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Intro Method Motion Field Prospects

Why second order?

Tracking an inspiral
inspiral occurs very slowly, on radiation-reaction time trr ∼ 1/m
neglecting second-order self-force leads to error in acceleration
δaµ ∼ m2

⇒ error in position δzµ ∼ m2t2

⇒ after radiation-reaction time trr ∼ 1/m, error δzµ ∼ 1
∴ accurately describing orbital evolution requires second-order force

Adam Pound Second-order self-force: results and prospects



Intro Method Motion Field Prospects

Why second order?

Tracking an inspiral
inspiral occurs very slowly, on radiation-reaction time trr ∼ 1/m
neglecting second-order self-force leads to error in acceleration
δaµ ∼ m2

⇒ error in position δzµ ∼ m2t2

⇒ after radiation-reaction time trr ∼ 1/m, error δzµ ∼ 1
∴ accurately describing orbital evolution requires second-order force

Adam Pound Second-order self-force: results and prospects



Intro Method Motion Field Prospects

More reasons for second order

Interfacing between models
establish benchmarks for
m � M limit of PN and
NR
fix high-order PN
parameters
fix EOB parameters

Modeling IMRIs and similar-mass binaries
self-force has surprisingly large domain of validity [Le Tiec et al]
should be highly accurate model for IMRIs
potentially accurate even for similar-mass binaries

Adam Pound Second-order self-force: results and prospects
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What’s required for a second-order approximation scheme?

The physical problem
small object creates perturbation εh(1)

αβ + ε2h(2)
αβ + O(ε3) of external

background gαβ
ε counts powers of object’s mass and size
must solve Einstein equations

δGαβ [h(1)] = 8πT (1)
αβ

δGαβ [h(2)] = 8πT (2)
αβ − δ

2Gαβ [h(1)]

where δ2Gαβ [h(1)] ∼ (∇h(1))2 + h(1)∇∇h(1)

Two analytical ingredients needed for solution
1 concrete method of solving EFE for h(n)

αβ

2 self-force in terms of h(n)
αβ

Adam Pound Second-order self-force: results and prospects



Intro Method Motion Field Prospects

Apparent obstacles

Solving the EFE: failure of point particle model
particle in full spacetime: Tµν ∼ m δ3(xa−za)√

g+h

⇒ T (2) ∼ mhδ3(xa − za) ∼ m2 δ
3(xa − za)
xa − za

also, second-order Einstein tensor

δ2G[h(1)] ∼ (∂h(1))2 ∼ 1/(xa − za)4

⇒ seemingly no distributional meaning

Deriving the self-force: how to define position?
the mass m must be in some way extended
how do we pick a “good” representative worldline?
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Matched asymptotic expansions

in outer region, expand
around external background
in inner region, expand
around background of small
object
in buffer region,
m � r � R, both
expansions valid

Adam Pound Second-order self-force: results and prospects
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Inner expansion

Zoom in on object
in inner region, use scaled coords r̃ ∼ r/ε to keep size of object
fixed, send other distances to infinity as ε→ 0
unperturbed object defines background spacetime gIµν

buffer region at asymptotic infinity r � m
⇒ multipole moments of gIµν defined there

Adam Pound Second-order self-force: results and prospects
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Outer expansion: Gralla-Wald type [’08]

Expanded worldline
expand metric in Taylor series
gµν(x, ε) = gαβ(x) + εh1

αβ(x) + ε2h2
αβ(x) + O(ε3)

expand worldline in Taylor series
zµ(τ, ε) = zµ0 (τ) + εzµ1 (τ) + ε2zµ2 (τ) + O(ε3)
zµ0 : remnant of object at ε = 0
zµn : deviation vectors on zµ0

Limitation
valid only on timescales t ∼ 1; much shorter than an inspiral
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Outer expansion: self-consistent [Pound ’10]

Unexpanded worldline
rather than finding deviation from zµ0 , seek a worldline zµ(τ, ε) that
faithfully tracks body’s bulk motion
assume generalized expansion of form

gµν(x, ε) = gµν(x) + εh(1)
µν (x; zα) + ε2h(2)

µν (x; zα) + O(ε3)

Advantage
potentially accurate on long timescales
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Solving the EFE in the buffer region

Expansion of h(n)
µν for small r

adopt local coordinates centered on a worldline zµ (or zµ0 ), expand
for small r
inner expansion must not have negative powers of ε
⇒ terms like εn

rn+1 = 1
εr̃n+1 not allowed in εnh(n)

µν

∴ h(n)
µν = 1

rn h(n,−n)
µν + r−n+1h(n,−n+1)

µν + r−n+2h(n,−n+2)
µν + . . .

Information from inner expansion
1/r̃n terms arise from large-r̃ expansion of gIµν

⇒ h(n,−n)
µν is determined by multipole moments of gIµν
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Form of solution in buffer region (in Lorenz gauge)

What appears in the solution?
solve EFE in Lorenz gauge order by order in r
expand each h(n,p)

µν in spherical harmonics
given a worldline, the solution at all orders is fully characterized by

1 body’s multipole moments (and corrections thereto): ∼ Y`m

r`+1

2 smooth solutions to vacuum wave equation: ∼ r`Y `m

everything else made of (linear or nonlinear) combinations of the
above

Self-field and regular field
multipole moments define hS(n)

µν ; interpret as bound field of body
smooth homogeneous solutions define hR(n)

µν ; free radiation,
determined by global boundary conditions
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First- and second-order solutions in buffer region

First order
h(1)
µν = hS(1)

µν + hR(1)
µν

self-field hS(1)
µν ∼ 1/r + O(r0) defined by ADM mass m of gIµν

hR(1)
µν is undetermined homogenous solution smooth at r = 0

evolution equations: ṁ = 0 and aµ(0) = 0 (aµ = aµ(0) + εaµ(1) + . . .)

Second order
h(2)
µν = hS(2)

µν + hR(2)
µν

hS(2)
µν ∼ 1/r2 + O(1/r) defined by mhR(1)

µν and
1 monopole correction δmµν

2 mass dipole Mµ of gIµν
3 spin dipole Sµ of gIµν

evolution equations: Ṡµ = 0, ˙δmµν = . . ., and M̈µ = . . .

Go to puncture
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Position at first order: Gralla-Wald definition

Reminder: mass dipole
corresponds to displacement of center of mass from origin of coordinates

work in coordinates
centered on zµ0
calculate mass
dipole Mµ of inner
background gIµν

first-order correction
due to self-force:

mzµ1 = Mµ

Adam Pound Second-order self-force: results and prospects
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Position at first order: self-consistent definition

Mass dipole about zµ

We want to find worldline zµ for which Mµ = 0

work in coordinates
centered on
unspecified zµ

calculate mass
dipole Mµ of inner
background gIµν

first-order
acceleration of zµ:
whatever ensures
Mµ ≡ 0

Adam Pound Second-order self-force: results and prospects
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Proceeding to second order: mass-centered gauges

Problem
mass dipole moment defined for asymptotically flat spacetimes
beyond zeroth order, inner expansion is not asymptotically flat

Solution
find gauge in which field is manifestly mass-centered on zµ0 (or zµ)
define position in other gauges by referring to transformation to that
mass-centered gauge

Adam Pound Second-order self-force: results and prospects
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Position at second order: Gralla’s definition [2012]

Gauge in a Gralla-Wald-type expansion
On short timescales, position relative to zµ0 is pure gauge

start in gauge
mass-centered on zµ0
⇒ zµ1 = zµ2 = 0
under a small coordinate
transformation, the
worldline zµ transforms just
as coordinates do
First order:

zµ1 = ξµ1 |z0

Second order:
zµ2 = ξµ2 |z0 + ξν1∂νξ

µ
1 |z0
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Position at second order: self-consistent [Pound ’12]

Gauge in a self-consistet expansion
Over a radiation-reaction time, position relative to zµ0 is not pure gauge

start in gauge
mass-centered on zµ

demand that
transformation to
practical (e.g., Lorenz)
gauge does not move zµ

i.e., insist
lim
r→0

∫
ξa

(n)dΩ = 0

ensures worldline in the
two gauges is the same
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Construction of solution in mass-centered “rest gauge”

Start with a particular inner expansion
specialize to non-spinning gIµν

adopt metric of tidally perturbed Schwarzschild black hole
metric is mass-centered (e.g., δMµ = 0)
—also in a “rest gauge”: object centered on non-accelerating origin

Generalize the solution
generalize to any (approximately non-spinning) compact object;
i.e., remove boundary conditions specific to BH

Expand in buffer region
expand at asymptotic infinity (large r̃) and switch to unscaled r

Adam Pound Second-order self-force: results and prospects
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Transforming from rest gauge to Lorenz gauge

Comparison of gauges
metric in “rest gauge”:

gtt ∼
m2

r2 + m
r + r0(−1) + r2e1(m/r)Ẽq + O(r3)

metric in Lorenz gauge in Fermi coords centered on zµ:

gtt ∼
m2

r2 + (m + mhR)
r + r0(−1 + hR + more)

+ r(ai + ∂hR + more) + r2(Eq + ∂∂hR + more) + O(r3)

Gauge transformation between them
For a self-consistent solution, seek a unique gauge vector εξµ(1) + ε2ξµ(2)
that preserves the position of the worldline

Adam Pound Second-order self-force: results and prospects
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Self-consistent equation of motion in Lorenz gauge

D2zµ

dτ2 = 1
2 (gµν + uµuν)

(
gνρ − hR

ν
ρ
) (

hR
σλ;ρ − 2hR

ρσ;λ
)

uσuλ + O(ε3)

here aµ = aµ(0) + εaµ(1) + ε2aµ(2) + . . .

and hR
µν = εhR(1)

µν + ε2hR(2)
µν

Generalized equivalence principle
zµ satisfies geodesic equation in gµν + hR

µν

recall: here gµν + hR
µν is a “physical” field in the sense of satisfying

vacuum EFE
extends results of Detweiler-Whiting to second order
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Gralla-Wald-type equation of motion in Lorenz gauge

Covariant expansion of worldline
family of worldlines zµ(τ, ε)
tangent vectors: uµ = dzµ

dτ , ξµ = dzµ
dε

first deviation: zµ1 = ξµ|z0

second deviation: zµ2 = 1
2

Dξµ
dε |z0

D2zµ0
dτ2 = 0

D2zµ1
dτ2 = Rµ

νρσuν0 uρ0zσ1 − 1
2 m(gµν + uµ0 uν0 )(2hR(1)

ρν;σ − hR(1)
ρσ;ν )uρ0uσ0

D2zα2
dτ2 = f α2 + 1

2 Rα
µβν;γ(zµ1 uβ0 zν1 uγ0 − uµ0 zβ1 uν0 zγ1 )

− Rα
µβν(uµ0 zβ2 uν0 + 2żµ1 zβ1 uν0 )

Adam Pound Second-order self-force: results and prospects
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Gralla-Wald-type equation of motion in Lorenz gauge

Covariant expansion of worldline
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µβν;γ(zµ1 uβ0 zν1 uγ0 − uµ0 zβ1 uν0 zγ1 )

− Rα
µβν(uµ0 zβ2 uν0 + 2żµ1 zβ1 uν0 )

f µ2 = 1
2Pµν

0

(
hR(2)
σλ;ρ − 2hR(2)

ρσ;λ

)
uσ0 uλ0 − Pµν

0 hR(1)
ν

ρ
(

hR(1)
σλ;ρ − 2hR(1)

ρσ;λ

)
uσ0 uλ0

+
(

hR(1)
σλ;ν − 2hR(1)

νσ;λ

) [
(żµ1 uν0 + uµ0 żν1 ) uσ0 uλ + Pµν

0
(
żσ1 uλ0 + uσ0 żλ1

)]
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f µ2 = 1
2Pµν

0

(
hR(2)
σλ;ρ − 2hR(2)

ρσ;λ

)
uσ0 uλ0 − Pµν

0 hR(1)
ν

ρ
(

hR(1)
σλ;ρ − 2hR(1)

ρσ;λ

)
uσ0 uλ0

+
(

hR(1)
σλ;ν − 2hR(1)

νσ;λ

) [
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Effective interior metric

From self-field to singular field
hS
µν and hR

µν derived only in buffer region
simply extend them to all r > 0 (and r = 0, for hR

µν)
does not change field in buffer region or beyond
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Obtaining global solution

Puncture/effective source scheme
define hPµν as small-r expansion of hS

µν truncated at finite order in r
define hRµν = hµν − hPµν ' hR

µν

The point...
to calculate effective metric “inside” body and full metric
everywhere else, all you need is hS

µν found in buffer region
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More on puncturing

A note on singularities
derivations of self-force from matched expansions yield an expression
for the force in terms of a manifestly finite field outside the object
we don’t begin with an infinity and subtract an infinity
—we write a known finite field as the difference between two known
divergent fields

Adam Pound Second-order self-force: results and prospects
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Self-consistent puncture scheme
Let Γ be worldtube around object

and hR(n)
µν =

{
h(n)
µν outside Γ

h(n)
µν − hP(n)

µν inside Γ

Simultaneously solve coupled system

�hR(1)
µν =

{
0 outside Γ
−�hP(1)

µν inside Γ

�hR(2)
µν =

{
−2δ2Rµν [h(1)] outside Γ
−2δ2Rµν [h(1)]−�hP(2)

µν inside Γ
D2zµ

dτ2 = 1
2 (gµν + uµuν)

(
gνρ − hRν ρ

) (
hRσλ;ρ − 2hRρσ;λ

)
uσuλ,

hP(2)
µν known analytically in Lorenz gauge [Pound ’10, ’12]

puncture moves on zµ

Adam Pound Second-order self-force: results and prospects



Intro Method Motion Field Prospects

Gralla-Wald-type puncture scheme
Solve sequence of equations

1
D2zµ0
dτ2 = 0

2 �hR(1)
µν =

{
0 outside Γ0

−�hP(1)
µν inside Γ0

3
D2zµ1
dτ2 = Rµ

νρσuν0 uρ0zσ1 −
1
2m(gµν + uµ0 uν0 )(2hR(1)

ρν;σ − hR(1)
ρσ;ν )uρ0uσ0

4 �hR(2)
µν =

{
−2δ2Rµν [h(1)] outside Γ0

−2δ2Rµν [h(1)]−�hP(2)
µν inside Γ0

5
D2zα2
dτ2 = f α2 + R and ∇R terms

hP(2)
µν known analytically in Lorenz gauge [Pound ’10,’12] and

‘P-smooth’ gauges [Gralla ’12]
puncture moves on zµ0

Adam Pound Second-order self-force: results and prospects
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The two necessary ingredients

1. Method of solving EFE numerically
puncture/effective-source scheme [Detweiler ’12, Pound ’12,
Gralla ’12]
puncture known explicitly in Lorenz gauge [Pound ’10, ’12] and
‘P-smooth’ gauges [Gralla ’12]

2. Equation of motion & definition of worldline
self-consistent formulation in Lorenz gauge [Pound ’12]
Gralla-Wald-type formulation in ‘P-smooth’ gauges [Gralla ’12] and
Lorenz gauge [Pound ’13]
in ‘Fermi’ gauge (though w/o clear definition of worldline)
[Rosenthal ’06]

Adam Pound Second-order self-force: results and prospects
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Transforming to a more practical puncture

Punctures in Lorenz and ‘P-smooth’ gauges are written in local
coordinates (t, xa) centered on zµ or zµ0

impractical for numerical calculations in global coordinates

From local coords to covariant expansion
use puncture in Fermi coordinates
write tensor in index-free notation

hP(x) = hPtt (t, x i)dtdt
+ 2hPta(t, x i)dtdxa

+ hPab(t, x i)dxadxb

express in covariant quantities:
t → x̄
x i → −ei

ᾱ∇ᾱσ(x, x̄)
dt, dxa → combinations of σ, uᾱ, ea

ᾱ

Adam Pound Second-order self-force: results and prospects
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A practical puncture

From covariant expansion to coordinate expansion
Expand covariant quantities in coordinate differences
δxα = xα − xα′

σα
′

= −δxα + O(δx)2

gα
′

β = δα
′

β + O(δx)
obtain puncture in, e.g., Schwarzschild or Boyer-Lindquist
coordinates Go to puncture

in principle, second-order puncture scheme (self-consistent or
Gralla-Wald type) can be immediately implemented in time domain

Obstacle to implementation
Even at first order, puncture scheme in time domain suffers from
unresolved problem of growing gauge modes

Adam Pound Second-order self-force: results and prospects
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Second-order puncture scheme in frequency domain

Problem tractable in frequency domain
second-order conservative effects on circular orbits

use Gralla-Wald-type puncture
scheme
conservative shift in position is
simply shift in radius
can calculate short-term effects

hR
µνuµuν

zµ2 , second-order shift in position
EOB parameters

calculation underway w/ Barack,
Warburton, Wardell

Adam Pound Second-order self-force: results and prospects
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Conclusion

Benefits of second order
necessary to model inspiral
complements and advances PN/NR/EOB

Results
second-order puncture
second-order equation of motion

Prospects
time domain: major obstacle at first order
frequency domain: calculations of short-term effects should soon be
achieved

Longer-term goals
self-consistent evolution or good alternative to it for inspiral

Adam Pound Second-order self-force: results and prospects
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h(1)h(1) terms in hS(2), Fermi coordinates

h̄Stt
(2) = 3m2

r2 −
m
r h̄Rij

(1) n̂ij −m
(

11
5 h̄Rb

(1)a,b + 1
10 h̄Rb

(1)b,a + h̄Rt
(1)a,t − 3

2 h̄Rtt
(1),a

)
na

− 7
3 m2Eabn̂ab − 1

2 mh̄Rab,c
(1) n̂abc

+ r
[

1
270 m

(
−252h̄Rab

(1),ab + 84h̄Rb
(1)b

,a
a − 268Eabh̄R

(1)ab + 630h̄Rtb
(1),bt

− 15h̄Rb
(1)b,tt + 675h̄Rtt

(1),tt

)
+ 23

9 mEabh̄Rc
(1)bn̂ac + 5

9 mBacεbcd h̄Rtb
(1) n̂a

d

+ 1
72 m

(
108h̄Rtt,ab

(1) + Eab(96h̄Rtt
(1) − 76h̄Rc

(1)c
))

n̂ab

+ 1
42 m

(
26h̄R

(1)ab
,c

c − 78h̄Rc
(1)b,ac − 9h̄Rc

(1)c,ba − 21h̄Rt
(1)b,at − 7h̄R

(1)ab,tt

)
n̂ab

− 29
20 m2Eabcn̂abc + 1

6 m
(
−2h̄Rab

(1),cd + 7Ebah̄Rcd
(1)

)
n̂abcd

]
+ O(r2)
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Intro Method Motion Field Prospects

hS(1)hS(1) terms, covariant puncture

hP(2)
αβ =

m2gα′

µ gβ′

ν

s4

(
5s2gα′β′ − 14rσ(α′uβ′) − 7r2uα′uβ′ + 3s2uα′uβ′ − 7σα′σβ′

)
+

m2gα′

µ gβ′

ν

150s6

[
10s4Rα′σβ′σ + 20rs4R(α′|u|β′)σ + s4(10r2 + 52s2)Rα′uβ′u

− 350rs2σ(α′Rβ′)σuσ − 350r2s2u(α′Rβ′)σuσ + 170s4u(α′Rβ′)σuσ

+ 700r2s2σ(α′Rβ′)uσu − 620rs4u(α′Rβ′)uσu + 700r3s2u(α′Rβ′)uσu

+ 1120Ruσuσrs2σ(α′uβ′) + 1060Ruσuσr2s2uα′uβ′ − 700Ruσuσr2σα′σβ′

− 1400Ruσuσr3σ(α′uβ′) − 700Ruσuσr4uα′uβ′ + 210Ruσuσs2σα′σβ′

+120Ruσuσs4uα′uβ′ + gα′β′
(
250r2s2 + 10s4)Ruσuσ

]
− 16

15m2 ln(s)gα
′

µ gβ
′

ν Rα′uβ′u

+ order
√
σ terms
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Intro Method Motion Field Prospects

hS(1)hS(1) terms, circular orbits in Schwarzschild
coordinates

hP(2)
tt =

m2 [(3E2 − 5)r0 + 10M
]

ρ2r0
− 28δQ2E4m2r6

0 Ω2

ρ4r2
0 f 2

0

− δrm2

ρ4r4
0 f 3

0

{
8δQ2E2r5

0 Ω2 [(20− 13E2)Mr0 + 5(2E2 − 1)r2
0 − 20M 2]

+ r0f0
[
(3E2 − 5)r0 + 10M

] (
16δQ2M 2r0 − δr2M + δθ2r3

0 f 2
0

−16δQ2Mr2
0 + 4δQ2r3

0
)}

+
2δrm2M

[
(3E2 − 5)r0 + 10M

]
ρ2r3

0 f0

+ 56δQ2δrE4m2r6
0 Ω2

ρ6r4
0 f 4

0

{
r3

0
[
δθ2 + δQ2(8E2r2

0 Ω2 + 4)
]

+4M 2r0(δθ2 + 4δQ2)−M
[
δr2 + 4r2

0 (δθ2 + 4δQ2)
]}

+ order (δxα)0 terms + order δxα terms
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