^6 r_0^4 f_0^4} \left\{ r_0^3 \left[\delta \theta^2 + \delta Q^2 (8E^2 r_0^2 \Omega^2 + 4) \right] \right. \\ &+ 4M^2 r_0 (\delta \theta^2 + 4\delta Q^2) - M \left[\delta r^2 + 4r_0^2 (\delta \theta^2 + 4\delta Q^2) \right] \right\} \\ &+ \text{order} \left(\delta x^\alpha \right)^0 \text{ terms} + \text{order} \left. \delta x^\alpha \text{ terms} \end{split}$$

Adam Pound Second-order self-force: results and prospects