# Second-order self-force: results and prospects 

Adam Pound<br>University of Southampton

July 15, 2013

## Outline

(1) Introduction
(2) General approach: matched asymptotic expansions
(3) Equation of motion
(4) Solving the EFE globally: puncture scheme
(5) Progress toward numerical implementation

## Outline

(1) Introduction
(2) General approach: matched asymptotic expansions
(3) Equation of motion
(4) Solving the EFE globally: puncture scheme
(5) Progress toward numerical implementation

## Why second order?



## Tracking an inspiral

- inspiral occurs very slowly, on radiation-reaction time $t_{r r} \sim 1 / m$
- neglecting second-order self-force leads to error in acceleration $\delta a^{\mu} \sim m^{2}$
$\Rightarrow$ error in position $\delta z^{\mu} \sim m^{2} t^{2}$
$\Rightarrow$ after radiation-reaction time $t_{r r} \sim 1 / m$, error $\delta z^{\mu} \sim 1$
$\therefore$ accurately describing orbital evolution requires second-order force


## Why second order?



## Tracking an inspiral

- inspiral occurs very slowly, on radiation-reaction time $t_{r r} \sim 1 / m$
- neglecting second-order self-force leads to error in acceleration $\delta a^{\mu} \sim m^{2}$
$\Rightarrow$ error in position $\delta z^{\mu} \sim m^{2} t^{2}$
$\Rightarrow$ after radiation-reaction time $t_{r r} \sim 1 / m$, error $\delta z^{\mu} \sim 1$
$\therefore$ accurately describing orbital evolution requires second-order force


## More reasons for second order

## Interfacing between models

- establish benchmarks for $m \ll M$ limit of PN and NR
- fix high-order PN parameters
- fix EOB parameters



## Modeling IMRIs and similar-mass binaries

- self-force has surprisingly large domain of validity [Le Tiec et al]
- should be highly accurate model for IMRIs
- potentially accurate even for similar-mass binaries


## What's required for a second-order approximation scheme?

## The physical problem

- small object creates perturbation $\epsilon h_{\alpha \beta}^{(1)}+\epsilon^{2} h_{\alpha \beta}^{(2)}+O\left(\epsilon^{3}\right)$ of external background $g_{\alpha \beta}$
- $\epsilon$ counts powers of object's mass and size
- must solve Einstein equations

$$
\begin{aligned}
\delta G_{\alpha \beta}\left[h^{(1)}\right] & =8 \pi T_{\alpha \beta}^{(1)} \\
\delta G_{\alpha \beta}\left[h^{(2)}\right] & =8 \pi T_{\alpha \beta}^{(2)}-\delta^{2} G_{\alpha \beta}\left[h^{(1)}\right]
\end{aligned}
$$

where $\delta^{2} G_{\alpha \beta}\left[h^{(1)}\right] \sim\left(\nabla h^{(1)}\right)^{2}+h^{(1)} \nabla \nabla h^{(1)}$

## Two analytical ingredients needed for solution

1 concrete method of solving EFE for $h_{\alpha \beta}^{(n)}$
2 self-force in terms of $h_{\alpha \beta}^{(n)}$

## Apparent obstacles

## Solving the EFE: failure of point particle model

- particle in full spacetime: $T_{\mu \nu} \sim m \frac{\delta^{3}\left(x^{a}-z^{a}\right)}{\sqrt{g+h}}$

$$
\Rightarrow T^{(2)} \sim m h \delta^{3}\left(x^{a}-z^{a}\right) \sim m^{2} \frac{\delta^{3}\left(x^{a}-z^{a}\right)}{x^{a}-z^{a}}
$$

- also, second-order Einstein tensor
particle


$$
\delta^{2} G\left[h^{(1)}\right] \sim\left(\partial h^{(1)}\right)^{2} \sim 1 /\left(x^{a}-z^{a}\right)^{4}
$$

$\Rightarrow$ seemingly no distributional meaning

## Deriving the self-force: how to define position?

- the mass $m$ must be in some way extended
- how do we pick a "good" representative worldline?


## Outline



Introduction
(2) General approach: matched asymptotic expansions
(3) Equation of motion

4 Solving the EFE globally: puncture scheme
(5) Progress toward numerical implementation

## Matched asymptotic expansions



## Inner expansion

## Zoom in on object

- in inner region, use scaled coords $\tilde{r} \sim r / \epsilon$ to keep size of object fixed, send other distances to infinity as $\epsilon \rightarrow 0$
- unperturbed object defines background spacetime $g_{I \mu \nu}$
- buffer region at asymptotic infinity $r \gg m$
$\Rightarrow$ multipole moments of $g_{I \mu \nu}$ defined there



## Outer expansion: Gralla-Wald type ['08]

## Expanded worldline

- expand metric in Taylor series

$$
\mathrm{g}_{\mu \nu}(x, \epsilon)=g_{\alpha \beta}(x)+\epsilon h_{\alpha \beta}^{1}(x)+\epsilon^{2} h_{\alpha \beta}^{2}(x)+O\left(\epsilon^{3}\right)
$$

- expand worldline in Taylor series

$$
z^{\mu}(\tau, \epsilon)=z_{0}^{\mu}(\tau)+\epsilon z_{1}^{\mu}(\tau)+\epsilon^{2} z_{2}^{\mu}(\tau)+O\left(\epsilon^{3}\right)
$$

- $z_{0}^{\mu}$ : remnant of object at $\epsilon=0$
- $z_{n}^{\mu}$ : deviation vectors on $z_{0}^{\mu}$



## Limitation

- valid only on timescales $t \sim 1$; much shorter than an inspiral


## Outer expansion: self-consistent [Pound '10]

## Unexpanded worldline

- rather than finding deviation from $z_{0}^{\mu}$, seek a worldline $z^{\mu}(\tau, \epsilon)$ that faithfully tracks body's bulk motion
- assume generalized expansion of form

$$
\mathrm{g}_{\mu \nu}(x, \epsilon)=g_{\mu \nu}(x)+\epsilon h_{\mu \nu}^{(1)}\left(x ; z^{\alpha}\right)+\epsilon^{2} h_{\mu \nu}^{(2)}\left(x ; z^{\alpha}\right)+O\left(\epsilon^{3}\right)
$$



## Advantage

- potentially accurate on long timescales


## Solving the EFE in the buffer region

## Expansion of $h_{\mu \nu}^{(n)}$ for small $r$

- adopt local coordinates centered on a worldline $z^{\mu}$ (or $z_{0}^{\mu}$ ), expand for small $r$
- inner expansion must not have negative powers of $\epsilon$ $\Rightarrow$ terms like $\frac{\epsilon^{n}}{r^{n+1}}=\frac{1}{\epsilon \tilde{r}^{n+1}}$ not allowed in $\epsilon^{n} h_{\mu \nu}^{(n)}$
$\therefore h_{\mu \nu}^{(n)}=\frac{1}{r^{n}} h_{\mu \nu}^{(n,-n)}+r^{-n+1} h_{\mu \nu}^{(n,-n+1)}+r^{-n+2} h_{\mu \nu}^{(n,-n+2)}+\ldots$


## Information from inner expansion

- $1 / \tilde{r}^{n}$ terms arise from large- $\tilde{r}$ expansion of $g_{I \mu \nu}$
$\Rightarrow h_{\mu \nu}^{(n,-n)}$ is determined by multipole moments of $g_{I \mu \nu}$


## Form of solution in buffer region (in Lorenz gauge)

## What appears in the solution?

- solve EFE in Lorenz gauge order by order in $r$
- expand each $h_{\mu \nu}^{(n, p)}$ in spherical harmonics
- given a worldline, the solution at all orders is fully characterized by

1 body's multipole moments (and corrections thereto): $\sim \frac{Y^{\ell m}}{r^{\ell+1}}$
2 smooth solutions to vacuum wave equation: $\sim r^{\ell} Y^{\ell m}$

- everything else made of (linear or nonlinear) combinations of the above


## Self-field and regular field

- multipole moments define $h_{\mu \nu}^{\mathrm{S}(n)}$; interpret as bound field of body
- smooth homogeneous solutions define $h_{\mu \nu}^{\mathrm{R}(n)}$; free radiation, determined by global boundary conditions


## First- and second-order solutions in buffer region

First order

- $h_{\mu \nu}^{(1)}=h_{\mu \nu}^{\mathrm{S}(1)}+h_{\mu \nu}^{\mathrm{R}(1)}$
- self-field $h_{\mu \nu}^{\mathrm{S}(1)} \sim 1 / r+O\left(r^{0}\right)$ defined by ADM mass $m$ of $g_{I \mu \nu}$
- $h_{\mu \nu}^{\mathrm{R}(1)}$ is undetermined homogenous solution smooth at $r=0$
- evolution equations: $\dot{m}=0$ and $a_{(0)}^{\mu}=0\left(a^{\mu}=a_{(0)}^{\mu}+\epsilon a_{(1)}^{\mu}+\ldots\right)$


## Second order

- $h_{\mu \nu}^{(2)}=h_{\mu \nu}^{\mathrm{S}(2)}+h_{\mu \nu}^{\mathrm{R}(2)}$
- $h_{\mu \nu}^{\mathrm{S}(2)} \sim 1 / r^{2}+O(1 / r)$ defined by $m h_{\mu \nu}^{\mathrm{R}(1)}$ and

1 monopole correction $\delta m_{\mu \nu}$
2 mass dipole $M^{\mu}$ of $g_{I \mu \nu}$
3 spin dipole $S^{\mu}$ of $g_{I \mu \nu}$

- evolution equations: $\dot{S}^{\mu}=0, \dot{\delta m_{\mu \nu}}=\ldots$, and $\ddot{M}^{\mu}=\ldots$


## Outline

(1) Introduction
(2) General approach: matched asymptotic expansions
(3) Equation of motion

4 Solving the EFE globally: puncture scheme
(5) Progress toward numerical implementation

## Position at first order: Gralla-Wald definition

## Reminder: mass dipole

corresponds to displacement of center of mass from origin of coordinates


- work in coordinates centered on $z_{0}^{\mu}$
- calculate mass dipole $M^{\mu}$ of inner background $g_{I \mu \nu}$
- first-order correction due to self-force:

$$
m z_{1}^{\mu}=M^{\mu}
$$

## Position at first order: self-consistent definition

## Mass dipole about $z^{\mu}$

We want to find worldline $z^{\mu}$ for which $M^{\mu}=0$


- work in coordinates centered on unspecified $z^{\mu}$
- calculate mass dipole $M^{\mu}$ of inner background $g_{I \mu \nu}$
- first-order acceleration of $z^{\mu}$ : whatever ensures

$$
M^{\mu} \equiv 0
$$

## Proceeding to second order: mass-centered gauges

## Problem

- mass dipole moment defined for asymptotically flat spacetimes
- beyond zeroth order, inner expansion is not asymptotically flat


## Solution

- find gauge in which field is manifestly mass-centered on $z_{0}^{\mu}$ (or $z^{\mu}$ )
- define position in other gauges by referring to transformation to that mass-centered gauge


## Position at second order: Gralla's definition [2012]

## Gauge in a Gralla-Wald-type expansion

On short timescales, position relative to $z_{0}^{\mu}$ is pure gauge


## Position at second order: Gralla's definition [2012]

## Gauge in a Gralla-Wald-type expansion

On short timescales, position relative to $z_{0}^{\mu}$ is pure gauge


## Position at second order: Gralla's definition [2012]

## Gauge in a Gralla-Wald-type expansion

On short timescales, position relative to $z_{0}^{\mu}$ is pure gauge


- start in gauge mass-centered on $z_{0}^{\mu}$

$$
\Rightarrow z_{1}^{\mu}=z_{2}^{\mu}=0
$$

- under a small coordinate transformation, the worldline $z^{\mu}$ transforms just as coordinates do
- First order:

$$
z_{1}^{\mu}=\left.\xi_{1}^{\mu}\right|_{z_{0}}
$$

- Second order:

$$
z_{2}^{\mu}=\left.\xi_{2}^{\mu}\right|_{z_{0}}+\left.\xi_{1}^{\nu} \partial_{\nu} \xi_{1}^{\mu}\right|_{z_{0}}
$$

## Position at second order: Gralla's definition [2012]

## Gauge in a Gralla-Wald-type expansion

On short timescales, position relative to $z_{0}^{\mu}$ is pure gauge


- start in gauge mass-centered on $z_{0}^{\mu}$

$$
\Rightarrow z_{1}^{\mu}=z_{2}^{\mu}=0
$$

- under a small coordinate transformation, the worldline $z^{\mu}$ transforms just as coordinates do
- First order:

$$
z_{1}^{\mu}=\left.\xi_{1}^{\mu}\right|_{z_{0}}
$$

- Second order:

$$
z_{2}^{\mu}=\left.\xi_{2}^{\mu}\right|_{z_{0}}+\left.\xi_{1}^{\nu} \partial_{\nu} \xi_{1}^{\mu}\right|_{z_{0}}
$$

## Position at second order: self-consistent [Pound '12]

## Gauge in a self-consistet expansion

Over a radiation-reaction time, position relative to $z_{0}^{\mu}$ is not pure gauge


- start in gauge mass-centered on $z^{\mu}$
- demand that transformation to practical (e.g., Lorenz) gauge does not move $z^{\mu}$
- i.e., insist
$\lim _{r \rightarrow 0} \int \xi_{(n)}^{a} d \Omega=0$
- ensures worldline in the two gauges is the same


## Construction of solution in mass-centered "rest gauge"

## Start with a particular inner expansion

- specialize to non-spinning $g_{I \mu \nu}$
- adopt metric of tidally perturbed Schwarzschild black hole
- metric is mass-centered (e.g., $\delta M^{\mu}=0$ ) —also in a "rest gauge": object centered on non-accelerating origin


## Generalize the solution

- generalize to any (approximately non-spinning) compact object; i.e., remove boundary conditions specific to BH


## Expand in buffer region

- expand at asymptotic infinity (large $\tilde{r}$ ) and switch to unscaled $r$


## Transforming from rest gauge to Lorenz gauge

## Comparison of gauges

- metric in "rest gauge":

$$
\mathrm{g}_{t t} \sim \frac{m^{2}}{r^{2}}+\frac{m}{r}+r^{0}(-1)+r^{2} e_{1}(m / r) \tilde{\mathcal{E}}^{\mathrm{q}}+O\left(r^{3}\right)
$$

- metric in Lorenz gauge in Fermi coords centered on $z^{\mu}$ :

$$
\begin{aligned}
\mathrm{g}_{t t} \sim & \frac{m^{2}}{r^{2}}+\frac{\left(m+m h^{\mathrm{R}}\right)}{r}+r^{0}\left(-1+h^{\mathrm{R}}+\text { more }\right) \\
& +r\left(a_{i}+\partial h^{\mathrm{R}}+\text { more }\right)+r^{2}\left(\mathcal{E}^{\mathrm{q}}+\partial \partial h^{\mathrm{R}}+\text { more }\right)+O\left(r^{3}\right)
\end{aligned}
$$

## Gauge transformation between them

For a self-consistent solution, seek a unique gauge vector $\epsilon \xi_{(1)}^{\mu}+\epsilon^{2} \xi_{(2)}^{\mu}$ that preserves the position of the worldline

## Transforming from rest gauge to Lorenz gauge

## Comparison of gauges

- metric in "rest gauge":

$$
\mathrm{g}_{t t} \sim \frac{m^{2}}{r^{2}}+\frac{m}{r}+r^{0}(-1)+r^{2} e_{1}(m / r) \tilde{\mathcal{E}}^{\mathrm{q}}+O\left(r^{3}\right)
$$

- metric in Lorenz gauge in Fermi coords centered on $z^{\mu}$ :

$$
\begin{aligned}
\mathrm{g}_{t t} \sim & \frac{m^{2}}{r^{2}}+\frac{\left(m+m h^{\mathrm{R}}\right)}{r}+r^{0}\left(-1+h^{\mathrm{R}}+\text { more }\right) \\
& +r\left(a_{i}+\partial h^{\mathrm{R}}+\text { more }\right)+r^{2}\left(\mathcal{E}^{\mathrm{q}}+\partial \partial h^{\mathrm{R}}+\text { more }\right)+O\left(r^{3}\right)
\end{aligned}
$$

## Gauge transformation between them

For a self-consistent solution, seek a unique gauge vector $\epsilon \xi_{(1)}^{\mu}+\epsilon^{2} \xi_{(2)}^{\mu}$ that preserves the position of the worldline

## Self-consistent equation of motion in Lorenz gauge

$\frac{D^{2} z^{\mu}}{d \tau^{2}}=\frac{1}{2}\left(g^{\mu \nu}+u^{\mu} u^{\nu}\right)\left(g_{\nu}^{\rho}-h_{\nu}^{\mathrm{R} \rho}\right)\left(h_{\sigma \lambda ; \rho}^{\mathrm{R}}-2 h_{\rho \sigma ; \lambda}^{\mathrm{R}}\right) u^{\sigma} u^{\lambda}+O\left(\epsilon^{3}\right)$

- here $a^{\mu}=a_{(0)}^{\mu}+\epsilon a_{(1)}^{\mu}+\epsilon^{2} a_{(2)}^{\mu}+\ldots$
- and $h_{\mu \nu}^{\mathrm{R}}=\epsilon h_{\mu \nu}^{\mathrm{R}(1)}+\epsilon^{2} h_{\mu \nu}^{\mathrm{R}(2)}$


## Generalized equivalence principle

- $z^{\mu}$ satisfies geodesic equation in $g_{\mu \nu}+h_{\mu \nu}^{\mathrm{R}}$
- recall: here $g_{\mu \nu}+h_{\mu \nu}^{\mathrm{R}}$ is a "physical" field in the sense of satisfying vacuum EFE
- extends results of Detweiler-Whiting to second order


## Gralla-Wald-type equation of motion in Lorenz gauge

## Covariant expansion of worldline

- family of worldlines $z^{\mu}(\tau, \epsilon)$
- tangent vectors: $u^{\mu}=\frac{d z^{\mu}}{d \tau}, \xi^{\mu}=\frac{d z^{\mu}}{d \epsilon}$
- first deviation: $z_{1}^{\mu}=\left.\xi^{\mu}\right|_{z_{0}}$
- second deviation: $z_{2}^{\mu}=\left.\frac{1}{2} \frac{D \xi^{\mu}}{d \epsilon}\right|_{z_{0}}$

$\frac{D^{2} z_{0}^{\mu}}{d \tau^{2}}=0$
$\frac{D^{2} z_{1}^{\mu}}{d \tau^{2}}=R^{\mu}{ }_{\nu \rho \sigma} u_{0}^{\nu} u_{0}^{\rho} z_{1}^{\sigma}-\frac{1}{2} m\left(g^{\mu \nu}+u_{0}^{\mu} u_{0}^{\nu}\right)\left(2 h_{\rho \nu ; \sigma}^{\mathrm{R}(1)}-h_{\rho \sigma ; \nu}^{\mathrm{R}(1)}\right) u_{0}^{\rho} u_{0}^{\sigma}$
$\frac{D^{2} z_{2}^{\alpha}}{d \tau^{2}}=f_{2}^{\alpha}+\frac{1}{2} R^{\alpha}{ }_{\mu \beta \nu ; \gamma}\left(z_{1}^{\mu} u_{0}^{\beta} z_{1}^{\nu} u_{0}^{\gamma}-u_{0}^{\mu} z_{1}^{\beta} u_{0}^{\nu} z_{1}^{\gamma}\right)$
$-R^{\alpha}{ }_{\mu \beta \nu}\left(u_{0}^{\mu} z_{2}^{\beta} u_{0}^{\nu}+2 \dot{z}_{1}^{\mu} z_{1}^{\beta} u_{0}^{\nu}\right)$


## Gralla-Wald-type equation of motion in Lorenz gauge

## Covariant expansion of worldline

- family of worldlines $z^{\mu}(\tau, \epsilon)$
- tangent vectors: $u^{\mu}=\frac{d z^{\mu}}{d \tau}, \xi^{\mu}=\frac{d z^{\mu}}{d \epsilon}$
- first deviation: $z_{1}^{\mu}=\left.\xi^{\mu}\right|_{z_{0}}$
- second deviation: $z_{2}^{\mu}=\left.\frac{1}{2} \frac{D \xi^{\mu}}{d \epsilon}\right|_{z_{0}}$

$\frac{D^{2} z_{0}^{\mu}}{d \tau^{2}}=0$
$\frac{D^{2} z_{1}^{\mu}}{d \tau^{2}}=R^{\mu}{ }_{\nu \rho \sigma} u_{0}^{\nu} u_{0}^{\rho} z_{1}^{\sigma}-\frac{1}{2} m\left(g^{\mu \nu}+u_{0}^{\mu} u_{0}^{\nu}\right)\left(2 h_{\rho \nu ; \sigma}^{\mathrm{R}(1)}-h_{\rho \sigma ; \nu}^{\mathrm{R}(1)}\right) u_{0}^{\rho} u_{0}^{\sigma}$

$$
\begin{aligned}
\frac{D^{2} z_{2}^{\alpha}}{d \tau^{2}}= & f_{2}^{\alpha}+\frac{1}{2} R_{\mu \beta \nu ; \gamma}^{\alpha}\left(z_{1}^{\mu} u_{0}^{\beta} z_{1}^{\nu} u_{0}^{\gamma}-u_{0}^{\mu} z_{1}^{\beta} u_{0}^{\nu} z_{1}^{\gamma}\right) \\
& -R_{\mu \beta \nu}^{\alpha}\left(u_{0}^{\mu} z_{2}^{\beta} u_{0}^{\nu}+2 \dot{z}_{1}^{\mu} z_{1}^{\beta} u_{0}^{\nu}\right)
\end{aligned}
$$

## Gralla-Wald-type equation of motion in Lorenz gauge

## Covariant evnancion of worldline



$$
\begin{aligned}
f_{2}^{\mu}= & \frac{1}{2} P_{0}^{\mu \nu}\left(h_{\sigma \lambda ; \rho}^{\mathrm{R}(2)}-2 h_{\rho \sigma ; \lambda}^{\mathrm{R}(2)}\right) u_{0}^{\sigma} u_{0}^{\lambda}-P_{0}^{\mu \nu} h_{\nu}^{\mathrm{R}(1) \rho}\left(h_{\sigma \lambda ; \rho}^{\mathrm{R}(1)}-2 h_{\rho \sigma ; \lambda}^{\mathrm{R}(1)}\right) u_{0}^{\sigma} u_{0}^{\lambda} \\
& +\left(h_{\sigma \lambda ; \nu}^{\mathrm{R}(1)}-2 h_{\nu \sigma ; \lambda}^{\mathrm{R}(1)}\right)\left[\left(\dot{z}_{1}^{\mu} u_{0}^{\nu}+u_{0}^{\mu} \dot{z}_{1}^{\nu}\right) u_{0}^{\sigma} u^{\lambda}+P_{0}^{\mu \nu}\left(\dot{z}_{1}^{\sigma} u_{0}^{\lambda}+u_{0}^{\sigma} \dot{z}_{1}^{\lambda}\right)\right]
\end{aligned}
$$

- secona deviation: $z_{2}^{\prime}=\left.\frac{\dot{\overline{2}}}{2} \frac{-\bar{d}}{d \epsilon}\right|_{z_{0}}$

$$
\begin{aligned}
& \frac{D^{2} z_{0}^{\mu}}{d \tau^{2}}=0 \\
& \frac{D^{2} z_{1}^{\mu}}{d \tau^{2}}=R_{\nu \rho \sigma}^{\mu} u_{0}^{\nu} u_{0}^{\rho} z_{1}^{\sigma}-\frac{1}{2} m\left(g^{\mu \nu}+u_{0}^{\mu} u_{0}^{\nu}\right)\left(2 h_{\rho \nu ; \sigma}^{\mathrm{R}(1)}-h_{\rho \sigma ; \nu}^{\mathrm{R}(1)}\right) u_{0}^{\rho} u_{0}^{\sigma}
\end{aligned}
$$

$$
\begin{aligned}
\frac{D^{2} z_{2}^{\alpha}}{d \tau^{2}}= & f_{2}^{\alpha}+\frac{1}{2} R_{\mu \beta \nu ; \gamma}^{\alpha}\left(z_{1}^{\mu} u_{0}^{\beta} z_{1}^{\nu} u_{0}^{\gamma}-u_{0}^{\mu} z_{1}^{\beta} u_{0}^{\nu} z_{1}^{\gamma}\right) \\
& -R_{\mu \beta \nu}^{\alpha}\left(u_{0}^{\mu} z_{2}^{\beta} u_{0}^{\nu}+2 \dot{z}_{1}^{\mu} z_{1}^{\beta} u_{0}^{\nu}\right)
\end{aligned}
$$

## Outline



Introduction
(2) General approach: matched asymptotic expansions
(3) Equation of motion
(4) Solving the EFE globally: puncture scheme

## (5) Progress toward numerical implementation

## Effective interior metric

## From self-field to singular field

- $h_{\mu \nu}^{\mathrm{S}}$ and $h_{\mu \nu}^{\mathrm{R}}$ derived only in buffer region
- simply extend them to all $r>0$ (and $r=0$, for $h_{\mu \nu}^{\mathrm{R}}$ )
- does not change field in buffer region or beyond

full metric $\mathrm{g}_{\mu \nu}$

"self field" $h_{\mu \nu}^{\mathrm{S}}$

effective metric $g_{\mu \nu}+h_{\mu \nu}^{\mathrm{R}}$


## Effective interior metric

## From self-field to singular field

- $h_{\mu \nu}^{\mathrm{S}}$ and $h_{\mu \nu}^{\mathrm{R}}$ derived only in buffer region
- simply extend them to all $r>0$ (and $r=0$, for $h_{\mu \nu}^{\mathrm{R}}$ )
- does not change field in buffer region or beyond

full metric $\mathrm{g}_{\mu \nu}$

"self field" $h_{\mu \nu}^{\mathrm{S}}$

effective metric $g_{\mu \nu}+h_{\mu \nu}^{\mathrm{R}}$


## Effective interior metric

## From self-field to singular field

- $h_{\mu \nu}^{\mathrm{S}}$ and $h_{\mu \nu}^{\mathrm{R}}$ derived only in buffer region
- simply extend them to all $r>0$ (and $r=0$, for $h_{\mu \nu}^{\mathrm{R}}$ )
- does not change field in buffer region or beyond

full metric $\mathrm{g}_{\mu \nu}$

singular field $h_{\mu \nu}^{\mathrm{S}}$

effective metric $\quad g_{\mu \nu}+h_{\mu \nu}^{\mathrm{R}}$


## Obtaining global solution

## Puncture/effective source scheme

- define $h_{\mu \nu}^{\mathcal{P}}$ as small- $r$ expansion of $h_{\mu \nu}^{\mathrm{S}}$ truncated at finite order in $r$
- define $h_{\mu \nu}^{\mathcal{R}}=h_{\mu \nu}-h_{\mu \nu}^{\mathcal{P}} \simeq h_{\mu \nu}^{\mathrm{R}}$

in here, solve

$$
\delta G^{\mu \nu}\left[h_{\rho \sigma}^{\mathcal{R}(2)}\right]=-\delta^{2} G^{\mu \nu}\left[h_{\rho \sigma}^{(1)}\right]-\delta G^{\mu \nu}\left[h_{\rho \sigma}^{\mathcal{P}(2)}\right]
$$

## The point...

- to calculate effective metric "inside" body and full metric everywhere else, all you need is $h_{\mu \nu}^{\mathrm{S}}$ found in buffer region


## Obtaining global solution

## Puncture/effective source scheme

- define $h_{\mu \nu}^{\mathcal{P}}$ as small- $r$ expansion of $h_{\mu \nu}^{\mathrm{S}}$ truncated at finite order in $r$
- define $h_{\mu \nu}^{\mathcal{R}}=h_{\mu \nu}-h_{\mu \nu}^{\mathcal{P}} \simeq h_{\mu \nu}^{\mathrm{R}}$

in here, solve

$$
\delta G^{\mu \nu}\left[h_{\rho \sigma}^{\mathcal{R}(2)}\right]=-\delta^{2} G^{\mu \nu}\left[h_{\rho \sigma}^{(1)}\right]-\delta G^{\mu \nu}\left[h_{\rho \sigma}^{\mathcal{P}(2)}\right]
$$

## The point...

- to calculate effective metric "inside" bodv and full metric everywhere else, all you need is $h_{\mu \nu}^{\mathrm{S}}$ found in buffer region


## More on puncturing

## Actual fields



## Punctured version



## A note on singularities

- derivations of self-force from matched expansions yield an expression for the force in terms of a manifestly finite field outside the object
- we don't begin with an infinity and subtract an infinity
-we write a known finite field as the difference between two known divergent fields


## Self-consistent puncture scheme

Let $\Gamma$ be worldtube around object

$$
\text { and } h_{\mu \nu}^{\mathcal{R}(n)}= \begin{cases}h_{\mu \nu}^{(n)} & \text { outside } \Gamma \\ h_{\mu \nu}^{(n)}-h_{\mu \nu}^{\mathcal{P}(n)} & \text { inside } \Gamma\end{cases}
$$

Simultaneously solve coupled system

$$
\begin{aligned}
& \square h_{\mu \nu}^{\mathcal{R}(1)}= \begin{cases}0 & \text { outside } \Gamma \\
-\square h_{\mu \nu}^{\mathcal{P}(1)} & \text { inside } \Gamma\end{cases} \\
& \square h_{\mu \nu}^{\mathcal{R}(2)}= \begin{cases}-2 \delta^{2} R_{\mu \nu}\left[h^{(1)}\right] & \text { outside } \Gamma \\
-2 \delta^{2} R_{\mu \nu}\left[h^{(1)}\right]-\square h_{\mu \nu}^{\mathcal{P}(2)} & \text { inside } \Gamma\end{cases} \\
& \frac{D^{2} z^{\mu}}{d \tau^{2}}=\frac{1}{2}\left(g^{\mu \nu}+u^{\mu} u^{\nu}\right)\left(g_{\nu}^{\rho}-h_{\nu}^{\mathcal{R} \rho}\right)\left(h_{\sigma \lambda ; \rho}^{\mathcal{R}}-2 h_{\rho \sigma ; \lambda}^{\mathcal{R}}\right) u^{\sigma} u^{\lambda},
\end{aligned}
$$

- $h_{\mu \nu}^{\mathcal{P}(2)}$ known analytically in Lorenz gauge [Pound '10, '12]
- puncture moves on $z^{\mu}$


## Gralla-Wald-type puncture scheme

Solve sequence of equations
1 $\frac{D^{2} z_{0}^{\mu}}{d \tau^{2}}=0$
2 $\square h_{\mu \nu}^{\mathcal{R}(1)}= \begin{cases}0 & \text { outside } \Gamma_{0} \\ -\square h_{\mu \nu}^{\mathcal{P}(1)} & \text { inside } \Gamma_{0}\end{cases}$
з $\frac{D^{2} z_{1}^{\mu}}{d \tau^{2}}=R^{\mu}{ }_{\nu \rho \sigma} u_{0}^{\nu} u_{0}^{\rho} z_{1}^{\sigma}-\frac{1}{2} m\left(g^{\mu \nu}+u_{0}^{\mu} u_{0}^{\nu}\right)\left(2 h_{\rho \nu ; \sigma}^{\mathcal{R}(1)}-h_{\rho \sigma ; \nu}^{\mathcal{R}(1)}\right) u_{0}^{\rho} u_{0}^{\sigma}$
$4 \square h_{\mu \nu}^{\mathcal{R}(2)}= \begin{cases}-2 \delta^{2} R_{\mu \nu}\left[h^{(1)}\right] & \text { outside } \Gamma_{0} \\ -2 \delta^{2} R_{\mu \nu}\left[h^{(1)}\right]-\square h_{\mu \nu}^{\mathcal{P}(2)} & \text { inside } \Gamma_{0}\end{cases}$
$5 \frac{D^{2} z_{2}^{\alpha}}{d \tau^{2}}=f_{2}^{\alpha}+R$ and $\nabla R$ terms
 ' $P$-smooth' gauges [Gralla '12]

- puncture moves on $z_{0}^{\mu}$


## Outline



Introduction
(2) General approach: matched asymptotic expansions
(3) Equation of motion

4 Solving the EFE globally: puncture scheme
(5) Progress toward numerical implementation

## The two necessary ingredients

## 1. Method of solving EFE numerically

- puncture/effective-source scheme [Detweiler '12, Pound '12, Gralla '12]
- puncture known explicitly in Lorenz gauge [Pound '10, '12] and 'P-smooth' gauges [Gralla '12]

2. Equation of motion \& definition of worldline

- self-consistent formulation in Lorenz gauge [Pound '12]
- Gralla-Wald-type formulation in 'P-smooth' gauges [Gralla '12] and Lorenz gauge [Pound '13]
- in 'Fermi' gauge (though w/o clear definition of worldline) [Rosenthal '06]


## Transforming to a more practical puncture

Punctures in Lorenz and 'P-smooth' gauges are written in local coordinates $\left(t, x^{a}\right)$ centered on $z^{\mu}$ or $z_{0}^{\mu}$

- impractical for numerical calculations in global coordinates


## From local coords to covariant expansion

- use puncture in Fermi coordinates
- write tensor in index-free notation

$$
\begin{aligned}
h^{\mathcal{P}}(x)= & h_{t t}^{\mathcal{P}}\left(t, x^{i}\right) d t d t \\
& +2 h_{t a}^{\mathcal{P}}\left(t, x^{i}\right) d t d x^{a} \\
& +h_{a b}^{\mathcal{P}}\left(t, x^{i}\right) d x^{a} d x^{b}
\end{aligned}
$$

- express in covariant quantities:
- $t \rightarrow \bar{x}$
- $x^{i} \rightarrow-e_{\bar{\alpha}}^{i} \nabla^{\bar{\alpha}} \sigma(x, \bar{x})$
- $d t, d x^{a} \rightarrow$ combinations of $\sigma, u^{\bar{\alpha}}, e_{\bar{\alpha}}^{a}$



## A practical puncture

## From covariant expansion to coordinate expansion

- Expand covariant quantities in coordinate differences

$$
\begin{aligned}
& \delta x^{\alpha}=x^{\alpha}-x^{\alpha^{\prime}} \\
& \text { - } \sigma^{\alpha^{\prime}}=-\delta x^{\alpha}+O(\delta x)^{2} \\
& \text { - } g_{\beta}^{\alpha^{\prime}}=\delta_{\beta}^{\alpha^{\prime}}+O(\delta x)
\end{aligned}
$$

- obtain puncture in, e.g., Schwarzschild or Boyer-Lindquist coordinates
- in principle, second-order puncture scheme (self-consistent or Gralla-Wald type) can be immediately implemented in time domain


## Obstacle to implementation

Even at first order, puncture scheme in time domain suffers from unresolved problem of growing gauge modes

## Second-order puncture scheme in frequency domain

## Problem tractable in frequency domain

- second-order conservative effects on circular orbits

- use Gralla-Wald-type puncture scheme
- conservative shift in position is simply shift in radius
- can calculate short-term effects
- $h_{\mu \nu}^{R} u^{\mu} u^{\nu}$
- $z_{2}^{\mu}$, second-order shift in position
- EOB parameters
- calculation underway w/Barack, Warburton, Wardell


## Conclusion

## Benefits of second order

- necessary to model inspiral
- complements and advances PN/NR/EOB


## Results

- second-order puncture
- second-order equation of motion


## Prospects

- time domain: major obstacle at first order
- frequency domain: calculations of short-term effects should soon be achieved


## Longer-term goals

- self-consistent evolution or good alternative to it for inspiral


## $h^{(1)} h^{(1)}$ terms in $h^{\mathrm{S}(2)}$, Fermi coordinates

$$
\begin{aligned}
\bar{h}_{(2)}^{\mathrm{S} t t}= & \frac{3 m^{2}}{r^{2}}-\frac{m}{r} \bar{h}_{(1)}^{\mathrm{R} i j} \hat{n}_{i j}-m\left(\frac{11}{5} \bar{h}_{(1) a, b}^{\mathrm{R} b}+\frac{1}{10} \bar{h}_{(1) b, a}^{\mathrm{R} b}+\bar{h}_{(1) a, t}^{\mathrm{R} t}-\frac{3}{2} \bar{h}_{(1), a}^{\mathrm{R} t t}\right) n^{a} \\
& -\frac{7}{3} m^{2} \mathcal{E}^{a b} \hat{n}_{a b}-\frac{1}{2} m_{(1)}^{\mathrm{R} a b, c} \hat{n}_{a b c} \\
& +r\left[\frac { 1 } { 2 7 0 } m \left(-252 \bar{h}_{(1), a b}^{\mathrm{R} a b}+84 \bar{h}_{(1) b}^{\mathrm{R} b, a}{ }_{a}-268 \mathcal{E}^{a b} \bar{h}_{(1) a b}^{\mathrm{R}}+630 \bar{h}_{(1), b t}^{\mathrm{R} t b}\right.\right. \\
& \left.-15 \bar{h}_{(1) b, t t}^{\mathrm{R} b}+675 \bar{h}_{(1), t t)}^{\mathrm{R} t t}\right)+\frac{23}{9} m \mathcal{E}^{a b} \bar{h}_{(1) b}^{\mathrm{R} c} \hat{n}_{a c}+\frac{5}{9} m \mathcal{B}^{a c} \epsilon_{b c d} \bar{h}_{(1)}^{\mathrm{R} t b} \hat{n}_{a}^{d} \\
& +\frac{1}{72} m\left(108 \bar{h}_{(1)}^{\mathrm{R} t t, a b}+\mathcal{E}^{a b}\left(96 \bar{h}_{(1)}^{\mathrm{R} t t}-76 \bar{h}_{(1) c}^{\mathrm{R} c}\right)\right) \hat{n}_{a b} \\
& +\frac{1}{42} m\left(26 \bar{h}_{(1) a b}^{\mathrm{R}}, c{ }_{c}-78 \bar{h}_{(1) b, a c}^{\mathrm{R} c}-9 \bar{h}_{(1) c, b a}^{\mathrm{R} c}-21 \bar{h}_{(1) b, a t}^{\mathrm{R} t}-7 \bar{h}_{(1) a b, t t}^{\mathrm{R}}\right) \hat{n}^{a b} \\
& \left.-\frac{29}{20} m^{2} \mathcal{E}^{a b c} \hat{n}_{a b c}+\frac{1}{6} m\left(-2 \bar{h}_{(1), c d}^{\mathrm{R} a b}+7 \mathcal{E}^{b a} \bar{h}_{(1)}^{\mathrm{R} c d}\right) \hat{n}_{a b c d}\right]+O\left(r^{2}\right)
\end{aligned}
$$

## $h^{\mathrm{S}(1)} h^{\mathrm{S}(1)}$ terms, covariant puncture

$$
\begin{aligned}
h_{\alpha \beta}^{\mathcal{P}(2)}= & \frac{m^{2} g_{\mu}^{\alpha^{\prime}} g_{\nu}^{\beta^{\prime}}}{\mathrm{s}^{4}}\left(5 \mathrm{~s}^{2} g_{\alpha^{\prime} \beta^{\prime}}-14 \mathrm{r} \sigma_{\left(\alpha^{\prime}\right.} u_{\left.\beta^{\prime}\right)}-7 \mathrm{r}^{2} u_{\alpha^{\prime}} u_{\beta^{\prime}}+3 \mathrm{~s}^{2} u_{\alpha^{\prime}} u_{\beta^{\prime}}-7 \sigma_{\alpha^{\prime}} \sigma_{\beta^{\prime}}\right) \\
& +\frac{m^{2} g_{\mu}^{\alpha^{\prime}} g_{\nu}^{\beta^{\prime}}}{150 \mathrm{~s}^{6}}\left[10 \mathrm{~s}^{4} R_{\alpha^{\prime} \sigma \beta^{\prime} \sigma}+20 \mathrm{rs}^{4} R_{\left(\alpha^{\prime}|u| \beta^{\prime}\right) \sigma}+\mathrm{s}^{4}\left(10 \mathrm{r}^{2}+52 \mathrm{~s}^{2}\right) R_{\alpha^{\prime} u \beta^{\prime} u}\right. \\
& -350 \mathrm{rs}^{2} \sigma_{\left(\alpha^{\prime}\right.} R_{\left.\beta^{\prime}\right) \sigma u \sigma}-350 \mathrm{r}^{2} \mathrm{~s}^{2} u_{\left(\alpha^{\prime}\right.} R_{\left.\beta^{\prime}\right) \sigma u \sigma}+170 \mathrm{~s}^{4} u_{\left(\alpha^{\prime}\right.} R_{\left.\beta^{\prime}\right) \sigma u \sigma} \\
& +700 \mathrm{r}^{2} \mathrm{~s}^{2} \sigma_{\left(\alpha^{\prime}\right.} R_{\left.\beta^{\prime}\right) u \sigma u}-620 \mathrm{rs}^{4} u_{\left(\alpha^{\prime}\right.} R_{\left.\beta^{\prime}\right) u \sigma u}+700 \mathrm{r}^{3} \mathrm{~s}^{2} u_{\left(\alpha^{\prime}\right.} R_{\left.\beta^{\prime}\right) u \sigma u} \\
& +1120 R_{u \sigma u \sigma} \mathrm{rs}^{2} \sigma_{\left(\alpha^{\prime}\right.} u_{\left.\beta^{\prime}\right)}+1060 R_{u \sigma u \sigma} \mathrm{r}^{2} \mathrm{~s}^{2} u_{\alpha^{\prime}} u_{\beta^{\prime}}-700 R_{u \sigma u \sigma} \mathrm{r}^{2} \sigma_{\alpha^{\prime}} \sigma_{\beta^{\prime}} \\
& -1400 R_{u \sigma u \sigma} \mathrm{r}^{3} \sigma_{\left(\alpha^{\prime}\right.} u_{\left.\beta^{\prime}\right)}-700 R_{u \sigma u \sigma} \mathrm{r}^{4} u_{\alpha^{\prime}} u_{\beta^{\prime}}+210 R_{u \sigma u \sigma} \mathrm{~s}^{2} \sigma_{\alpha^{\prime}} \sigma_{\beta^{\prime}} \\
& +120 R_{\left.u \sigma u \sigma \mathrm{~s}^{4} u_{\alpha^{\prime}} u_{\beta^{\prime}}+g_{\alpha^{\prime} \beta^{\prime}}\left(250 \mathrm{r}^{2} \mathrm{~s}^{2}+10 \mathrm{~s}^{4}\right) R_{u \sigma u \sigma}\right]} \\
& -\frac{16}{15} m^{2} \ln (\mathrm{~s}) g_{\mu}^{\alpha^{\prime}} g_{\nu}^{\beta^{\prime}} R_{\alpha^{\prime} u \beta^{\prime} u} \\
& +\operatorname{order} \sqrt{\sigma} \text { terms }
\end{aligned}
$$

## $h^{\mathrm{S}(1)} h^{\mathrm{S}(1)}$ terms, circular orbits in Schwarzschild

## coordinates

$$
\begin{aligned}
h_{t t}^{\mathcal{P}(2)}= & \frac{m^{2}\left[\left(3 E^{2}-5\right) r_{0}+10 M\right]}{\rho^{2} r_{0}}-\frac{28 \delta Q^{2} E^{4} m^{2} r_{0}^{6} \Omega^{2}}{\rho^{4} r_{0}^{2} f_{0}^{2}} \\
& -\frac{\delta r m^{2}}{\rho^{4} r_{0}^{4} f_{0}^{3}}\left\{8 \delta Q^{2} E^{2} r_{0}^{5} \Omega^{2}\left[\left(20-13 E^{2}\right) M r_{0}+5\left(2 E^{2}-1\right) r_{0}^{2}-20 M^{2}\right]\right. \\
& +r_{0} f_{0}\left[\left(3 E^{2}-5\right) r_{0}+10 M\right]\left(16 \delta Q^{2} M^{2} r_{0}-\delta r^{2} M+\delta \theta^{2} r_{0}^{3} f_{0}^{2}\right. \\
& \left.\left.-16 \delta Q^{2} M r_{0}^{2}+4 \delta Q^{2} r_{0}^{3}\right)\right\}+\frac{2 \delta r m^{2} M\left[\left(3 E^{2}-5\right) r_{0}+10 M\right]}{\rho^{2} r_{0}^{3} f_{0}} \\
& +\frac{56 \delta Q^{2} \delta r E^{4} m^{2} r_{0}^{6} \Omega^{2}}{\rho^{6} r_{0}^{4} f_{0}^{4}}\left\{r_{0}^{3}\left[\delta \theta^{2}+\delta Q^{2}\left(8 E^{2} r_{0}^{2} \Omega^{2}+4\right)\right]\right. \\
& \left.+4 M^{2} r_{0}\left(\delta \theta^{2}+4 \delta Q^{2}\right)-M\left[\delta r^{2}+4 r_{0}^{2}\left(\delta \theta^{2}+4 \delta Q^{2}\right)\right]\right\} \\
& +\operatorname{order}\left(\delta x^{\alpha}\right)^{0} \text { terms }+ \text { order } \delta x^{\alpha} \text { terms }
\end{aligned}
$$

