Lorenz gauge solution in the frequency domain: Constrained EHS method, low-order and static modes

Thomas Osburn

University of North Carolina at Chapel Hill

July 2013

In collaboration with Erik Forseth, Charles Evans, and Seth Hopper

Thomas Osburn Constrained solution, static and low-order modes

Eccentric orbits on Schwarzschild: Previous work (partial list)

- Akcay 2011 Circular orbits, frequency domain
- Warburton, Akcay, Barack, Gair & Sago 2012 Eccentric orbits, FD, EHS, application to inspiral evolution
- Capra 15 talks: Warburton; Evans, Osburn & Forseth
- Capra 16 talks: Warburton; Hopper; Forseth & Osburn (update)
- Hopper & Evans 2013, 2010 Eccentric orbits, FD, RWZ gauge to Lorenz gauge
- Barack & Sago 2010

Eccentric orbits in LG, TD radiative modes, FD low order modes

• Sago, Barack & Detweiler 2009

Circular orbits, comparison between Lorenz and RW gauges

• Detweiler & Poisson 2003

Circular orbits, low order modes in Lorenz gauge

• Zerilli 1970

Outline

- Constrained equations for radiative modes $(l\geq 2,\,\omega\neq 0)$
- Homogeneous solutions of constrained equations
- Particular solution of constrained equations (Extended homogeneous solutions)
- Static modes: constrained solution

$$(m=0, n=0 \Rightarrow \omega = 0)$$

- Low-order modes: constrained solution (l < 0, 1)
- Calculation of the dissipative self-force and results

Outline

• Constrained equations for radiative modes $(l\geq 2,\,\omega\neq 0)$

• Homogeneous solutions of constrained equations

- Particular solution of constrained equations (Extended homogeneous solutions)
- Static modes: constrained solution $(m=0,\,n=0\Rightarrow\omega=0)$
- Low-order modes: constrained solution (l < 0, 1)
- Calculation of the dissipative self-force and results

Lorenz gauge overview

• Lorenz gauge perturbation equation:

$$\Box \bar{p}_{\mu\nu} + 2R_{\mu\alpha\nu\beta}\bar{p}^{\alpha\beta} = -16\pi T_{\mu\nu}$$

Lorenz gauge condition:

$$\nabla^{\beta}\bar{p}_{\alpha\beta}=0$$

Lorenz gauge overview

• Lorenz gauge perturbation equation:

$$\Box \bar{p}_{\mu\nu} + 2R_{\mu\alpha\nu\beta}\bar{p}^{\alpha\beta} = -16\pi T_{\mu\nu}$$

Lorenz gauge condition:

$$\nabla^{\beta} \bar{p}_{\alpha\beta} = 0$$

• Spherical harmonic decomposition (Martel & Poisson 2005 notation)

Odd ParityEven ParityHarmonics: X_A^{lm}, X_{AB}^{lm} $Y^{lm}, Y_A^{lm}, Y_{AB}^{lm}, \Omega_{AB}Y^{lm}$ Amplitudes: h_t, h_r, h_2 $h_{tt}, h_{tr}, h_{rr}, j_t, j_r, K, G$

Constrained odd-parity frequency-domain equations

• Three unconstrained odd-parity field equations and one Lorenz gauge condition $(l \ge 2)$

$$\begin{split} 0 &= f(l+2)(l-1)\tilde{h}_2 - 4f\left(r-M\right)\tilde{h}_r - 2fr^2\frac{d\tilde{h}_r}{dr_*} - 2i\omega r^2\tilde{h}_t, \\ f^2\tilde{P}^t &= \frac{d^2\tilde{h}_t}{dr_*^2} - \frac{2M}{r^2}\frac{d\tilde{h}_t}{dr_*} + \left[\omega^2 - \frac{f}{r^2}\left(l(l+1) - \frac{4M}{r}\right)\right]\tilde{h}_t - \frac{2ifM\omega}{r^2}\tilde{h}_r, \\ &- \tilde{P}^r = \frac{d^2\tilde{h}_r}{dr_*^2} + \frac{2M}{r^2}\frac{d\tilde{h}_r}{dr_*} + \left[\omega^2 - \frac{f}{r^2}\left(l(l+1) + 4f\right)\right]\tilde{h}_r - \frac{2iM\omega}{fr^2}\tilde{h}_t + \frac{f(l+2)(l-1)}{r^3}\tilde{h}_2, \\ &- 2f\tilde{P} = \frac{d^2\tilde{h}_2}{dr_*^2} - \frac{2f}{r}\frac{d\tilde{h}_2}{dr_*} + \left[\omega^2 - \frac{f}{r^2}\left(l(l+1) - 4f\right)\right]\tilde{h}_2 + \frac{4f^2}{r}\tilde{h}_r. \end{split}$$

Constrained odd-parity frequency-domain equations

• Three unconstrained odd-parity field equations and one Lorenz gauge condition $(l \ge 2)$

$$\begin{split} 0 &= f(l+2)(l-1)\tilde{h}_2 - 4f\left(r-M\right)\tilde{h}_r - 2fr^2\frac{dh_r}{dr_*} - 2i\omega r^2\tilde{h}_t, \\ f^2\tilde{P}^t &= \frac{d^2\tilde{h}_t}{dr_*^2} - \frac{2M}{r^2}\frac{d\tilde{h}_t}{dr_*} + \left[\omega^2 - \frac{f}{r^2}\left(l(l+1) - \frac{4M}{r}\right)\right]\tilde{h}_t - \frac{2ifM\omega}{r^2}\tilde{h}_r, \\ &- \tilde{P}^r = \frac{d^2\tilde{h}_r}{dr_*^2} + \frac{2M}{r^2}\frac{d\tilde{h}_r}{dr_*} + \left[\omega^2 - \frac{f}{r^2}\left(l(l+1) + 4f\right)\right]\tilde{h}_r - \frac{2iM\omega}{fr^2}\tilde{h}_t + \frac{f(l+2)(l-1)}{r^3}\tilde{h}_2, \\ &- 2f\tilde{P} = \frac{d^2\tilde{h}_2}{dr_*^2} - \frac{2f}{r}\frac{d\tilde{h}_2}{dr_*} + \left[\omega^2 - \frac{f}{r^2}\left(l(l+1) - 4f\right)\right]\tilde{h}_2 + \frac{4f^2}{r}\tilde{h}_r. \end{split}$$

• Solve the Lorenz gauge condition algebraically for \tilde{h}_2

_

$$\tilde{h}_2 = \frac{1}{(l+2)(l-1)} \left[4(r-M)\tilde{h}_r + 2r^2 \frac{d\tilde{h}_r}{dr_*} + \frac{2i\omega r^2}{f} \tilde{h}_t \right],$$

Constrained odd-parity frequency-domain equations

• Three unconstrained odd-parity field equations and one Lorenz gauge condition $(l \ge 2)$

$$\begin{split} 0 &= f(l+2)(l-1)\tilde{h}_2 - 4f\left(r-M\right)\tilde{h}_r - 2fr^2\frac{d\tilde{h}_r}{dr_*} - 2i\omega r^2\tilde{h}_t, \\ f^2\tilde{P}^t &= \frac{d^2\tilde{h}_t}{dr_*^2} - \frac{2M}{r^2}\frac{d\tilde{h}_t}{dr_*} + \left[\omega^2 - \frac{f}{r^2}\left(l(l+1) - \frac{4M}{r}\right)\right]\tilde{h}_t - \frac{2ifM\omega}{r^2}\tilde{h}_r, \\ &- \tilde{P}^r = \frac{d^2\tilde{h}_r}{dr_*^2} + \frac{2M}{r^2}\frac{d\tilde{h}_r}{dr_*} + \left[\omega^2 - \frac{f}{r^2}\left(l(l+1) + 4f\right)\right]\tilde{h}_r - \frac{2iM\omega}{fr^2}\tilde{h}_t + \frac{f(l+2)(l-1)}{r^3}\tilde{h}_2, \\ &- 2f\tilde{P} = \frac{d^2\tilde{h}_2}{dr_*^2} - \frac{2f}{r}\frac{d\tilde{h}_2}{dr_*} + \left[\omega^2 - \frac{f}{r^2}\left(l(l+1) - 4f\right)\right]\tilde{h}_2 + \frac{4f^2}{r}\tilde{h}_r. \end{split}$$

 $\bullet\,$ Solve the Lorenz gauge condition algebraically for \tilde{h}_2

$$\tilde{h}_{2} = \frac{1}{(l+2)(l-1)} \left[4(r-M)\tilde{h}_{r} + 2r^{2}\frac{d\tilde{h}_{r}}{dr_{*}} + \frac{2i\omega r^{2}}{f}\tilde{h}_{t} \right],$$

• Decouple \tilde{h}_2 from the field equations, which reduces the system to fourth order

$$\begin{split} f^{2}\tilde{P}^{t} &= \frac{d^{2}\tilde{h}_{t}}{dr_{*}^{2}} - \frac{2M}{r^{2}}\frac{d\tilde{h}_{t}}{dr_{*}} + \left[\omega^{2} - \frac{f}{r^{2}}\left(l(l+1) - \frac{4M}{r}\right)\right]\tilde{h}_{t} - \frac{2ifM\omega}{r^{2}}\tilde{h}_{r}, \\ -\tilde{P}^{r} &= \frac{d^{2}\tilde{h}_{r}}{dr_{*}^{2}} + \frac{2(r-M)}{r^{2}}\frac{d\tilde{h}_{r}}{dr_{*}} + \left[\omega^{2} - \frac{f}{r^{2}}\left(l(l+1) - \frac{4M}{r}\right)\right]\tilde{h}_{r} + \frac{2i\omega(r-3M)}{r^{2}}\tilde{h}_{t}. \end{split}$$

Thomas Osburn Constrained solution, static and low-order modes

$$\begin{split} \tilde{j}_{t} &= \frac{1}{l(l+1)} \left[\frac{i\omega fr^{2}}{2} \tilde{h}_{rr} + 2(r-M) \tilde{h}_{tr} + \frac{i\omega r^{2}}{2f} \tilde{h}_{tt} + i\omega r^{2} \tilde{K} + r^{2} \frac{d\tilde{h}_{tr}}{dr_{*}} \right], \\ \tilde{j}_{r} &= \frac{1}{l(l+1)} \left[2(r-M) \tilde{h}_{rr} + \frac{i\omega r^{2}}{f} \tilde{h}_{tr} - 2r\tilde{K} + \frac{r^{2}}{2} \frac{d\tilde{h}_{rr}}{dr_{*}} + \frac{r^{2}}{2f^{2}} \frac{d\tilde{h}_{tt}}{dr_{*}} - \frac{r^{2}}{f} \frac{d\tilde{K}}{dr_{*}} \right], \\ \tilde{G} &= \frac{1}{(l+2)(l-1)} \left[\frac{1}{f} \tilde{h}_{tt} - f \tilde{h}_{rr} + \frac{2i\omega}{f} \tilde{j}_{t} + \frac{4(r-M)}{r^{2}} \tilde{j}_{r} + 2 \frac{d\tilde{j}_{r}}{dr_{*}} \right], \\ -f \tilde{Q}^{rr} - f^{2} \tilde{Q}^{\flat} - f^{3} \tilde{Q}^{tt} = \frac{d^{2} \tilde{h}_{tt}}{dr_{*}^{2}} + \frac{2(r-4M)}{r^{2}} \frac{d\tilde{h}_{tt}}{dr_{*}} + \left[\omega^{2} + \frac{2M^{2}}{r^{4}} - \frac{f}{r^{2}} l(l+1) \right] \tilde{h}_{tt} \\ &+ \frac{2M f^{2} (3M-2r)}{r^{4}} \tilde{h}_{rr} - \frac{4iM\omega f}{r^{2}} \tilde{h}_{tr} + \frac{4M f^{2}}{r^{3}} \tilde{K}, \\ 2f \tilde{Q}^{tr} &= \frac{d^{2} \tilde{h}_{tr}}{dr_{*}^{2}} + \frac{4f}{r} \frac{d\tilde{h}_{tr}}{dr_{*}} + \left[\omega^{2} + \frac{2(2M^{2}-r^{2})}{r^{4}} - \frac{f}{r^{2}} (l(l+1)-4) \right] \tilde{h}_{tr} \\ &+ \frac{i\omega (r-4M)}{fr^{2}} \tilde{h}_{tt} + \frac{i\omega f(r-4M)}{r^{2}} \tilde{h}_{rr} + \frac{2i\omega f}{r} \tilde{K}, \\ -\frac{1}{f} \tilde{Q}^{rr} + \tilde{Q}^{\flat} - f \tilde{Q}^{tt} &= \frac{d^{2} \tilde{h}_{rr}}{dr_{*}^{2}} + \frac{4(r-M)}{r^{2}} \frac{d\tilde{h}_{rr}}{dr_{*}} + \frac{2}{fr} \frac{d\tilde{h}_{tr}}{dr_{*}} - \frac{4}{r} \frac{d\tilde{K}}{dr_{*}} + \left[\omega^{2} + \frac{2M^{2}}{r^{4}} - \frac{f}{r^{2}} (l(l+1)-4) \right] \tilde{h}_{tr} \\ &+ \frac{2M (2M - 2r)}{f^{2}r^{4}} \tilde{h}_{tt} + \frac{i\omega f(r-4M)}{r^{2}} \tilde{h}_{rr} - \frac{2i\omega f}{r} \tilde{K}, \\ -\frac{1}{f} \tilde{Q}^{rr} + \tilde{Q}^{\flat} - f \tilde{Q}^{tt} &= \frac{d^{2} \tilde{h}_{rr}}{dr_{*}^{2}} + \frac{4(r-M)}{r^{2}} \frac{d\tilde{h}_{rr}}{dr_{*}} + \frac{2}{fr} \frac{d\tilde{h}_{tr}}{dr_{*}} - \frac{4}{r} \frac{d\tilde{K}}{dr_{*}} + \left[\omega^{2} + \frac{2M^{2}}{r^{4}} - \frac{f}{r^{2}} (l(l+1)-4) \right] \tilde{h}_{rr} \\ &+ \frac{2M (3M - 2r)}{f^{2}r^{4}} \tilde{h}_{tt} + \frac{4i\omega (r-3M)}{fr^{2}} \tilde{h}_{tr} - \frac{4(r-M)}{r^{3}} \tilde{K} \\ -f^{2} \tilde{Q}^{tt} + \tilde{Q}^{rr} &= \frac{d^{2} \tilde{K}}{dr_{*}^{2}} + \frac{4f}{r} \frac{d\tilde{K}}{dr_{*}} - \frac{1}{r} \frac{d\tilde{h}_{tt}}{dr_{*}} - \frac{f^{2}}{r} \frac{d\tilde{h}_{tr}}{dr_{*}} + \left[\omega^{2} - \frac{f}{r^{2}} (l(l+1)-2) \right] \tilde{K} \\ &+ \frac{2M}{r^{3}} \tilde{h}_{tt} - \frac{2i\omega f}{r^{2}} \tilde{h}_{tr} - \frac{2i^{2}}{r} \tilde{h}_{tr} - \frac{2i^{2}}{r} \tilde{h}_{tr} - \frac{2i^{2}}{r} \tilde{h}_$$

•

• Seven even-parity unconstrained equations, three LG conditions $(l\geq 2)$

$$\begin{split} -f\bar{Q}^{rr} - f^{2}\bar{Q}^{\flat} - f^{3}\bar{Q}^{tt} &= \frac{d^{2}\bar{h}_{tt}}{dr_{*}^{2}} + \frac{2(r-4M)}{r^{2}}\frac{d\bar{h}_{tt}}{dr_{*}} + \left[\omega^{2} + \frac{2M^{2}}{r^{4}} - \frac{f}{r^{2}}l(l+1)\right]\bar{h}_{tt} \\ &\quad + \frac{2Mf^{2}(3M-2r)}{r^{4}}\bar{h}_{rr} - \frac{4iM\omega f}{r^{2}}\bar{h}_{tr} + \frac{4Mf^{2}}{r^{3}}\bar{K}, \\ 2f\bar{Q}^{tr} &= \frac{d^{2}\bar{h}_{tr}}{dr_{*}^{2}} + \frac{4f}{r}\frac{d\bar{h}_{tr}}{dr_{*}} + \left[\omega^{2} + \frac{2(2M^{2}-r^{2})}{r^{4}} - \frac{f}{r^{2}}(l(l+1)-4)\right]\bar{h}_{tr} \\ &\quad + \frac{i\omega(r-4M)}{fr^{2}}\bar{h}_{tt} + \frac{i\omega f(r-4M)}{r^{2}}\bar{h}_{rr} + \frac{2i\omega f}{r}\bar{K}, \\ -\frac{1}{f}\bar{Q}^{rr} + \bar{Q}^{\flat} - f\bar{Q}^{tt} &= \frac{d^{2}\bar{h}_{rr}}{dr_{*}^{2}} + \frac{4(r-M)}{r^{2}}\frac{d\bar{h}_{rr}}{dr_{*}} + \frac{2}{fr}\frac{d\bar{h}_{tt}}{dr_{*}} - \frac{4}{r}\frac{d\bar{K}}{dr_{*}} + \left[\omega^{2} + \frac{2M^{2}}{r^{4}} - \frac{f}{r^{2}}(l(l+1)-4)\right]\bar{h}_{rr} \\ &\quad + \frac{2M(3M-2r)}{f^{2}r^{4}}\bar{h}_{tt} + \frac{4i\omega(r-3M)}{fr^{2}}\bar{h}_{tr} - \frac{4(r-M)}{r^{3}}\bar{K} \\ -f^{2}\bar{Q}^{tt} + \bar{Q}^{rr} &= \frac{d^{2}\bar{K}}{dr_{*}^{2}} + \frac{4f}{r}\frac{d\bar{K}}{dr_{*}} - \frac{1}{r}\frac{d\bar{h}_{tt}}{dr_{*}} - \frac{f^{2}}{r}\frac{d\bar{h}_{rr}}{dr_{*}} + \left[\omega^{2} - \frac{f}{r^{2}}(l(l+1)-2)\right]\bar{K} \\ &\quad + \frac{2M}{r^{3}}\bar{h}_{tr} - \frac{2f^{2}(r+M)}{r^{3}}\bar{h}_{rr}, \\ &\quad + \frac{2M}{r^{3}}\bar{h}_{tt} - \frac{2i\omega f}{r}\bar{h}_{tr} - \frac{2f^{2}(r+M)}{r^{3}}\bar{h}_{rr}, \\ &\quad + \frac{2M}{r^{3}}\bar{h}_{tr} - \frac{2f^{2}(r+M)}{r^{3}}\bar{h}_{rr}, \\ &\quad + \frac{2M}{r^{3}}\bar{h}_{tr} - \frac{2i\omega f}{r}\bar{h}_{tr} - \frac{2f^{2}(r+M)}{r^{3}}\bar{h}_{rr}, \\ &\quad + \frac{2M}{r^{3}}\bar{h}_{tr} - \frac{2i\omega f}{r}\bar{h}_{tr} - \frac{2f^{2}(r+M)}{r^{3}}\bar{h}_{rr}, \\ &\quad + \frac{2M}{r^{3}}\bar{h}_{tr} - \frac{2i\omega f}{r}\bar{h}_{tr} - \frac{2f^{2}(r+M)}{r^{3}}\bar{h}_{rr}, \\ &\quad + \frac{2M}{r^{3}}\bar{h}_{tr} - \frac{2i\omega f}{r}\bar{h}_{tr} - \frac{2f^{2}(r+M)}{r^{3}}\bar{h}_{rr}, \\ &\quad + \frac{2M}{r^{3}}\bar{h}_{tr} - \frac{2i\omega f}{r}\bar{h}_{tr} - \frac{2f^{2}(r+M)}{r^{3}}\bar{h}_{rr}, \\ &\quad + \frac{2M}{r^{3}}\bar{h}_{tr} - \frac{2i\omega f}{r}\bar{h}_{tr} - \frac{2i\omega f}{r^{3}}\bar{h}_{tr}, \\ &\quad + \frac{2M}{r^{3}}\bar{h}_{tr} - \frac{2i\omega f}{r}\bar{h}_{tr} - \frac{2i\omega f}{r^{3}}\bar{h}_{rr}, \\ &\quad + \frac{2M}{r^{3}}\bar{h}_{tr} - \frac{2i\omega f}{r}\bar{h}_{tr} - \frac{2i\omega f}{r}\bar{h}_{tr} - \frac{2i\omega f}{r^{3}}\bar{h}_{tr}, \\ &\quad + \frac{2M}{r^{3}}\bar{h}_{tr} - \frac{2i\omega f}{r}\bar{h}_{tr} - \frac{2i\omega f}{r^{3}}\bar{h}_{tr} - \frac{2i\omega f}{r}\bar{h}_{t$$

- Seven even-parity unconstrained equations, three LG conditions $(l \ge 2)$
- Use gauge conditions to reduce the order of the system

۲

$$\begin{split} -f \tilde{Q}^{rr} - f^2 \tilde{Q}^{\flat} - f^3 \tilde{Q}^{tt} &= \frac{d^2 \tilde{h}_{tt}}{dr_*^2} + \frac{2(r-4M)}{r^2} \frac{d \tilde{h}_{tt}}{dr_*} + \left[\omega^2 + \frac{2M^2}{r^4} - \frac{f}{r^2} l(l+1) \right] \tilde{h}_{tt} \\ &\quad + \frac{2M f^2 (3M-2r)}{r^4} \tilde{h}_{rr} - \frac{4iM\omega f}{r^2} \tilde{h}_{tr} + \frac{4M f^2}{r^3} \tilde{K}, \\ 2f \tilde{Q}^{tr} &= \frac{d^2 \tilde{h}_{tr}}{dr_*^2} + \frac{4f}{r} \frac{d \tilde{h}_{tr}}{dr_*} + \left[\omega^2 + \frac{2(2M^2 - r^2)}{r^4} - \frac{f}{r^2} (l(l+1) - 4) \right] \tilde{h}_{tr} \\ &\quad + \frac{i\omega(r-4M)}{fr^2} \tilde{h}_{tt} + \frac{i\omega f(r-4M)}{r^2} \tilde{h}_{rr} + \frac{2i\omega f}{r} \tilde{K}, \\ - \frac{1}{f} \tilde{Q}^{rr} + \tilde{Q}^{\flat} - f \tilde{Q}^{tt} &= \frac{d^2 \tilde{h}_{rr}}{dr_*^2} + \frac{4(r-M)}{r^2} \frac{d \tilde{h}_{rr}}{dr_*} + \frac{2}{fr} \frac{d \tilde{h}_{tt}}{dr_*} - \frac{4}{r} \frac{d \tilde{K}}{dr_*} + \left[\omega^2 + \frac{2M^2}{r^4} - \frac{f}{r^2} (l(l+1) - 4) \right] \tilde{h}_{rr} \\ &\quad + \frac{2M(3M-2r)}{f^2 r^4} \tilde{h}_{tt} + \frac{4i\omega(r-3M)}{fr^2} \tilde{h}_{tr} - \frac{4(r-M)}{r^3} \tilde{K} \\ - f^2 \tilde{Q}^{tt} + \tilde{Q}^{rr} &= \frac{d^2 \tilde{K}}{dr_*^2} + \frac{4f}{r} \frac{d \tilde{K}}{dr_*} - \frac{1}{r} \frac{d \tilde{h}_{tt}}{dr_*} - \frac{f^2}{r} \frac{d \tilde{h}_{rr}}{dr_*} + \left[\omega^2 - \frac{f}{r^2} (l(l+1) - 2) \right] \tilde{K} \\ &\quad + \frac{2M}{r^3} \tilde{h}_{tt} - \frac{2i\omega f}{r^2} \tilde{h}_{tr} - \frac{2f^2(r+M)}{r^3} \tilde{h}_{rr}, \\ &\quad + \frac{2M}{r^3} \tilde{h}_{tt} - \frac{2i\omega f}{r} \tilde{h}_{tr} - \frac{2f^2(r+M)}{r^3} \tilde{h}_{rr}, \end{split}$$

- Seven even-parity unconstrained equations, three LG conditions $(l \ge 2)$
- Use gauge conditions to reduce the order of the system
- Four constrained second-order equations

$$\begin{split} -f \tilde{Q}^{rr} - f^2 \tilde{Q}^{\flat} - f^3 \tilde{Q}^{tt} &= \frac{d^2 \tilde{h}_{tt}}{dr_*^2} + \frac{2(r-4M)}{r^2} \frac{d\tilde{h}_{tt}}{dr_*} + \left[\omega^2 + \frac{2M^2}{r^4} - \frac{f}{r^2} l(l+1) \right] \tilde{h}_{tt} \\ &\quad + \frac{2M f^2 (3M-2r)}{r^4} \tilde{h}_{rr} - \frac{4iM\omega f}{r^2} \tilde{h}_{tr} + \frac{4M f^2}{r^3} \tilde{K}, \\ 2f \tilde{Q}^{tr} &= \frac{d^2 \tilde{h}_{tr}}{dr_*^2} + \frac{4f}{r} \frac{d\tilde{h}_{tr}}{dr_*} + \left[\omega^2 + \frac{2(2M^2 - r^2)}{r^4} - \frac{f}{r^2} (l(l+1) - 4) \right] \tilde{h}_{tr} \\ &\quad + \frac{i\omega(r-4M)}{fr^2} \tilde{h}_{tt} + \frac{i\omega f(r-4M)}{r^2} \tilde{h}_{rr} + \frac{2i\omega f}{r} \tilde{K}, \\ -\frac{1}{f} \tilde{Q}^{rr} + \tilde{Q}^{\flat} - f \tilde{Q}^{tt} &= \frac{d^2 \tilde{h}_{rr}}{dr_*^2} + \frac{4(r-M)}{r^2} \frac{d\tilde{h}_{rr}}{dr_*} + \frac{2}{fr} \frac{d\tilde{h}_{tt}}{dr_*} - \frac{4}{r} \frac{d\tilde{K}}{dr_*} + \left[\omega^2 + \frac{2M^2}{r^4} - \frac{f}{r^2} (l(l+1) - 4) \right] \tilde{h}_{rr} \\ &\quad + \frac{2M (3M - 2r)}{f^2 r^4} \tilde{h}_{tt} + \frac{4i\omega(r-3M)}{fr^2} \tilde{h}_{tr} - \frac{4(r-M)}{r^3} \tilde{K} \\ -f^2 \tilde{Q}^{tt} + \tilde{Q}^{rr} &= \frac{d^2 \tilde{K}}{dr_*^2} + \frac{4f}{r} \frac{d\tilde{K}}{dr_*} - \frac{1}{r} \frac{d\tilde{h}_{tt}}{dr_*} - \frac{f^2}{r} \frac{d\tilde{h}_{rr}}{dr_*} + \left[\omega^2 - \frac{f}{r^2} (l(l+1) - 2) \right] \tilde{K} \\ &\quad + \frac{2M}{r^3} \tilde{h}_{tt} - \frac{2i\omega f}{r} \tilde{h}_{tr} - \frac{2f^2(r+M)}{r^3} \tilde{h}_{rr}, \\ &\quad \leq \psi \in \mathbb{R} \quad \langle \mathbb{R} \rangle < \langle$$

$$\begin{split} \tilde{j}_{t} &= \frac{1}{l(l+1)} \left[\frac{i\omega fr^{2}}{2} \tilde{h}_{rr} + 2(r-M) \tilde{h}_{tr} + \frac{i\omega r^{2}}{2f} \tilde{h}_{tt} + i\omega r^{2} \tilde{K} + r^{2} \frac{d\tilde{h}_{tr}}{dr_{*}} \right], \\ \tilde{j}_{r} &= \frac{1}{l(l+1)} \left[2(r-M) \tilde{h}_{rr} + \frac{i\omega r^{2}}{f} \tilde{h}_{tr} - 2r\tilde{K} + \frac{r^{2}}{2} \frac{d\tilde{h}_{rr}}{dr_{*}} + \frac{r^{2}}{2f^{2}} \frac{d\tilde{h}_{tt}}{dr_{*}} - \frac{r^{2}}{f} \frac{d\tilde{K}}{dr_{*}} \right], \\ \tilde{G} &= \frac{1}{(l+2)(l-1)} \left[\frac{1}{f} \tilde{h}_{tt} - f \tilde{h}_{rr} + \frac{2i\omega}{f} \tilde{j}_{t} + \frac{4(r-M)}{r^{2}} \tilde{j}_{r} + 2 \frac{d\tilde{j}_{r}}{dr_{*}} \right], \\ -f \tilde{Q}^{rr} - f^{2} \tilde{Q}^{\flat} - f^{3} \tilde{Q}^{tt} = \frac{d^{2} \tilde{h}_{tt}}{dr_{*}^{2}} + \frac{2(r-4M)}{r^{2}} \frac{d\tilde{h}_{tt}}{dr_{*}} + \left[\omega^{2} + \frac{2M^{2}}{r^{4}} - \frac{f}{r^{2}} l(l+1) \right] \tilde{h}_{tt} \\ &+ \frac{2M f^{2} (3M-2r)}{r^{4}} \tilde{h}_{rr} - \frac{4iM\omega f}{r^{2}} \tilde{h}_{tr} + \frac{4M f^{2}}{r^{3}} \tilde{K}, \\ 2f \tilde{Q}^{tr} &= \frac{d^{2} \tilde{h}_{tr}}{dr_{*}^{2}} + \frac{4f}{r} \frac{d\tilde{h}_{tr}}{dr_{*}} + \left[\omega^{2} + \frac{2(2M^{2}-r^{2})}{r^{4}} - \frac{f}{r^{2}} (l(l+1)-4) \right] \tilde{h}_{tr} \\ &+ \frac{i\omega (r-4M)}{fr^{2}} \tilde{h}_{tt} + \frac{i\omega f(r-4M)}{r^{2}} \tilde{h}_{rr} + \frac{2i\omega f}{r} \tilde{K}, \\ -\frac{1}{f} \tilde{Q}^{rr} + \tilde{Q}^{\flat} - f \tilde{Q}^{tt} &= \frac{d^{2} \tilde{h}_{rr}}{dr_{*}^{2}} + \frac{4(r-M)}{r^{2}} \frac{d\tilde{h}_{rr}}{dr_{*}} + \frac{2}{fr} \frac{d\tilde{h}_{tr}}{dr_{*}} - \frac{4}{r} \frac{d\tilde{K}}{dr_{*}} + \left[\omega^{2} + \frac{2M^{2}}{r^{4}} - \frac{f}{r^{2}} (l(l+1)-4) \right] \tilde{h}_{tr} \\ &+ \frac{2M (2M - 2r)}{f^{2}r^{4}} \tilde{h}_{tt} + \frac{i\omega f(r-4M)}{r^{2}} \tilde{h}_{rr} - \frac{2i\omega f}{r} \tilde{K}, \\ -\frac{1}{f} \tilde{Q}^{rr} + \tilde{Q}^{\flat} - f \tilde{Q}^{tt} &= \frac{d^{2} \tilde{h}_{rr}}{dr_{*}^{2}} + \frac{4(r-M)}{r^{2}} \frac{d\tilde{h}_{rr}}{dr_{*}} + \frac{2}{fr} \frac{d\tilde{h}_{tr}}{dr_{*}} - \frac{4}{r} \frac{d\tilde{K}}{dr_{*}} + \left[\omega^{2} + \frac{2M^{2}}{r^{4}} - \frac{f}{r^{2}} (l(l+1)-4) \right] \tilde{h}_{rr} \\ &+ \frac{2M (3M - 2r)}{f^{2}r^{4}} \tilde{h}_{tt} + \frac{4i\omega (r-3M)}{fr^{2}} \tilde{h}_{tr} - \frac{4(r-M)}{r^{3}} \tilde{K} \\ -f^{2} \tilde{Q}^{tt} + \tilde{Q}^{rr} &= \frac{d^{2} \tilde{K}}{dr_{*}^{2}} + \frac{4f}{r} \frac{d\tilde{K}}{dr_{*}} - \frac{1}{r} \frac{d\tilde{h}_{tt}}{dr_{*}} - \frac{f^{2}}{r} \frac{d\tilde{h}_{tr}}{dr_{*}} + \left[\omega^{2} - \frac{f}{r^{2}} (l(l+1)-2) \right] \tilde{K} \\ &+ \frac{2M}{r^{3}} \tilde{h}_{tt} - \frac{2i\omega f}{r^{2}} \tilde{h}_{tr} - \frac{2i^{2}}{r} \tilde{h}_{tr} - \frac{2i^{2}}{r} \tilde{h}_{tr} - \frac{2i^{2}}{r} \tilde{h}_$$

Outline

- Constrained equations for radiative modes $(l\geq 2,\,\omega\neq 0)$
- Homogeneous solutions of constrained equations
- Particular solution of constrained equations (Extended homogeneous solutions)
- Static modes: constrained solution $(m=0,\,n=0\Rightarrow\omega=0)$
- Low-order modes: constrained solution (l < 0, 1)
- Calculation of the dissipative self-force and results

Near-horizon acausal growth

- One of the acausal homogeneous solutions we wish to avoid grows exponentially in the direction of integration.
- Roundoff error excites this unwanted solution.

Solution of near-horizon acausal growth problem

- Give initial conditions well away from horizon to avoid exponential growth
- The causal solution can still be accurately calculated in this region with Taylor series

Solution of near-horizon acausal growth problem

Outline

- Constrained equations for radiative modes $(l\geq 2,\,\omega\neq 0)$
- Homogeneous solutions of constrained equations
- Particular solution of constrained equations (Extended homogeneous solutions)
- Static modes: constrained solution $(m=0,\,n=0\Rightarrow\omega=0)$
- Low-order modes: constrained solution (l < 0, 1)
- Calculation of the dissipative self-force and results

Constrained system solution via variation of parameters

Constrained system solution via variation of parameters

Constrained system solution via variation of parameters

Thomas Osburn Constrained solution, static and low-order modes

Extended homogeneous solutions for a system

Time domain solution, comparison of methods

$$e = 0.764124,$$
 $p = 8.75455,$ $t = 93.58M$

Time domain solution, comparison of methods

Comparison of methods: Relative error

Outline

- Constrained equations for radiative modes $(l\geq 2,\,\omega\neq 0)$
- Homogeneous solutions of constrained equations
- Particular solution of constrained equations (Extended homogeneous solutions)
- Static modes: constrained solution $(m = 0, n = 0 \Rightarrow \omega = 0)$
- Low-order modes: constrained solution (l < 0, 1)
- Calculation of the dissipative self-force and results

Odd-parity static modes $(m = 0, n = 0 \Longrightarrow \omega = 0)$

Zero-frequency form of odd-parity constrained equations

$$\begin{split} \tilde{h}_2 &= \frac{1}{(l+2)(l-1)} \left[4(r-M)\tilde{h}_r + 2r^2 \frac{d\tilde{h}_r}{dr_*} \right], \\ -\tilde{P}^r &= 0 = \frac{d^2 \tilde{h}_r}{dr_*^2} + \frac{2(r-M)}{r^2} \frac{d\tilde{h}_r}{dr_*} - \frac{f}{r^2} \left(l(l+1) - \frac{4M}{r} \right) \tilde{h}_r, \\ f^2 \tilde{P}^t &= \frac{d^2 \tilde{h}_t}{dr_*^2} - \frac{2M}{r^2} \frac{d\tilde{h}_t}{dr_*} - \frac{f}{r^2} \left(l(l+1) - \frac{4M}{r} \right) \tilde{h}_t, \end{split}$$

Odd-parity static modes $(m = 0, n = 0 \Longrightarrow \omega = 0)$

Zero-frequency form of odd-parity constrained equations

$$\begin{split} \tilde{h}_2 &= \frac{1}{(l+2)(l-1)} \left[4(r-M)\tilde{h}_r + 2r^2 \frac{d\tilde{h}_r}{dr_*} \right], \\ -\tilde{P}^r &= 0 = \frac{d^2\tilde{h}_r}{dr_*^2} + \frac{2(r-M)}{r^2} \frac{d\tilde{h}_r}{dr_*} - \frac{f}{r^2} \left(l(l+1) - \frac{4M}{r} \right) \tilde{h}_r, \\ f^2 \tilde{P}^t &= \frac{d^2\tilde{h}_t}{dr_*^2} - \frac{2M}{r^2} \frac{d\tilde{h}_t}{dr_*} - \frac{f}{r^2} \left(l(l+1) - \frac{4M}{r} \right) \tilde{h}_t, \end{split}$$
Zero-frequency form of odd-parity constrained equations

$$\begin{split} \tilde{h}_2 &= \frac{1}{(l+2)(l-1)} \left[4(r-M)\tilde{h}_r + 2r^2 \frac{d\tilde{h}_r}{dr_*} \right], \\ -\tilde{P}^r &= 0 = \frac{d^2\tilde{h}_r}{dr_*^2} + \frac{2(r-M)}{r^2} \frac{d\tilde{h}_r}{dr_*} - \frac{f}{r^2} \left(l(l+1) - \frac{4M}{r} \right) \tilde{h}_r, \\ f^2 \tilde{P}^t &= \frac{d^2\tilde{h}_t}{dr_*^2} - \frac{2M}{r^2} \frac{d\tilde{h}_t}{dr_*} - \frac{f}{r^2} \left(l(l+1) - \frac{4M}{r} \right) \tilde{h}_t, \end{split}$$

Zero-frequency form of odd-parity constrained equations

 $\tilde{h}_2 = 0,$

$$\tilde{h}_r = 0$$

$$f^{2}\tilde{P}^{t} = \frac{d^{2}\tilde{h}_{t}}{dr_{*}^{2}} - \frac{2M}{r^{2}}\frac{d\tilde{h}_{t}}{dr_{*}} - \frac{f}{r^{2}}\left(l(l+1) - \frac{4M}{r}\right)\tilde{h}_{t},$$

$$\begin{split} \tilde{h}_t^{(+0)} &\simeq \frac{1}{r^l} + \mathcal{O}(\frac{1}{r^{l+1}}), \\ \tilde{h}_t^{(+1)} &\simeq r^{l+1} + \mathcal{O}(r^l), \end{split}$$

. . .

• Causality no longer dictates choice of homogeneous solutions

$$\tilde{h}_t^{(-0)} \simeq f + \frac{l(l+1)}{2} f^2 + \mathcal{O}(f^3),$$

$$\tilde{h}_t^{(-1)} \simeq 1 + (l+2)(l-1)f \ln f + \mathcal{O}(f^2 \ln f).$$

Zero-frequency form of odd-parity constrained equations

 $\tilde{h}_2 = 0,$

$$\tilde{h}_r = 0$$

$$f^{2}\tilde{P}^{t} = \frac{d^{2}\tilde{h}_{t}}{dr_{*}^{2}} - \frac{2M}{r^{2}}\frac{d\tilde{h}_{t}}{dr_{*}} - \frac{f}{r^{2}}\left(l(l+1) - \frac{4M}{r}\right)\tilde{h}_{t},$$

$$\begin{split} \tilde{h}_t^{(+0)} &\simeq \frac{1}{r^l} + \mathcal{O}(\frac{1}{r^{l+1}}), \\ \tilde{h}_t^{(+1)} &\simeq r^{l+1} + \mathcal{O}(r^l), \end{split}$$

- Causality no longer dictates choice of homogeneous solutions
- Regularity is the governing factor

$$\begin{split} \tilde{h}_t^{(-0)} &\simeq f + \frac{l(l+1)}{2} f^2 + \mathcal{O}(f^3), \\ \tilde{h}_t^{(-1)} &\simeq 1 + (l+2)(l-1)f \ln f + \mathcal{O}(f^2 \ln f) \end{split}$$

Zero-frequency form of odd-parity constrained equations

 $\tilde{h}_2 = 0,$

$$\tilde{h}_r = 0$$

$$f^{2}\tilde{P}^{t} = \frac{d^{2}\tilde{h}_{t}}{dr_{*}^{2}} - \frac{2M}{r^{2}}\frac{d\tilde{h}_{t}}{dr_{*}} - \frac{f}{r^{2}}\left(l(l+1) - \frac{4M}{r}\right)\tilde{h}_{t},$$

$$\tilde{h}_t^{(+0)} \simeq \frac{1}{r^l} + \mathcal{O}(\frac{1}{r^{l+1}}),$$

- Causality no longer dictates choice of homogeneous solutions
- Regularity is the governing factor

$$\tilde{h}_t^{(-0)} \simeq f + \frac{l(l+1)}{2} f^2 + \mathcal{O}(f^3),$$

$$\tilde{h}_t^{(-1)} \simeq 1 + (l+2)(l-1)f \ln f + \mathcal{O}(f^2 \ln f).$$

Zero-frequency form of odd-parity constrained equations

 $\tilde{h}_2 = 0,$

 $\tilde{h}_r = 0,$

$$f^{2}\tilde{P}^{t} = \frac{d^{2}\tilde{h}_{t}}{dr_{*}^{2}} - \frac{2M}{r^{2}}\frac{d\tilde{h}_{t}}{dr_{*}} - \frac{f}{r^{2}}\left(l(l+1) - \frac{4M}{r}\right)\tilde{h}_{t},$$

$$\tilde{h}_t^{(+0)} \simeq \frac{1}{r^l} + \mathcal{O}(\frac{1}{r^{l+1}}),$$

- Causality no longer dictates choice of homogeneous solutions
- Regularity is the governing factor

$$\begin{split} \tilde{h}_t^{(-0)} &\simeq f + \frac{l(l+1)}{2} f^2 + \mathcal{O}(f^3), \\ \tilde{h}_t^{(-1)} &\simeq 1 + (l+2)(l-1)f \ln f + \mathcal{O}(f^2 \ln f). \end{split}$$

Zero-frequency form of odd-parity constrained equations

 $\tilde{h}_2 = 0,$

 $\tilde{h}_r = 0,$

$$f^{2}\tilde{P}^{t} = \frac{d^{2}\tilde{h}_{t}}{dr_{*}^{2}} - \frac{2M}{r^{2}}\frac{d\tilde{h}_{t}}{dr_{*}} - \frac{f}{r^{2}}\left(l(l+1) - \frac{4M}{r}\right)\tilde{h}_{t},$$

$$\tilde{h}_t^{(+0)} \simeq \frac{1}{r^l} + \mathcal{O}(\frac{1}{r^{l+1}}),$$

- Causality no longer dictates choice of homogeneous solutions
- Regularity is the governing factor

$$\tilde{h}_t^{(-0)} \simeq f + \frac{l(l+1)}{2} f^2 + \mathcal{O}(f^3),$$

Zero-frequency form of even-parity constrained equations

$$\begin{split} \bar{j}_t &= \frac{1}{l(l+1)} \left[2(r-M)\tilde{h}_{tr} + r^2 \frac{d\tilde{h}_{tr}}{dr_*} \right], \\ \bar{j}_r &= \frac{1}{l(l+1)} \left[2(r-M)\tilde{h}_{rr} - 2r\tilde{K} + \frac{r^2}{2} \frac{d\tilde{h}_{rr}}{dr_*} + \frac{r^2}{2f^2} \frac{d\tilde{h}_{tt}}{dr_*} - \frac{r^2}{f} \frac{d\tilde{K}}{dr_*} \right], \\ \bar{G} &= \frac{1}{(l+2)(l-1)} \left[\frac{1}{f} \tilde{h}_{tt} - f\tilde{h}_{rr} + \frac{4(r-M)}{r^2} \tilde{j}_r + 2\frac{d\tilde{j}_r}{dr_*} \right], \\ 2f\bar{Q}^{tr} &= 0 = \frac{d^2\tilde{h}_{tr}}{dr_*^2} + \frac{4f}{r} \frac{d\tilde{h}_{tr}}{dr_*} + \left(\frac{2(2M^2 - r^2)}{r^4} - \frac{f}{r^2} \left(l(l+1) - 4 \right) \right) \tilde{h}_{tr}, \\ f\bar{Q}^{rr} + f^2 \tilde{Q}^b + f^3 \tilde{Q}^{tt} &= \frac{d^2\tilde{h}_{tt}}{dr_*^2} + \frac{2(r-4M)}{r^2} \frac{d\tilde{h}_{tt}}{dr_*} + \left(\frac{2M^2}{r^4} - \frac{f}{r^2} l(l+1) \right) \tilde{h}_{tt} + \frac{2Mf^2(3M - 2r)}{r^4} \tilde{h}_{rr} + \frac{4Mf^2}{r^3} \tilde{K}, \\ &\frac{1}{f} \bar{Q}^{rr} - \bar{Q}^b + f \bar{Q}^{tt} &= \frac{d^2\tilde{h}_{rr}}{dr_*^2} + \frac{4(r-M)}{r^2} \frac{d\tilde{h}_{rr}}{dr_*} + \frac{2}{fr} \frac{d\tilde{h}_{tt}}{dr_*} - \frac{4}{r} \frac{d\tilde{K}}{dr_*}, \\ &+ \left(\frac{2M^2}{r^4} - \frac{f}{r^2} \left(l(l+1) - 4 \right) \right) \tilde{h}_{rr} + \frac{2M(3M - 2r)}{f^2r^4} \tilde{h}_{tt}, - \frac{4(r-M)}{r^3} \tilde{K} \\ f^2 \bar{Q}^{tt} - \bar{Q}^{rr} &= \frac{d^2\tilde{K}}{dr_*^2} + \frac{4f}{r} \frac{d\tilde{K}}{dr_*} - \frac{1}{r} \frac{d\tilde{h}_{tt}}{dr_*} - \frac{f^2}{r} \frac{d\tilde{h}_{rr}}{dr_*} - \frac{f}{r^2} \left(l(l+1) - 2 \right) \tilde{K} + \frac{2M}{r^3} \tilde{h}_{tt} - \frac{2f^2(r+M)}{r^3} \tilde{h}_{rr}, \end{split}$$

Zero-frequency form of even-parity constrained equations

$$\begin{split} \tilde{j}_t &= \frac{1}{l(l+1)} \left[2(r-M)\tilde{h}_{tr} + r^2 \frac{d\tilde{h}_{tr}}{dr_*} \right], \\ \tilde{j}_r &= \frac{1}{l(l+1)} \left[2(r-M)\tilde{h}_{rr} - 2r\tilde{K} + \frac{r^2}{2} \frac{d\tilde{h}_{rr}}{dr_*} + \frac{r^2}{2f^2} \frac{d\tilde{h}_{tt}}{dr_*} - \frac{r^2}{f} \frac{d\tilde{K}}{dr_*} \right], \\ \tilde{G} &= \frac{1}{(l+2)(l-1)} \left[\frac{1}{f} \tilde{h}_{tt} - f\tilde{h}_{rr} + \frac{4(r-M)}{r^2} \tilde{j}_r + 2\frac{d\tilde{j}_r}{dr_*} \right], \\ 2f\tilde{Q}^{tr} &= 0 = \frac{d^2\tilde{h}_{tr}}{dr_*^2} + \frac{4f}{r} \frac{d\tilde{h}_{tr}}{dr_*} + \left(\frac{2(2M^2 - r^2)}{r^4} - \frac{f}{r^2} \left(l(l+1) - 4 \right) \right) \tilde{h}_{tr}, \\ f\tilde{Q}^{rr} + f^2 \tilde{Q}^b + f^3 \tilde{Q}^{tt} = \frac{d^2\tilde{h}_{tt}}{dr_*^2} + \frac{2(r-4M)}{r^2} \frac{d\tilde{h}_{tt}}{dr_*} + \left(\frac{2M^2}{r^4} - \frac{f}{r^2} l(l+1) \right) \tilde{h}_{tt} + \frac{2Mf^2(3M-2r)}{r^4} \tilde{h}_{rr} + \frac{4Mf^2}{r^3} \tilde{K}, \\ &\frac{1}{f} \tilde{Q}^{rr} - \tilde{Q}^b + f \tilde{Q}^{tt} = \frac{d^2\tilde{h}_{rr}}{dr_*^2} + \frac{4(r-M)}{r^2} \frac{d\tilde{h}_{rr}}{dr_*} + \frac{2}{fr} \frac{d\tilde{h}_{tt}}{dr_*} - \frac{4}{r} \frac{d\tilde{K}}{dr_*}, \\ &+ \left(\frac{2M^2}{r^4} - \frac{f}{r^2} \left(l(l+1) - 4 \right) \right) \tilde{h}_{rr} + \frac{2M(3M-2r)}{f^2r^4} \tilde{h}_{tt}, - \frac{4(r-M)}{r^3} \tilde{K} \\ f^2 \tilde{Q}^{tt} - \tilde{Q}^{rr} = \frac{d^2\tilde{K}}{dr_*^2} + \frac{4f}{r} \frac{d\tilde{K}}{dr_*} - \frac{1}{r} \frac{d\tilde{h}_{tt}}{dr_*} - \frac{f^2}{r} \frac{d\tilde{h}_{rr}}{dr_*} - \frac{f}{r^2} \left(l(l+1) - 2 \right) \tilde{K} + \frac{2M}{r^3} \tilde{h}_{tt} - \frac{2f^2(r+M)}{r^3} \tilde{h}_{rr}, \end{split}$$

Zero-frequency form of even-parity constrained equations

$$\begin{split} \tilde{j}_t &= 0, \\ \tilde{j}_r &= \frac{1}{l(l+1)} \left[2(r-M)\tilde{h}_{rr} - 2r\tilde{K} + \frac{r^2}{2}\frac{d\tilde{h}_{rr}}{dr_*} + \frac{r^2}{2f^2}\frac{d\tilde{h}_{tt}}{dr_*} - \frac{r^2}{f}\frac{d\tilde{K}}{dr_*} \right], \\ \tilde{G} &= \frac{1}{(l+2)(l-1)} \left[\frac{1}{f}\tilde{h}_{tt} - f\tilde{h}_{rr} + \frac{4(r-M)}{r^2}\tilde{j}_r + 2\frac{d\tilde{j}_r}{dr_*} \right], \end{split}$$

$$\tilde{h}_{tr} = 0$$

$$\begin{split} f \bar{Q}^{rr} + f^2 \bar{Q}^{\flat} + f^3 \bar{Q}^{tt} &= \frac{d^2 \bar{h}_{tt}}{dr_*^2} + \frac{2(r-4M)}{r^2} \frac{d\bar{h}_{tt}}{dr_*} + \left(\frac{2M^2}{r^4} - \frac{f}{r^2} l(l+1)\right) \bar{h}_{tt} + \frac{2Mf^2(3M-2r)}{r^4} \bar{h}_{rr} + \frac{4Mf^2}{r^3} \bar{K}, \\ &\frac{1}{f} \bar{Q}^{rr} - \bar{Q}^{\flat} + f \bar{Q}^{tt} = \frac{d^2 \bar{h}_{rr}}{dr_*^2} + \frac{4(r-M)}{r^2} \frac{d\bar{h}_{rr}}{dr_*} + \frac{2}{fr} \frac{d\bar{h}_{tt}}{dr_*} - \frac{4}{r} \frac{d\bar{K}}{dr_*} \\ &+ \left(\frac{2M^2}{r^4} - \frac{f}{r^2} (l(l+1)-4)\right) \bar{h}_{rr} + \frac{2M(3M-2r)}{f^2r^4} \bar{h}_{tt} - \frac{4(r-M)}{r^3} \bar{K}, \\ &f^2 \bar{Q}^{tt} - \bar{Q}^{rr} = \frac{d^2 \bar{K}}{dr_*^2} + \frac{4f}{r} \frac{d\bar{K}}{dr_*} - \frac{1}{r} \frac{d\bar{h}_{tt}}{dr_*} - \frac{f^2}{r} \frac{d\bar{h}_{rr}}{dr_*} - \frac{f}{r^2} (l(l+1)-2) \bar{K} + \frac{2M}{r^3} \bar{h}_{tt} - \frac{2f^2(r+M)}{r^3} \bar{h}_{rr}, \end{split}$$

Zero-frequency form of even-parity constrained equations

$$\begin{split} \tilde{j}_t &= \mathbf{0}, \\ \tilde{j}_r &= \frac{1}{l(l+1)} \left[2(r-M)\tilde{h}_{rr} - 2r\tilde{K} + \frac{r^2}{2}\frac{d\tilde{h}_{rr}}{dr_*} + \frac{r^2}{2f^2}\frac{d\tilde{h}_{tt}}{dr_*} - \frac{r^2}{f}\frac{d\tilde{K}}{dr_*} \right], \\ \tilde{G} &= \frac{1}{(l+2)(l-1)} \left[\frac{1}{f}\tilde{h}_{tt} - f\tilde{h}_{rr} + \frac{4(r-M)}{r^2}\tilde{j}_r + 2\frac{d\tilde{j}_r}{dr_*} \right], \end{split}$$

 $\tilde{h}_{tr} = 0,$

$$\begin{split} f \bar{Q}^{rr} + f^2 \bar{Q}^{\flat} + f^3 \bar{Q}^{tt} &= \frac{d^2 \bar{h}_{tt}}{dr_*^2} + \frac{2(r-4M)}{r^2} \frac{d\bar{h}_{tt}}{dr_*} + \left(\frac{2M^2}{r^4} - \frac{f}{r^2} l(l+1)\right) \bar{h}_{tt} + \frac{2Mf^2(3M-2r)}{r^4} \bar{h}_{rr} + \frac{4Mf^2}{r^3} \bar{K}, \\ &\frac{1}{f} \bar{Q}^{rr} - \bar{Q}^{\flat} + f \bar{Q}^{tt} = \frac{d^2 \bar{h}_{rr}}{dr_*^2} + \frac{4(r-M)}{r^2} \frac{d\bar{h}_{rr}}{dr_*} + \frac{2}{fr} \frac{d\bar{h}_{tt}}{dr_*} - \frac{4}{r} \frac{d\bar{K}}{dr_*} \\ &+ \left(\frac{2M^2}{r^4} - \frac{f}{r^2} (l(l+1)-4)\right) \bar{h}_{rr} + \frac{2M(3M-2r)}{f^2 r^4} \bar{h}_{tt} - \frac{4(r-M)}{r^3} \bar{K}, \\ &f^2 \bar{Q}^{tt} - \bar{Q}^{rr} = \frac{d^2 \bar{K}}{dr_*^2} + \frac{4f}{r} \frac{d\bar{K}}{dr_*} - \frac{1}{r} \frac{d\bar{h}_{tt}}{dr_*} - \frac{f^2}{r} \frac{d\bar{h}_{rr}}{dr_*} - \frac{f}{r^2} (l(l+1)-2) \bar{K} + \frac{2M}{r^3} \bar{h}_{tt} - \frac{2f^2(r+M)}{r^3} \bar{h}_{rr}, \end{split}$$

$$\begin{pmatrix} \tilde{h}_{tt} \\ \tilde{h}_{rr} \\ \tilde{K} \end{pmatrix} \simeq \frac{1}{r^{l+1}} \sum_{k=0}^{k_{\max}} \begin{bmatrix} \frac{1}{r^k} \begin{pmatrix} a_k^{(tt)} \\ a_k^{(rr)} \\ a_k^{(K)} \end{pmatrix} + \frac{1}{r^{k+2}} \begin{pmatrix} b_k^{(tt)} \\ b_k^{(rr)} \\ b_k^{(K)} \end{pmatrix} \ln\left(\frac{r}{M}\right) \end{bmatrix}.$$

Thomas Osburn Constrained solution, static and low-order modes

Importance of static mode at $r = r_p(t)$

Solution including the contribution from every frequency except $\omega = 0$

Importance of static mode at $r = r_p(t)$

Outline

- Constrained equations for radiative modes $(l\geq 2,\,\omega\neq 0)$
- Homogeneous solutions of constrained equations
- Particular solution of constrained equations (Extended homogeneous solutions)
- Static modes: constrained solution

$$(m=0, n=0 \Rightarrow \omega = 0)$$

- \bullet Low-order modes: constrained solution (l < 0, 1)
- Calculation of the dissipative self-force and results

• Eccentric orbits: Five cases to consider

(4) E (4) (4) E (4)

- Eccentric orbits: Five cases to consider
- $l = 0, m = 0, n \neq 0$: 4 unconstrained eqns, 2 gauge conditions \Rightarrow 2 constrained equations

伺下 イヨト イヨト

- Eccentric orbits: Five cases to consider
- $l = 0, m = 0, n \neq 0$: 4 unconstrained eqns, 2 gauge conditions $\Rightarrow 2$ constrained equations
- l = 0, m = 0, n = 0 ($\omega = 0$): 3 non-trivial unconstrained eqns, 1 non-trivial gauge condition \Rightarrow 2 constrained equations (different from above)

- Eccentric orbits: Five cases to consider
- $l = 0, m = 0, n \neq 0$: 4 unconstrained eqns, 2 gauge conditions \Rightarrow 2 constrained equations
- l = 0, m = 0, n = 0 ($\omega = 0$): 3 non-trivial unconstrained eqns, 1 non-trivial gauge condition \Rightarrow 2 constrained equations (different from above)
- $l = 1, m = 0, n \neq 0$: 2 unconstrained eqns, 1 gauge condition $\Rightarrow 1$ constrained equation

通 ト イヨ ト イヨ ト ・ ヨ ・ つ へ ()

- Eccentric orbits: Five cases to consider
- $l = 0, m = 0, n \neq 0$: 4 unconstrained eqns, 2 gauge conditions $\Rightarrow 2$ constrained equations
- l = 0, m = 0, n = 0 ($\omega = 0$): 3 non-trivial unconstrained eqns, 1 non-trivial gauge condition \Rightarrow 2 constrained equations (different from above)
- $l = 1, m = 0, n \neq 0$: 2 unconstrained eqns, 1 gauge condition $\Rightarrow 1$ constrained equation
- l = 1, m = 0, n = 0 ($\omega = 0$): No non-trivial gauge condition and 1 non-trivial field equation

▲母 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ● ● ●

- Eccentric orbits: Five cases to consider
- $l = 0, m = 0, n \neq 0$: 4 unconstrained eqns, 2 gauge conditions $\Rightarrow 2$ constrained equations
- l = 0, m = 0, n = 0 ($\omega = 0$): 3 non-trivial unconstrained eqns, 1 non-trivial gauge condition \Rightarrow 2 constrained equations (different from above)
- $l = 1, m = 0, n \neq 0$: 2 unconstrained eqns, 1 gauge condition $\Rightarrow 1$ constrained equation
- l = 1, m = 0, n = 0 ($\omega = 0$): No non-trivial gauge condition and 1 non-trivial field equation
- *l* = 1, *m* = ±1: 6 unconstrained equations, 3 gauge conditions ⇒ 4 partially constrained equations with 1 outstanding gauge condition

- Eccentric orbits: Five cases to consider
- $l = 0, m = 0, n \neq 0$: 4 unconstrained eqns, 2 gauge conditions $\Rightarrow 2$ constrained equations
- l = 0, m = 0, n = 0 ($\omega = 0$): 3 non-trivial unconstrained eqns, 1 non-trivial gauge condition \Rightarrow 2 constrained equations (different from above)
- $l = 1, m = 0, n \neq 0$: 2 unconstrained eqns, 1 gauge condition $\Rightarrow 1$ constrained equation
- l = 1, m = 0, n = 0 ($\omega = 0$): No non-trivial gauge condition and 1 non-trivial field equation
- *l* = 1, *m* = ±1: 6 unconstrained equations, 3 gauge conditions ⇒ 4 partially constrained equations with 1 outstanding gauge condition

Presently unclear if fully constrained (second order) equations can be found for $l=1,\,m=\pm 1$

▲日▼ ▲母▼ ▲日▼ ▲日▼ ヨー シタク

Outline

- Constrained equations for radiative modes $(l\geq 2,\,\omega\neq 0)$
- Homogeneous solutions of constrained equations
- Particular solution of constrained equations (Extended homogeneous solutions)
- Static modes: constrained solution

$$(m=0, n=0 \Rightarrow \omega = 0)$$

- Low-order modes: constrained solution (l < 0, 1)
- Calculation of the dissipative self-force and results

Self-force overview

• Standard mode-sum regularization approach

$$\begin{split} F^{\mu}_{\rm full}(x;x_{\rm p}) &= \mu \, k^{\mu\nu\gamma\delta}(x;x_{\rm p})\bar{p}_{\nu\gamma;\delta}, \\ F^{\mu} &= \sum_{l'=0}^{\infty} \left[F^{\mu l'}_{\rm full\pm} - A^{\mu}_{\pm}(l' + \frac{1}{2}) - B^{\mu} \right] \equiv \sum_{l'=0}^{\infty} F^{\mu l'}_{\rm reg}, \end{split}$$

• Scalar spherical harmoinc decomposition in l', m' modes for regularization

$$F_{\text{full}\pm}^{\mu} = \sum_{l'=0}^{\infty} F_{\text{full}\pm}^{\mu l'} = \sum_{l'=0}^{\infty} \sum_{m'=-l'}^{l'} Y_{l'm'}(\theta_p, \phi_p) \mathcal{A}_{\pm}^{\mu l'm'}$$

Self-force overview

• Standard mode-sum regularization approach

$$\begin{split} F^{\mu}_{\rm full}(x;x_{\rm p}) &= \mu \, k^{\mu\nu\gamma\delta}(x;x_{\rm p}) \bar{p}_{\nu\gamma;\delta}, \\ F^{\mu} &= \sum_{l'=0}^{\infty} \left[F^{\mu l'}_{\rm full\pm} - A^{\mu}_{\pm}(l' + \frac{1}{2}) - B^{\mu} \right] \equiv \sum_{l'=0}^{\infty} F^{\mu l'}_{\rm reg}, \end{split}$$

• Scalar spherical harmoinc decomposition in l', m' modes for regularization

$$F_{\text{full}\pm}^{\mu} = \sum_{l'=0}^{\infty} F_{\text{full}\pm}^{\mu l'} = \sum_{l'=0}^{\infty} \sum_{m'=-l'}^{l'} Y_{l'm'}(\theta_p, \phi_p) \mathcal{A}_{\pm}^{\mu l'm'},$$

• Tensor spherical harmoinc decomposition in l, m modes convenient except for regularization

$$F_{\text{full}\pm}^{\mu} = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} F_{\text{full}\pm}^{\mu \ lm} = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(\begin{array}{c} f_{lm}^{a} Y_{lm} \\ ----- \\ f_{lm}^{lm} Y_{lm}^{A} + f_{o}^{lm} X_{lm}^{A} \end{array} \right)_{\pm} = \sum_{l,m} \left(\begin{array}{c} f_{lm}^{t} Y_{lm} \\ f_{lm}^{lm} Y_{lm} \\ f_{lm}^{lm} Y_{lm}^{A} + f_{o}^{lm} X_{lm}^{A} \end{array} \right)_{\pm} = \sum_{l,m} \left(\begin{array}{c} f_{lm}^{t} Y_{lm} \\ f_{lm}^{lm} Y_{lm} \\ f_{e}^{lm} Y_{lm}^{A} + f_{o}^{lm} X_{lm}^{A} \end{array} \right)_{\pm} = \sum_{l,m} \left(\begin{array}{c} f_{lm}^{t} Y_{lm} \\ f_{lm}^{lm} Y_{lm} \\ f_{e}^{lm} Y_{lm}^{A} + f_{o}^{lm} X_{lm}^{A} \end{array} \right)_{\pm} = \sum_{l,m} \left(\begin{array}{c} f_{lm}^{t} Y_{lm} \\ f_{lm}^{lm} Y_{lm} \\ f_{e}^{lm} Y_{lm}^{A} + f_{o}^{lm} X_{lm}^{A} \end{array} \right)_{\pm} = \sum_{l,m} \left(\begin{array}{c} f_{lm}^{t} Y_{lm} \\ f_{lm}^{lm} Y_{lm} \\ f_{e}^{lm} Y_{lm}^{A} + f_{o}^{lm} X_{lm}^{A} \end{array} \right)_{\pm} = \sum_{l,m} \left(\begin{array}{c} f_{lm}^{lm} Y_{lm} \\ f_{lm}^{lm} Y_{lm} \\ f_{e}^{lm} Y_{lm}^{A} + f_{o}^{lm} X_{lm}^{A} \end{array} \right)_{\pm} = \sum_{l,m} \left(\begin{array}{c} f_{lm}^{lm} Y_{lm} \\ f_{lm}^{lm} Y_{lm} \\$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

• The dissipative self-force requires no regularization

$$\begin{split} p^{(\text{diss})}_{\mu\nu} &= \frac{1}{2} \left(p^{\text{ret}}_{\mu\nu} - p^{\text{adv}}_{\mu\nu} \right), \\ F^{\mu}_{(\text{diss})} &= F^{\mu}_{\text{full(diss)}} = \mu \, k^{\mu\nu\gamma\delta}(x;x_p) \bar{p}^{(\text{diss})}_{\nu\gamma;\delta}, \end{split}$$

• The dissipative self-force requires no regularization

$$\begin{split} p_{\mu\nu}^{(\text{diss})} &= \frac{1}{2} \left(p_{\mu\nu}^{\text{ret}} - p_{\mu\nu}^{\text{adv}} \right), \\ F_{(\text{diss})}^{\mu} &= F_{\text{full}(\text{diss})}^{\mu} = \mu \, k^{\mu\nu\gamma\delta}(x;x_p) \bar{p}_{\nu\gamma;\delta}^{(\text{diss})}, \end{split}$$

• Tensor and scalar spherical harmonic decompositions are equally valid

$$F^{\mu}_{(\text{diss})} = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} F^{\mu \ lm}_{(\text{diss})} \Rightarrow \text{tensor spherical harmonic } l, \ m \ \text{modes}$$

• The dissipative self-force requires no regularization

$$\begin{split} p_{\mu\nu}^{(\text{diss})} &= \frac{1}{2} \left(p_{\mu\nu}^{\text{ret}} - p_{\mu\nu}^{\text{adv}} \right), \\ F_{(\text{diss})}^{\mu} &= F_{\text{full(diss)}}^{\mu} = \mu \, k^{\mu\nu\gamma\delta}(x;x_p) \bar{p}_{\nu\gamma;\delta}^{(\text{diss})}, \end{split}$$

• Tensor and scalar spherical harmonic decompositions are equally valid

$$F^{\mu}_{(\text{diss})} = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} F^{\mu \ lm}_{(\text{diss})} \Rightarrow \text{tensor spherical harmonic } l, \ m \ \text{modes}$$

 $\bullet\,$ Individual tensor harmonic $l,\,m$ modes of the dissipative self-force contain physically relevant information

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• The dissipative self-force requires no regularization

$$\begin{split} p_{\mu\nu}^{(\text{diss})} &= \frac{1}{2} \left(p_{\mu\nu}^{\text{ret}} - p_{\mu\nu}^{\text{adv}} \right), \\ F_{(\text{diss})}^{\mu} &= F_{\text{full}(\text{diss})}^{\mu} = \mu \, k^{\mu\nu\gamma\delta}(x;x_p) \bar{p}_{\nu\gamma;\delta}^{(\text{diss})}, \end{split}$$

• Tensor and scalar spherical harmonic decompositions are equally valid

$$F^{\mu}_{(\text{diss})} = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} F^{\mu \ lm}_{(\text{diss})} \Rightarrow \text{tensor spherical harmonic } l, \ m \ \text{modes}$$

- $\bullet\,$ Individual tensor harmonic $l,\,m$ modes of the dissipative self-force contain physically relevant information
- How can we extract the effects of $F^{\mu \ lm}_{(\text{diss})}$ from $F^{\mu \ lm}_{\text{full}\pm}$?

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Full self-force in tensor harmonics (single l, m mode)

Energy flux and self-work (single $l, m \mod l$)

Energy flux and self-work (single $l, m \mod l$)

Thomas Osburn Constrained solution, static and low-order modes

Energy flux and self-work (single l, m mode)

Thomas Osburn Constrained solution, static and low-order modes

Angular momentum flux and torque (single l, m mode)

• Locally time-average torque from self-force

$$\begin{split} L &= \mu r_p^2 u^\phi \\ \langle \dot{L}_{lm}^{\rm torq} \rangle &= \frac{1}{T_r} \int_0^{T_r} r_p^2 \frac{d\tau}{dt} F_{\rm full\pm}^{\phi \ lm} dt \end{split}$$

• Compute angular momentum flux at $r \sim \infty$ and $r \simeq 2M$

• Locally time-average torque from self-force

$$L = \mu r_p^2 u^{\phi}$$

$$\langle \dot{L}_{lm}^{torq} \rangle = \frac{1}{T_r} \int_0^{T_r} r_p^2 \frac{d\tau}{dt} F_{\text{full}\pm}^{\phi \ lm} dt$$
• Compute angular momentum flux at $r \sim \infty$ and $r \simeq 2M$

$$\langle \dot{L}_{lm}^{\text{rad}} \rangle = \frac{m}{64\pi} \frac{(l+2)!}{(l-2)!} \sum_n \omega_{mn} \left(|C_{lmn}^+|^2 + |C_{lmn}^-|^2 \right) \frac{x/M}{\langle \dot{L}_{21} \rangle \ M/\mu^2}$$

$$F_{(\text{diss})}^{\phi \ lm} = \frac{1}{2} \left(F_{\text{full}\pm}^{\phi \ lm} (t) + F_{\text{full}\pm}^{\phi \ lm} (-t) \right)$$

$$e = 0.188917$$
Infinity side torque
Ang. momentum flux
Infinity side torque
I.39157808635 \times 10^{-5} I.39157808640 \times 10^{

e = 0.188917p = 7.50478

> Thomas Osburn Constrained solution, static and low-order modes

۲

۲

٢

۲

• We use the Lorenz gauge conditions to reduce the system of ODEs in size from 10 to 6 (2 odd-parity, 4 even-parity).

۲

٥

- We use the Lorenz gauge conditions to reduce the system of ODEs in size from 10 to 6 (2 odd-parity, 4 even-parity).
- Subdominance leads to numerical instabilities near r = 2M. Accounted for by using a Taylor expansion to give initial conditions away from the event horizon $(r_* \sim 0)$.

۲

- We use the Lorenz gauge conditions to reduce the system of ODEs in size from 10 to 6 (2 odd-parity, 4 even-parity).
- Subdominance leads to numerical instabilities near r = 2M. Accounted for by using a Taylor expansion to give initial conditions away from the event horizon $(r_* \sim 0)$.
- Method of extended homogeneous solutions successfully applied to a system of ODEs.

۲

- We use the Lorenz gauge conditions to reduce the system of ODEs in size from 10 to 6 (2 odd-parity, 4 even-parity).
- Subdominance leads to numerical instabilities near r = 2M. Accounted for by using a Taylor expansion to give initial conditions away from the event horizon $(r_* \sim 0)$.
- Method of extended homogeneous solutions successfully applied to a system of ODEs.
- Zero frequency modes (static modes) are special cases handled separately.
Conclusions

۰

- We use the Lorenz gauge conditions to reduce the system of ODEs in size from 10 to 6 (2 odd-parity, 4 even-parity).
- Subdominance leads to numerical instabilities near r = 2M. Accounted for by using a Taylor expansion to give initial conditions away from the event horizon $(r_* \sim 0)$.
- Method of extended homogeneous solutions successfully applied to a system of ODEs.
- Zero frequency modes (static modes) are special cases handled separately.
- Each low-order mode (l = 0, 1) is a special case handled separately. All except one can be solved by fully constraining the equations with the gauge conditions.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Conclusions

- We use the Lorenz gauge conditions to reduce the system of ODEs in size from 10 to 6 (2 odd-parity, 4 even-parity).
- Subdominance leads to numerical instabilities near r = 2M. Accounted for by using a Taylor expansion to give initial conditions away from the event horizon $(r_* \sim 0)$.
- Method of extended homogeneous solutions successfully applied to a system of ODEs.
- Zero frequency modes (static modes) are special cases handled separately.
- Each low-order mode (l = 0, 1) is a special case handled separately. All except one can be solved by fully constraining the equations with the gauge conditions.
- We calculate dissipative effects of the self-force by time averaging over a period and compare locally determined work and torque with energy and angular momentum fluxes.

= nar

Acknowledgements

Movie

《曰》 《聞》 《臣》 《臣》

■ のへぐ

Constrained low order mode example: Monopole

$$\begin{split} 0 &= -i\omega r^2 \tilde{h}_{tt} - i\omega f^2 r^2 \tilde{h}_{rr} - 2i\omega fr^2 \tilde{K} - 2fr^2 \frac{d\tilde{h}_{tr}}{dr_*} - 4f(r-M)\tilde{h}_{tr}, \\ 0 &= 4f(r-M)\tilde{h}_{rr} - 2r^2 \frac{d\tilde{K}}{dr_*} - 4fr\tilde{K} + fr^2 \frac{d\tilde{h}_{rr}}{dr_*} + \frac{r^2}{f} \frac{d\tilde{h}_{tt}}{dr_*} + 2i\omega r^2 \tilde{h}_{tr}, \\ -f\bar{Q}^{rr} - f^2 \bar{Q}^{\flat} - f^3 \bar{Q}^{tt} = \frac{d^2 \tilde{h}_{tt}}{dr_*^2} + \frac{2(r-4M)}{r^2} \frac{d\tilde{h}_{tt}}{dr_*} + \left(\omega^2 + \frac{2M^2}{r^4}\right) \tilde{h}_{tt} \\ &+ \frac{2Mf^2(3M-2r)}{r^4} \tilde{h}_{rr} - \frac{4iM\omega f}{r^2} \tilde{h}_{tr} + \frac{4Mf^2}{r^3} \tilde{K}, \\ -\frac{1}{f} \bar{Q}^{rr} + \bar{Q}^{\flat} - f\bar{Q}^{tt} = \frac{d^2 \tilde{h}_{rr}}{dr_*^2} + \frac{2}{r} \frac{d\tilde{h}_{rr}}{dr_*} + \left(\omega^2 - \frac{2(2r^2 - 8Mr + 7M^2)}{r^4}\right) \tilde{h}_{rr} \\ &+ \frac{2M(3M-2r)}{f^2r^4} \tilde{h}_{tt} - \frac{4iM\omega}{fr^2} \tilde{h}_{tr} + \frac{4(r-3M)}{r^3} \tilde{K}, \\ 2f\bar{Q}^{tr} = \frac{d^2 \tilde{h}_{rr}}{dr_*^2} + \frac{2f}{r} \frac{d\tilde{h}_{rr}}{dr_*} + \left(\omega^2 - \frac{2(r^2 - 2Mr + 2M^2)}{r^4}\right) \tilde{h}_{tr} - \frac{2iM\omega}{fr^2} \tilde{h}_{tt} - \frac{2ifM\omega}{r^2} \tilde{h}_{rr}, \\ -f^2 \bar{Q}^{tt} + \bar{Q}^{rr} = \frac{d^2 \tilde{K}}{dr_*^2} + \frac{2f}{r} \frac{d\tilde{K}}{dr_*} + \left(\omega^2 - \frac{2(r(r-4M))}{r^3}\right) \tilde{K} + \frac{2M}{r^3} \tilde{h}_{tt} - \frac{2f^2(3M-r)}{r^3} \tilde{h}_{rr}, \end{split}$$

Constrained low order mode example: Monopole

$$\begin{split} 0 &= -i\omega r^2 \tilde{h}_{tt} - i\omega f^2 r^2 \tilde{h}_{rr} - 2i\omega fr^2 \tilde{K} - 2fr^2 \frac{d\tilde{h}_{tr}}{dr_*} - 4f(r-M)\tilde{h}_{tr}, \\ 0 &= 4f(r-M)\tilde{h}_{rr} - 2r^2 \frac{d\tilde{K}}{dr_*} - 4fr\tilde{K} + fr^2 \frac{d\tilde{h}_{rr}}{dr_*} + \frac{r^2}{f} \frac{d\tilde{h}_{tt}}{dr_*} + 2i\omega r^2 \tilde{h}_{tr}, \\ -f\bar{Q}^{rr} - f^2 \bar{Q}^{\flat} - f^3 \bar{Q}^{tt} = \frac{d^2 \tilde{h}_{tt}}{dr_*^2} + \frac{2(r-4M)}{r^2} \frac{d\tilde{h}_{tt}}{dr_*} + \left(\omega^2 + \frac{2M^2}{r^4}\right) \tilde{h}_{tt} \\ &+ \frac{2Mf^2(3M-2r)}{r^4} \tilde{h}_{rr} - \frac{4iM\omega f}{r^2} \tilde{h}_{tr} + \frac{4Mf^2}{r^3} \tilde{K}, \\ -\frac{1}{f} \bar{Q}^{rr} + \bar{Q}^{\flat} - f \bar{Q}^{tt} = \frac{d^2 \tilde{h}_{rr}}{dr_*^2} + \frac{2}{r} \frac{d\tilde{h}_{rr}}{dr_*} + \left(\omega^2 - \frac{2(2r^2 - 8Mr + 7M^2)}{r^4}\right) \tilde{h}_{rr} \\ &+ \frac{2M(3M-2r)}{f^2r^4} \tilde{h}_{tt} - \frac{4iM\omega}{fr^2} \tilde{h}_{tr} + \frac{4(r-3M)}{r^3} \tilde{K}, \\ 2f \bar{Q}^{tr} = \frac{d^2 \tilde{h}_{tr}}{dr_*^2} + \frac{2f}{r} \frac{d\tilde{h}_{tr}}{dr_*} + \left(\omega^2 - \frac{2(r^2 - 2Mr + 2M^2)}{r^4}\right) \tilde{h}_{tr} - \frac{2iM\omega}{fr^2} \tilde{h}_{tt} - \frac{2ifM\omega}{r^2} \tilde{h}_{rr}, \\ -f^2 \bar{Q}^{tt} + \bar{Q}^{rr} = \frac{d^2 \tilde{K}}{dr_*^2} + \frac{2f}{r} \frac{d\tilde{K}}{dr_*} + \left(\omega^2 - \frac{2(r(r-4M)}{r^3}\right) \tilde{K} + \frac{2M}{r^3} \tilde{h}_{tt} - \frac{2f^2(3M-r)}{r^3} \tilde{h}_{rr}, \end{split}$$

$$\begin{split} \tilde{h}_{tt} &= \frac{i(r^4\omega^2 + 6r^2 - 12Mr + 4M^2)}{2r^3\omega} \tilde{h}_{tr} + \left(\frac{5M}{r} - 3\right) \tilde{K} + \frac{i(3r^2 - 10Mr + 8M^2)}{fr^2\omega} \frac{d\tilde{h}_{tr}}{dr_*} - r\frac{d\tilde{K}}{dr_*} + \frac{ir}{2\omega} \frac{d^2\tilde{h}_{tr}}{dr_*^2}, \\ \tilde{h}_{rr} &= -\frac{i(r^4\omega^2 - 2r^2 + 12Mr - 12M^2)}{2f^2r^3\omega} \tilde{h}_{tr} + \frac{r - M}{f^2r} \tilde{K} - \frac{i}{f^2\omega} \frac{d\tilde{h}_{tr}}{dr_*} + \frac{r}{f^2} \frac{d\tilde{K}}{dr_*} - \frac{ir}{2f^2\omega} \frac{d^2\tilde{h}_{tr}}{dr_*^2}. \end{split}$$

Constrained low order mode example: Monopole

$$\begin{split} 0 &= -i\omega r^2 \tilde{h}_{tt} - i\omega f^2 r^2 \tilde{h}_{rr} - 2i\omega fr^2 \tilde{K} - 2fr^2 \frac{d\tilde{h}_{tr}}{dr_*} - 4f(r-M)\tilde{h}_{tr}, \\ 0 &= 4f(r-M)\tilde{h}_{rr} - 2r^2 \frac{d\tilde{K}}{dr_*} - 4fr\tilde{K} + fr^2 \frac{d\tilde{h}_{rr}}{dr_*} + \frac{r^2}{f} \frac{d\tilde{h}_{tt}}{dr_*} + 2i\omega r^2 \tilde{h}_{tr}, \\ -f\bar{Q}^{rr} - f^2 \tilde{Q}^{\flat} - f^3 \tilde{Q}^{tt} = \frac{d^2 \tilde{h}_{tt}}{dr_*^2} + \frac{2(r-4M)}{r^2} \frac{d\tilde{h}_{tt}}{dr_*} + \left(\omega^2 + \frac{2M^2}{r^4}\right) \tilde{h}_{tt} \\ &+ \frac{2Mf^2(3M-2r)}{r^4} \tilde{h}_{rr} - \frac{4iM\omega f}{r^2} \tilde{h}_{tr} + \frac{4Mf^2}{r^3} \tilde{K}, \\ -\frac{1}{f} \tilde{Q}^{rr} + \tilde{Q}^{\flat} - f \tilde{Q}^{tt} = \frac{d^2 \tilde{h}_{rr}}{dr_*^2} + \frac{2}{r} \frac{d\tilde{h}_{rr}}{dr_*} + \left(\omega^2 - \frac{2(2r^2 - 8Mr + 7M^2)}{r^4}\right) \tilde{h}_{rr} \\ &+ \frac{2M(3M-2r)}{f^2r^4} \tilde{h}_{tt} - \frac{4iM\omega}{fr^2} \tilde{h}_{tr} + \frac{4(r-3M)}{r^3} \tilde{K}, \\ 2f \tilde{Q}^{tr} = \frac{d^2 \tilde{h}_{tr}}{dr_*^2} + \frac{2f}{r} \frac{d\tilde{h}_{tr}}{dr_*} + \left(\omega^2 - \frac{2(r^2 - 2Mr + 2M^2)}{r^4}\right) \tilde{h}_{tr} - \frac{2iM\omega}{fr^2} \tilde{h}_{tr} - \frac{2ifM\omega}{r^2} \tilde{h}_{rr}, \\ -f^2 \tilde{Q}^{tt} + \tilde{Q}^{rr} = \frac{d^2 \tilde{K}}{dr_*^2} + \frac{2f}{r} \frac{d\tilde{h}_{r}}{dr_*} + \left(\omega^2 - \frac{2(r^2 - 2Mr + 2M^2)}{r^4}\right) \tilde{K} + \frac{2f^2(3M - r)}{r^3} \tilde{h}_{rr}, \\ \tilde{h}_{tt} = \frac{i(r^4 \omega^2 + 6r^2 - 12Mr + 4M^2)}{2r^3 \omega} \tilde{h}_{tr} + \left(\frac{5M}{r} - 3\right) \tilde{K} + \frac{i(3r^2 - 10Mr + 8M^2)}{fr^2 \omega} \frac{d\tilde{h}_{tr}}{dr_*} - r \frac{d\tilde{K}}{dr_*} + \frac{ir}{2\omega} \frac{d^2 \tilde{h}_{tr}}{dr_*^2}, \\ \tilde{h}_{rr} = -\frac{i(r^4 \omega^2 - 2r^2 + 12Mr - 12M^2)}{2f^2 r^3 \omega} \tilde{h}_{tr} + \frac{r-M}{f^2 r} \tilde{K} - \frac{i}{f^2 \omega} \frac{d\tilde{h}_{tr}}{dr_*} + \frac{r}{f^2} \frac{d\tilde{K}}{dr_*} - \frac{ir}{2f^2 \omega} \frac{d^2 \tilde{h}_{tr}}{dr_2}. \end{split}$$

Thomas Osburn Constrained solution, static and low-order modes

A 3 6 A 3 6

Even-parity results

Test jump conditions

Odd-parity constrained, causal homogeneous solutions

$$\left(\begin{array}{c} \tilde{h}_t \\ \tilde{h}_r \end{array} \right)_0^- \sim \left(\begin{array}{c} 1 \\ 1/f \end{array} \right) e^{-i\omega r_*},$$

$$\left(\begin{array}{c} \tilde{h}_t\\ \tilde{h}_r\end{array}\right)_0^+ \sim \left(\begin{array}{c} 1\\ -1\end{array}\right) e^{+i\omega r_*},$$

$$\left(\begin{array}{c}\tilde{h}_t\\\tilde{h}_r\end{array}\right)_1^- \sim \left(\begin{array}{c}f\\-1\end{array}\right)e^{-i\omega r_*},\qquad\qquad \left(\begin{array}{c}\tilde{h}_t\\\tilde{h}_r\end{array}\right)_1^+ \sim \frac{1}{r}\left(\begin{array}{c}1\\1\end{array}\right)e^{+i\omega r_*}.$$

Even-parity constrained, causal homogeneous solutions

$$\begin{pmatrix} \tilde{h}_{tt} \\ \tilde{h}_{tr} \\ \tilde{h}_{rr} \\ \tilde{K} \end{pmatrix}_{0}^{-} \sim \begin{pmatrix} 1 \\ 1/f \\ 1/f^{2} \\ 0 \end{pmatrix} e^{-i\omega r_{*}}, \qquad \begin{pmatrix} \tilde{h}_{tt} \\ \tilde{h}_{tr} \\ \tilde{h}_{rr} \\ \tilde{K} \end{pmatrix}_{0}^{+} \sim \frac{1}{r} \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} e^{+i\omega r_{*}},$$

$$\begin{pmatrix} \tilde{h}_{tt} \\ \tilde{h}_{rr} \\ \tilde{K} \end{pmatrix}_{1}^{-} \sim f \begin{pmatrix} 1 \\ -1/f \\ 0 \\ 2/(4i\omega M - 1) \end{pmatrix} e^{-i\omega r_{*}}, \qquad \begin{pmatrix} \tilde{h}_{tt} \\ \tilde{h}_{tr} \\ \tilde{K} \end{pmatrix}_{1}^{+} \sim \frac{1}{r} \begin{pmatrix} 0 \\ 1 \\ -2 \\ 0 \end{pmatrix} e^{+i\omega r_{*}},$$

$$\begin{pmatrix} \tilde{h}_{tt} \\ \tilde{h}_{rr} \\ \tilde{K} \end{pmatrix}_{2}^{-} \sim f^{2} \begin{pmatrix} 1 \\ -1/f \\ 1/f^{2} \\ 0 \end{pmatrix} e^{-i\omega r_{*}}, \qquad \begin{pmatrix} \tilde{h}_{tt} \\ \tilde{h}_{rr} \\ \tilde{K} \end{pmatrix}_{2}^{+} \sim \frac{1}{r^{2}} \begin{pmatrix} 0 \\ 1 \\ -2 \\ 1 \end{pmatrix} e^{+i\omega r_{*}},$$

$$\begin{pmatrix} \tilde{h}_{tt} \\ \tilde{h}_{rr} \\ \tilde{K} \end{pmatrix}_{3}^{-} \sim \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} e^{-i\omega r_{*}}, \qquad \begin{pmatrix} \tilde{h}_{tt} \\ \tilde{h}_{rr} \\ \tilde{K} \end{pmatrix}_{3}^{+} \sim \frac{1}{r^{3}} \begin{pmatrix} 0 \\ 0 \\ -2 \\ 1 \end{pmatrix} e^{+i\omega r_{*}}$$