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Intro

Why second order?

M é
gravitational
waves

Tracking an inspiral

@ inspiral occurs very slowly, on radiation-reaction time .- ~ 1/m

@ neglecting second-order self-force leads to error in acceleration
dat ~ m?
= error in position §z* ~ m2t?
= after radiation-reaction time t.. ~ 1/m, error dz* ~ 1

*. accurately describing orbital evolution requires second-order force
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Intro
More reasons for second order

A
Interfacing between models Post-
@ establish benchmarks for < || Newtonian
m < M limit of PN and 2 [ theory
NR e
o
o fix high-order PN Q
parameters Numerical Self-force
o fix EOB parameters Relativity
[ -

mass ratio M/m

Modeling IMRIs and similar-mass binaries

o self-force has surprisingly large domain of validity [Le Tiec et al]
@ should be highly accurate model for IMRIs

@ potentially accurate even for similar-mass binaries

Adam Pound Second-order self-force: results and prospects



Intro

What's required for a second-order approximation scheme?

The physical problem

@ small object creates perturbation eh(% + th((fﬁ) + O(€®) of external
background g,z

@ € counts powers of object's mass and size
@ must solve Einstein equations
1
§GaglhV] = 87T
§Gaglh®@] = 87T — 62 Gaplh V)]

where 62 Go5[hM] ~ (VEMW)2 + VYLD

Two analytical ingredients needed for solution

concrete method of solving EFE for h(g%)

self-force in terms of hgg
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Apparent obstacles

Solving the EFE: failure of point particle model

3 a a
e particle in full spacetime: T, ~ miei=z)
v gt+h
particle
83 (2% — 22
= T7® ~ mhé3(z®* — 2%) ~ m27( ) a
T¢ — 22 P T
@ also, second-order Einstein tensor 10— 0

52G[hY] ~ (812 ~ 1/ (2 — 22)*

= seemingly no distributional meaning

Deriving the self-force: how to define position?

@ the mass m must be in some way extended

@ how do we pick a “good” representative worldline?
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Method

Outline

e General approach: matched asymptotic expansions
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Matched asymptotic expansions

M
.
@ in outer region, expand
around external background m
@ in inner region, expand inner region
around background of small (r~m)
object buffer
@ in buffer region, region
m <L r <R, both external universe (1 ~ R)
expansions valid
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Method
Inner expansion

Zoom in on object

@ in inner region, use scaled coords 7 ~ /e to keep size of object
fixed, send other distances to infinity as ¢ — 0

@ unperturbed object defines background spacetime g7,

@ buffer region at asymptotic infinity r > m
= multipole moments of gy, defined there

diffeomorphism )
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Method

Outer expansion: Gralla-Wald type ['08]

Expanded worldline

@ expand metric in Taylor series

8 (%, €) = gap (@) + ehyg(z) + €13 5(z) + O(€%)
@ expand worldline in Taylor series

2 (1,¢) = (1) + e (1) + 24 (1) + O(e?)

@ z): remnant of object at e = 0

e z/: deviation vectors on z

@ valid only on timescales ¢ ~ 1; much shorter than an inspiral
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Outer expansion: self-consistent [Pound '10]

Unexpanded worldline

o rather than finding deviation from 2}, seek a worldline z#(7,€) that
faithfully tracks body's bulk motion

@ assume generalized expansion of form

guv(,€) = guu(z) + eh’(}u)(:c; 2%) + thfﬁ,) (z;2%) 4 O(€®)

time time

Mg

Advantage
@ potentially accurate on long timescales
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Method

Solving the EFE in buffer region

Expansion of h{") for small r

e adopt local coordinates centered on a worldline z* (or z}'), expand
for small r

@ inner expansion must not have negative powers of €

n

: € : (n)
- - n
= terms like s i not allowed in €™hy,

1
. p(n) — = p(n,—n) —n+1g(n,—n+1) —n+2p(n,—n+2)
,,hu’;_rnhu’; N h,j,“j e hl[,j A L

Information from inner expansion

@ 1/7™ terms arise from large-7 expansion of g,

= hff,ﬁ’*”) is determined by multipole moments of g;,,,
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Method

Form of solution in buffer region (in Lorenz gauge)

What appears in the solution?

@ solve EFE in Lorenz gauge order by order in r
(n,p)
ny

@ expand each h in spherical harmonics

e given a worldline, the solution at all orders is fully characterized by

o . £Lm
body’s multipole moments (and corrections thereto): ~ :QT

smooth solutions to vacuum wave equation: ~ rfytm

@ everything else made of (linear or nonlinear) combinations of the
above

Self-field and regular field

@ multipole moments define hﬁl(,"); interpret as bound field of body

@ smooth homogeneous solutions define h,%n); free radiation,
determined by global boundary conditions
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Method

First- and second-order solutions in buffer region

First order
o 1Y = KD 1 A

o self-field h,%l(,l) ~1/r+ O(r°) defined by ADM mass m of gy,

° hf},ﬁl) is undetermined homogenous solution smooth at r =0

@ evolution equations: 7 = 0 and aé‘o) =0 (a* = aé‘o) + eaﬁ) +...)

v

Second order
o 12 = 1D 1 3
° hﬁl(,z) ~1/r% 4+ O(1/r) defined by mh,lj,j(l) and
monopole correction dmy,

mass dipole M* of gr,..
spin dipole S* of gru.

@ evolution equations: Sk =0, 6'm,“, =...,and M+ = ...
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Motion

Outline

© Equation of motion
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Motion

Position at first order: Gralla-Wald definition

Reminder: mass dipole

corresponds to displacement of center of mass from origin of coordinates

o
t A <0 ,
. @ work in coordinates
2 d centered on 2}
.m buffer redion @ calculate mass
| o 9 dipole M* of inner
N background g7,
=9 o first-order correction
N due to self-force:
L mz' = M*
>
0 r
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Motion

Position at first order: self-consistent definition

Mass dipole about z*
We want to find worldline z# for which M* =0

o : :
A Z @ work in coordinates
centered on
unspecified z*

@ calculate mass
dipole M* of inner
background g7,

o first-order
acceleration of z*:
whatever ensures
M*F =0

0 r
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Motion
Proceeding to second order: mass-centered gauges

@ mass dipole moment defined for asymptotically flat spacetimes

@ beyond zeroth order, inner expansion is not asymptotically flat

Solution

e find gauge in which field is manifestly mass-centered on 2} (or z/)

@ define position in other gauges by referring to transformation to that
mass-centered gauge

v
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Motion

Position at second order: Gralla's definition [2012]

Gauge in a Gralla-Wald-type expansion

m

On short timescales, position relative to zj is pure gauge

0 r
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Motion

Position at second order: Gralla's definition [2012]

Gauge in a Gralla-Wald-type expansion

On short timescales, position relative to 2 is pure gauge
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Motion

Position at second order: Gralla's definition [2

Gauge in a Gralla-Wald-type expansion

On short timescales, position relative to 2 is pure gauge

@ start in gauge

N
2
tA 0 mass-centered on 2z}
=22'=2'=0
@ under a small coordinate
worldline z* transforms just
0

transformation, the
as coordinates do

o First order:

zf =&l

@ Second order:

> Zg :§g|20 +§1VaV£I£L|Zo
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Motion

Position at second order: Gralla's definition [2

Gauge in a Gralla-Wald-type expansion

On short timescales, position relative to 2 is pure gauge

5 @ start in gauge
tA 0 " mass-centered on z}
) =22'=2'=0
o i
Az @ under a small coordinate
m transformation, the
> worldline z# transforms just
i as coordinates do
~® o First order:
) B ¢l
;! 2 =&
&
, @ Second order:
B ep Ve e
0 7 z =&z T 7008 |2
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Motion

Position at second order: self-consistent [Pound '12]

Gauge in a self-consistet expansion

Over a radiation-reaction time, position relative to z) is not pure gauge

zA or @ start in gauge
mass-centered on z*
@ demand that
m transformation to
Azk practical (e.g., Lorenz)

gauge does not move z*
@ i.e., insist
m /5(“”) dQ2 =0

li

r—0
@ ensures worldline in the

two gauges is the same

0 r
Adam Pound Second-order self-force: results and prospects



Motion

Construction of solution in mass-centered “rest gauge”

@ specialize to non-spinning g7,
@ adopt metric of tidally perturbed Schwarzschild black hole
@ metric is mass-centered (e.g., I M* = 0)
—also in a “rest gauge”: object centered on non-accelerating origin

Generalize the solution

@ generalize to any (approximately non-spinning) compact object;
i.e., remove boundary conditions specific to BH

Expand in buffer region

@ expand at asymptotic infinity (large 7) and switch to unscaled r
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Motion

Transforming from rest gauge to Lorenz gauge

Comparison of gauges

@ metric in “rest gauge":

2 ~
git ~ % * % +r0(=1) + r¥es(m/r)ET + O(r")

@ metric in Lorenz gauge in Fermi coords centered on z*:

m? m + mh®
gt~ 5 + % + 70(=1 4 AR 4 more)

+ r(a; + OhR + more) + 2(£9 + 0OR® + more) + O(r?)

Gauge transformation between them

For a self-consistent solution, seek a unique gauge vector efé‘l) + 62£é‘2)
that preserves the position of the worldline
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Motion

Transforming from rest gauge to Lorenz gauge
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Motion

Self-consistent equation of motion in Lorenz gauge

DQ’Z# _ 1 Qv W, v P th hR 2hR [ 10} 3
dr2 _E(g +uu)(gu_u)(o>\;p_ pa;A)uu_'_ (6)

_ 2
@ here a“—aég)+ea€1)+e a(*;)+..‘

o and by}, = ehpst) + €2t

Generalized equivalence principle

o z* satisfies geodesic equation in g,, + h}j‘y

o recall: here g, + h}}l, is a “physical” field in the sense of satisfying
vacuum EFE

@ extends results of Detweiler-Whiting to second order
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Gralla-Wald-type equation of motion in Lorenz gauge

Covariant expansion of worldline

e family of worldlines z#(7, €)

o d2t oep o d2
e tangent vectors: ut = %, (M = &

o first deviation: 2}" = &#|,,
o 1o

@ second deviation: z, = 3 |20
2
Dz ~0
dr?
2
D22 RB*, ol ul 27 — Lm( uv+uuuu)(2hR( ) _ hR(l))upua
drz  VwpalloUoZ T 3G o ) Up Uo
D% ¢
2 _ o 1 po w, B v w B, v
= f2 + *R [3y.,y(zl Uy 21 UO Uy 21 U Zl)

dr?
— R® g0 (uff 22 uf + 221 2 uo)
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Gralla-Wald-type equation of motion in Lorenz gauge

Covariant expansion of worldline

e family of worldlines z#(7, €)

m W
@ tangent vectors: ut = 4= ¢n = 4=
o first deviation: 2}" = &#|,,

. 0w
o second deviation: zj = 1 25|

2
D z{f —0

dr?

DQZ{L 1 R(1) R(1)

dr2 = R#Vpaugung - im(gl“j + ugug)(zhpy;o - hpa;y)ugug

D2 1 8 B
dr2 I3+ 3R upuy (2 g 27 ug — uh 2y ug 2 )
— R0 (v 25w + 242 uf)
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Gralla-Wald-type equation of motion in Lorenz gauge

zH

1w (R R(2)\ . o v R(1 R(1)) . o
# = 5P (hi) — 205 2) wg ) — PERED (A0 — 200 ) g

+ (1) — 2m3R) [t + w22 w o + P () + g )]
@ second deviation: z5 = 57— |z J /] / /
2
D z{)‘ —0
dr?
2
D Z{L — R¥ uyungflm( HY P u)(th(l) 7hR(1)) P,
dT2 vpo Yy Yo <1 2 g Uy Ug pvio pov U Ug
D2z2a 1 B B
2 = 4 BR (A o — o)
— R® g (uh 2w + 2 4 )

Adam Pound Second-order self-force: results and prospects




Outline

e Solving the EFE globally: puncture scheme
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Effective interior metric

From self-field to singular field

o hij, and hY, derived only in buffer region
@ simply extend them to all 7 > 0 (and r = 0, for hll}l,)
@ does not change field in buffer region or beyond

y A 4

full metric g, "self field" hfw effective metric g, + h}fu
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Effective interior metric

From self-field to singular field

o hij, and hY, derived only in buffer region
@ simply extend them to all 7 > 0 (and r = 0, for hll}l,)
@ does not change field in buffer region or beyond

effective metric g, + hi,

full metric
8w singular field A5

pv
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Obtaining global solution

Puncture/effective source scheme

o define A" as small-r expansion of hﬁy truncated at finite order in r

(17

e PR — P o pR
o define h,;, = hy, — by, ~ hy,

out here, solve
§G 1] = —82GH [h%y)]

in here, solve —)0

5G] = —62GH (0] — G (Wi

@ to calculate effective metric “inside” body and full metric
everywhere else, all you need is hSV found in buffer region
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Field
More on puncturing

Actual fields Punctured version

[y |
[y |

A note on singularities

@ derivations of self-force from matched expansions yield an expression
for the force in terms of a manifestly finite field outside the object

@ we don't begin with an infinity and subtract an infinity
—we write a known finite field as the difference between two known
divergent fields
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Field
Self-consistent puncture scheme

Let I" be worldtube around object

(n) i
Ry [ HSE outside T’
and hul/ - {h;(,,?/) _ h]jy(n) inside '

Simultaneously solve coupled system

0 outside T’
OpRM) =
I thZZ,(l) inside I
KRG — —26%R,,, [hV] outside T
W) —262R,,, [hY] — Ok inside T
D2z 1 v ” o
dr? - 2 (g” + ufu ) (g”p o hZ%p) (hzfz)\;p - ZhZ%;)\) o UA’

° hfy@) known analytically in Lorenz gauge [Pound '10, '12]

@ puncture moves on z*
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Gralla-Wald-type puncture scheme

Solve sequence of equations

D2
dr2
0 outside I'g
Ol =
" —Or5"  inside T
D " v, p o " W, v R(1) _ 3R(1)
dr2 =R vpo Uy Up 21 — 5 ( +U Uo )(2hpua hpau)
@ ORRO — —202R,,, [AV)] outside Iy
M —262R,, [hV] — Ok inside T
D2 a
?Z; = f3* + R and VR terms

° hZf,,(Q) known analytically in Lorenz gauge [Pound '10,'12] and
‘P-smooth’ gauges [Gralla '12]

@ puncture moves on zy
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Prospects

Outline

© Progress toward numerical implementation
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Prospects
The two necessary ingredients

1. Method of solving EFE numerically

@ puncture/effective-source scheme [Detweiler '12, Pound '12,
Gralla '12]

@ puncture known explicitly in Lorenz gauge [Pound '10, '12] and
‘P-smooth’ gauges [Gralla '12]

2. Equation of motion & definition of worldline

o self-consistent formulation in Lorenz gauge [Pound '12]

o Gralla-Wald-type formulation in ‘P-smooth’ gauges [Gralla '12] and
Lorenz gauge [Pound '13]

e in ‘Fermi’ gauge (though w/o clear definition of worldline)
[Rosenthal '06]
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Prospects
Transforming to a more practical puncture

Punctures in Lorenz and ‘P-smooth’ gauges are written in local
coordinates (t,z®) centered on z* or 2

@ impractical for numerical calculations in global coordinates

From local coords to covariant expansion y

@ use puncture in Fermi coordinates

@ write tensor in index-free notation

hP (z) = hE (t, z")dtdt
+ 207 (t, o) dtdz® T = z(t)
+ AP (t, 27) dz® da®

@ express in covariant quantities:

o t—z
o z' = —e; Ve (z, )
o dt, dr® — combinations of o, u®, e2
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Prospects
A practical puncture

From covariant expansion to coordinate expansion

@ Expand covariant quantities in coordinate differences
6z = g% — g
o 0% = 5z + 0(dz)?
o g3 =65 + O(62)
@ obtain puncture in, e.g., Schwarzschild or Boyer-Lindquist
coordinates
@ in principle, second-order puncture scheme (self-consistent or
Gralla-Wald type) can be immediately implemented in time domain

Obstacle to implementation

Even at first order, puncture scheme in time domain suffers from
unresolved problem of growing gauge modes
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Prospects

Second-order puncture scheme in frequency domain

Problem tractable in frequency domain

@ second-order conservative effects on circular orbits

@ use Gralla-Wald-type puncture
scheme
@ conservative shift in position is
simply shift in radius
@ can calculate short-term effects
° hf,,u“u”
e 2z, second-order shift in position
o EOB parameters

o calculation underway w/ Barack,
Warburton, Wardell
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Prospects

Conclusion

Benefits of second order

@ necessary to model inspiral
e complements and advances PN/NR/EOB

v

Results

@ second-order puncture

@ second-order equation of motion

Prospects

@ time domain: major obstacle at first order

o frequency domain: calculations of short-term effects should soon be
achieved

Longer-term goals

@ self-consistent evolution or good alternative to it for inspiral
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Prospects

RYARD) terms in A5 Fermi coordinates

- 3m?
Stt __ Rij 117 TRt a
hey =5 = h(lf”w ( hiYa b+ 160000 + Bi5as — 3AGY )
7 m25abnab _ mhﬁ?b Cnabc

= [ziom( 252RE90,, + 84REY, . — 268ERE ,, + 630REL,,
— 15h(3 )y, + 675;—1%?,&) + FmE Sy Rac + §mB epcah(i) g
n %m(108h(1:§§t ab gab(QGhRH 76h(1 ))ﬁab
~ab

+ 4712m<26h(ri)ab,cc 78h(1)b ac 9Bg§c,ba - 2171{%1;,@ - 7,_7’5)ab,tt) n

—2 mZg(Lanabc + = m( Qhﬁabcd + 7(€bah )nabcd:| + O(T2)
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Prospects

RS BS(M) terms, covariant puncture

m2ga/ gf/

hfﬁ(f) = s+ (55290/5/ — ldro(qrugny — 7r2ua/uﬁf + 352ua/u,3/ — 7aa/05/)

m2gﬁ/ 95/

1506

- 350!’520'(0/]%5/)0”0 - 35OT2SQU(Q/R5/)UUU + 17054u(a’RB’)a‘uJ
+ 7OOF2S2O'(O/ Rﬁl)ugu — 62OFS4U(a/ R,@’)uau + 700!’352 U(a/ RB’)uau
+ 1120 Ry o150 (o0 Ugry + 1060 Rupuo S Uas tigr — TO0Ryouot 2000
— 1400Ru0—u0—r30(a/ ugry — 700war4ua/uﬁ/ + 210Ruau0520a’0ﬁ’

+120 Ruouos tiar upr + gorr (250r%s? 4 105%) Ruguo |

[1054R0¢/06/U + 20I’S4R(a/|u‘5/)ﬂ + 54(10r2 + 5252)Ra’uﬂ’u

16 a/ !
— BmZ In(s) g, gf Roupru

+ order /o terms
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Prospects

RSMBSM) terms, circular orbits in Schwarzschild

coordinates

WP _ m? [(3E% — 5)ro + 10M ]| _ 280QPErmA i

" p2ro P Tofo

§rm?
4 4f3
+ 1ofy [(BE* = 5)ro + 10M] (166 Q* M1y — 61> M + 60°r5 f
26rm? M [(3E? — 5)ro 4+ 10M
16 fo

{r [66% + 5 Q*(BE*r5Q* + 4)]

{86Q*E”rg0” [(20 — 13E?) Mry + 5(2E% — 1)r§ — 20M?]

—166Q*Mrg +45Q°r3) } +

568 Q*5rEAm?r§Q?
Porofy

+4M10(660% + 45 Q%) — M [077 + 413 (660% + 45Q%)]}

+ order (62%)° terms 4 order 52 terms
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