Structure of the retarded scalar Green function on Schwarzschild spacetime.

Brien Nolan
Dublin City University
Capra 16, July 2013

Joint work with Marc Casals, UCD \rightarrow CBPF

Structure of the retarded scalar Green function on Schwarzschild spacetime.

Brien Nolan
Dublin City University
Capra 16, July 2013

Joint work with Marc Casals, UCD $\curvearrowright \rightarrow \upharpoonright 〉 \rightleftarrows \rightsquigarrow C B P F$

Self-force

- GW astronomy: need for accurate results describing the 2-body motion of a small black hole (m) in the field of a large black hole (M).
- Calculate the self-force of the small black hole, and treat the motion as the deviation from a geodesic of the background gravitational field of the large black hole or as a geodesic of the perturbed spacetime.
- Work with the scalar field toy model.
- Equation of motion (scalar version of MiSaTaQuWa):

$$
m a^{\alpha}=q\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right) \nabla_{\beta} \Phi_{\mathrm{rad}}
$$

- The term required is
$\nabla_{\alpha} \Phi_{\mathrm{rad}}=$ local stuff $+q \lim _{\epsilon \rightarrow 0^{+}} \int_{-\infty}^{\tau-\epsilon} \nabla_{\alpha} G_{\mathrm{ret}}\left(z(\tau), z\left(\tau^{\prime}\right)\right) d \tau^{\prime}$, where $G_{\mathrm{ret}}\left(x, x^{\prime}\right)$ is the retarded Green's function, satisfying
$\square G_{\text {ret }}\left(x, x^{\prime}\right)=-4 \pi \delta_{4}\left(x, x^{\prime}\right), \quad G_{\text {ret }}\left(x, x^{\prime}\right)=0$ if $x \notin J^{+}\left(x^{\prime}\right)$.
- $N B G_{\text {ret }}$ is required globally.

Local representation: Hadamard form of $G_{\text {ret }}$

- Within a convex normal neighbourhood \mathcal{N} of x^{\prime},

$$
G_{\mathrm{ret}}\left(x, x^{\prime}\right)=\left[U\left(x, x^{\prime}\right) \delta\left(\sigma\left(x, x^{\prime}\right)\right)+V\left(x, x^{\prime}\right) \theta\left(-\sigma\left(x, x^{\prime}\right)\right)\right] \theta\left(t-t^{\prime}\right)
$$

where $\sigma\left(x, x^{\prime}\right)$ is Synge's world function, δ, θ are the usual distributions.

- Given σ, there is an algorithm for generating U, V (involves solving transport equations for the Hadamard coefficients V_{k} of V).
- But this form is not valid once light-crossings occur ($\Delta t=27.62 \mathrm{M}$ for circular geodesic at $r=6 \mathrm{M}$).

$G_{\text {ret }}$ on Schwarzschild

- Useful simplification:

$$
G_{\mathrm{ret}}\left(x, x^{\prime}\right)=\frac{1}{r \cdot r^{\prime}} \hat{G}_{\mathrm{ret}}\left(x, x^{\prime}\right),
$$

where $\hat{G}_{\text {ret }}$ is the retarded Green function for the conformally invariant wave equation on the conformal Schwarzschild spacetime with line element

$$
\begin{equation*}
d \hat{s}^{2}=-\frac{f(r)}{r^{2}}\left(d t^{2}-d r_{*}^{2}\right)+d \Omega^{2} \tag{1}
\end{equation*}
$$

where $f(r)=1-2 M / r$ and r_{*} is the usual tortoise coordinate.

Null separations

- $\hat{\sigma}_{4}=\sigma\left(x^{A}, x^{A^{\prime}}\right)+\frac{1}{2} \gamma^{2}$, where $\sigma\left(x^{A}, x^{A^{\prime}}\right)$ is the 2-dim the world function, γ is geodesic distance on the unit 2-sphere.
- Furthermore, we can write (globally) $\sigma=-\frac{1}{2} \eta^{2}$ where η is geodesic distance along a causal geodesic in M_{2}.
- Then a null geodesic connects $\left(x, x^{\prime}\right)$ in Schwarzschild iff ditto in conformal Schwarzschild iff $\hat{\sigma}_{k}^{\text {even/odd }}=0$ where

$$
\hat{\sigma}_{k}^{\text {even/odd }}=-\frac{1}{2} \eta^{2}+\frac{1}{2}(\gamma \pm 2 k \pi)^{2}
$$

and even/odd refers to the number of light-crossings that the geodesic has passed through.

Mode sum decomposition

- Separation of variables:

$$
\hat{G}_{\mathrm{ret}}\left(x, x^{\prime}\right)=\frac{1}{4 \pi} \sum_{\ell=0}^{\infty}(2 \ell+1) \mathcal{G}_{\ell}\left(x^{A}, x^{A^{\prime}}\right) P_{\ell}(\cos \gamma)
$$

where P_{ℓ} are Legendre polynomials and \mathcal{G}_{ℓ} satisfies the PDE for the Green function on the $1+1$ dimensional spacetime with line element

$$
d s^{2}=-\frac{f(r)}{r^{2}}\left(d t^{2}-d r_{*}^{2}\right)
$$

- The relevant $1+1$ dim wave equation is

$$
P \phi-\lambda^{2} \phi=\square \phi-\left(\lambda^{2}+\frac{1}{4}\left(1-\frac{8 M}{r}\right)\right) \phi=0,
$$

where $\lambda=\ell+\frac{1}{2}$.

- A large body of work on this equation then moves to the frequency domain: write $\phi\left(t, r_{*}\right)=\sum_{\omega} \bar{\phi}\left(r_{*} ; \omega\right) e^{i \omega t}$, which yields the Regge-Wheeler equation for $\bar{\phi}$. Proceed by analysing the spectrum: QNM, branch cut, large frequency arc (Casals - previous talk).
- Our aim is to apply PDE theory to the $1+1$ dimensional problem, and then resum to obtain $G_{\text {ret }}$.
- Principal technique: large- ℓ expansion for \mathcal{G}_{ℓ}.

The spacetime M_{2}.

- A theoretical advantage is present: the $1+1$ dimensional spacetime M_{2} is (almost certainly) a causal domain (geodesically convex with a certain causality condition).
- Theorem: If Ω is a causal domain, then the results of Friedlander's book apply on Ω.
- In particular, results that are typically valid only locally in $3+1$ are globally valid for the $1+1$ problem.

M_{2} is (almost certainly) a causal domain.

- Geodesic convexity: there is a unique geodesic connecting every pair $\left(t, r_{*}\right)$ and ($\left.t^{\prime}, r_{*}^{\prime}\right)$.
- Only timelike separations cause any difficulty:

$$
\left(\frac{d r_{*}}{d t}\right)^{2}=1-\frac{\alpha\left(r_{*}\right)}{E^{2}}, \quad \alpha\left(r_{*}\right)=\frac{1}{r^{2}}\left(1-\frac{2 m}{r}\right)
$$

- Most uniqueness problems are resolved simply by comparing slopes.
- Not so straightforward for particles with sub-critical energies $E<E_{0}=1 /(3 \sqrt{3} m)$ which reflect off the potential barrier at $r_{+}=r_{+}(E)$.

- A geodesic from r_{0} and sub-critical energy E arrives at the potential barrier after time

$$
\Delta t=\int_{r_{+}(E)}^{r_{0}} \frac{f^{-1}}{\sqrt{1-\frac{f}{E^{2} r^{2}}}} d r
$$

- Lemma 1: If $E_{1}<E_{2}<E_{0}$, then $r_{+}\left(E_{1}\right)>r_{+}\left(E_{2}\right)>3 m$ (that is, $\frac{d r_{+}}{d E}<0$).
- Lemma 2: If $\frac{d(\Delta t)}{d E}>0$, then geodesics are unique.

Figure: Arrival time for geodesics from $r=6 \mathrm{M}$.

- The causality condition required is the following: for all pairs of points $p, q \in M_{2}$, the set

$$
J^{+}(p) \cap J^{-}(q)
$$

is either compact or empty.

- $J^{ \pm}(p)=\overline{D^{ \pm}(p)}$, the closure of the chronological future (past) of $p \in M_{2}$.
- Thanks to global conformal flatness of M_{2}, the sets in question are either empty or are closed rectangles with sides at $\pm 45^{\circ}$.

Hadarmard-Bessel series

- Back to the main theme: large- ℓ asymptotics of

$$
\frac{1}{r^{2} f}\left(-\partial_{t}^{2} \phi+\partial_{r_{*}}^{2} \phi\right)-\left(\lambda^{2}+\frac{1}{4}\left(1-\frac{8 M}{r}\right)\right) \phi=0 .
$$

Hadarmard-Bessel series

- Back to the main theme: large- ℓ asymptotics of

$$
\frac{1}{r^{2} f}\left(-\partial_{t}^{2} \phi+\partial_{r_{*}}^{2} \phi\right)-\left(\lambda^{2}+\frac{1}{4}\left(1-\frac{8 M}{r}\right)\right) \phi=0 .
$$

- Lewis, Keller, Bleistein, others (NYU, 1960's): $\sum_{k} a_{k}(x) e^{i \lambda s} /\left(i \lambda^{k}\right)$.

Hadarmard-Bessel series

- Back to the main theme: large- ℓ asymptotics of

$$
\frac{1}{r^{2} f}\left(-\partial_{t}^{2} \phi+\partial_{r_{*}}^{2} \phi\right)-\left(\lambda^{2}+\frac{1}{4}\left(1-\frac{8 M}{r}\right)\right) \phi=0 .
$$

- Lewis, Keller, Bleistein, others (NYU, 1960's): $\sum_{k} a_{k}(x) e^{i \lambda s} /\left(i \lambda^{k}\right)$.
- The following result is due to Zauderer; cited in Friedlander.

$$
\mathcal{G}_{\ell}\left(x^{A}, x^{A^{\prime}}\right)=\frac{1}{2} \sum_{k=0}^{\infty} U_{k}\left(\frac{2 \eta}{\lambda}\right)^{k} J_{k}(\lambda \eta) \theta(-\sigma) \theta(\Delta t)
$$

- J_{k} are Bessel functions;
- $\sigma=-\eta^{2} / 2$ where η is the 2-dim geodesic distance;
- U_{k} are the Hadamard coefficients for the retarded Green function of the operator P - that is, for the equation above with $\lambda=0$.
- The U_{k} satisfy certain recurrence relations in the form of transport equations along the geodesic from x^{A} to $x^{A^{\prime}}$.
- These coefficients and the series for \mathcal{G}_{ℓ} are defined globally on M_{2}.
- The result is not perturbative: holds for all $\lambda \in \mathbb{C} \backslash\{0\}$.

Large- ℓ expansion: singularity structure of $G_{\text {ret }}$

- We apply a large-argument asymptotic expansion for the Bessel functions (large $-\lambda$ - i.e. large $-\ell$).
- Collecting inverse powers of λ and resumming allows us to identify the singular and the non-singular (continuous) parts of $G_{\text {ret }}$:

$$
\begin{aligned}
G_{\mathrm{ret}}^{\operatorname{sing}}= & \frac{2}{r \cdot r^{\prime}} \frac{U_{0}}{\eta^{1 / 2} \sqrt{\sin \gamma}} \times \sum_{k=0}^{\infty}(-1)^{k}\{ \\
& {\left[\delta(\eta-(\gamma+2 k \pi))+\mu_{0}^{-}(\eta, \gamma) \theta(\eta-(\gamma+2 k \pi))\right] } \\
& \left.+\frac{1}{\pi}\left[\operatorname{PV}\left(\frac{1}{\eta-(2 k \pi-\gamma)}\right)+\mu_{0}^{+}(\eta, \gamma) \ln |\eta-(2 k \pi-\gamma)|\right]\right\} \\
& \mu_{0}^{ \pm}=\frac{1}{8}\left(\cot \gamma \pm \frac{1}{\eta} \pm 16 \eta \frac{U_{1}}{U_{0}}\right)
\end{aligned}
$$

Comments

- Ori's observation: spherical symmetry induces a 4-fold recursion in the singularity structure of the retarded Green's function as successive caustics are met:

$$
\delta(\sigma) \rightarrow P V\left(\frac{1}{\sigma}\right) \rightarrow-\delta(\sigma) \rightarrow-P V\left(\frac{1}{\sigma}\right) \rightarrow \delta(\sigma) \rightarrow \cdots
$$

- Established in general spacetimes via Penrose limits by Harte \& Drivas; see also previous work in Schwarzschild by Dolan \& Ottewill and in $\mathbb{M}_{2} \times \mathbb{S}_{2}$ by Casals \& Nolan.
- Four-fold recursion demonstrated for the "tail" term: $\theta \rightarrow \log \rightarrow \cdots$.
- The result above identifies exactly the locations of the singularities at $\hat{\sigma}_{k}^{\text {even/odd }}=0$.

Calculations

- Ultimate aim is to calculate $G_{\text {ret }}\left(t, r, \theta, \phi ; t^{\prime}, r^{\prime}, \theta^{\prime}, \phi^{\prime}\right)$ for pairs of points on the orbit of the small black hole.
- Consider geodesic motion: $G_{\text {ret }}\left(\Delta t, r, r^{\prime}, \gamma\right)$.
- Given inputs $\Delta t, r, r^{\prime}$, we must first determine the timelike geodesic of M_{2} that connects (t, r) and (t^{\prime}, r^{\prime}), and calculate the total proper time η_{*} along this geodesic segment.
- Solve transport equations $\left(\eta \frac{d X}{d \eta}=f(X, \eta)\right)$ for N variables along this geodesic (cf. Ottewill and Wardell) to determine $U_{0}(N=6)$ and $U_{1}(N=96)$.
- This yields one data point on the graph of $G_{\text {ret }}(\Delta t)$.

Transport equations

- In 2-d, U_{0} is the square root of the van Vleck determinant:

$$
U_{0}=\Delta^{1 / 2} \quad \Leftrightarrow \quad \sigma^{A} \nabla_{A} U_{0}=(1-\square \sigma) U_{0}, \quad\left[U_{0}\right]=1
$$

- The transport equations are

$$
2 \sigma^{A} \nabla_{A} U_{k}+(\square \sigma+2(k-1)) U_{k}=\frac{1}{2} P U_{k-1}, \quad k \geq 1
$$

Figure: Decay of $U_{0}=\Delta^{1 / 2}$ for $r=r^{\prime}=6 M$.

Figure: Log-plot of approximations to $G_{\text {ret }}$ as functions of Δt for points on a timelike circular geodesic at $r=6 \mathrm{M}$. Cyan: the Bessel expansion including just the $k=0$ term, summed up to $\ell=100$. Brown: leading order in the large- ℓ expansion including only the $k=0$ term. Green: QNM sum. Blue: large- ℓ asymptotics in the QNM sum. First two due to Casals; last two due to Casals, Dolan, Ottewill and Wardell.

$G_{\text {ret }}$ as a sum over Hadamard forms

- Begin with $G_{\text {ret }}=\sum_{\ell} \mathcal{G}_{\ell} P_{\ell}$,

$$
\mathcal{G}_{\ell}\left(x^{A}, x^{A^{\prime}}\right)=\frac{1}{2} \sum_{k=0}^{\infty} U_{k}\left(\frac{2 \eta}{\lambda}\right)^{k} J_{k}(\lambda \eta) \theta(-\sigma) \theta(\Delta t)
$$

- Expand $P_{\ell}(\cos \gamma)$ in Bessel functions:

$$
P_{\ell}(\cos \gamma)=\sum_{j=0}^{\infty} \alpha_{j}(\gamma) \frac{J_{j}(\lambda \gamma)}{\lambda^{j}}
$$

- Expand Bessel functions:

$$
\begin{aligned}
J_{k}(\lambda x) & =\frac{1}{\sqrt{2 \pi \lambda x}} \sum_{m=0}^{\infty} E_{m}\left(\lambda x-\frac{\pi}{2} k-\frac{\pi}{4}\right) \frac{a_{k, m}}{(2 x)^{m} \lambda^{m}} \\
E_{k}(x) & =\frac{e^{i k \pi / 2}}{2}\left(e^{i x}+(-1)^{k} e^{-i x}\right)
\end{aligned}
$$

- Expand sums, collect powers of λ (Cauchy product formula).
- Re-expand in powers of ℓ and collect terms by phase,
- This results in

$$
G_{\mathrm{ret}}^{\ell \geq 1}=\sum_{k=0}^{\infty}\left(\sum_{\ell=1}^{\infty} \frac{e^{ \pm i \ell(\eta \pm \gamma)}}{\ell^{k}}\right) V_{k}^{(\pm, \pm)}(\eta, \gamma)
$$

- Define

$$
\mathcal{A}_{k}(x)=\sum_{\ell=1}^{\infty} \frac{e^{i \ell x}}{\ell^{k}}
$$

Then

$$
\mathcal{A}_{1}(x)=\mathcal{D}(x)+i \mathcal{U}(x)
$$

with

$$
\begin{aligned}
& \mathcal{D}(x)=-\ln |x|-2 \sum_{n=0}^{\infty} \ln \left|1-\frac{x^{2}}{4 n^{2} \pi^{2}}\right| \\
& \mathcal{U}(x)=\frac{1}{2}(\pi-x)+\pi \sum_{n=1}^{\infty}[\theta(x-2 n \pi)-\theta(-x-2 n \pi)]-\pi \theta(-x)
\end{aligned}
$$

- Notice that

$$
\mathcal{A}_{k}(x)=\underbrace{\mathcal{A}_{k}(0)}_{=\zeta(k)}+i \int_{0}^{x} \mathcal{A}_{k-1}(y) d y, \quad k \geq 2
$$

and

$$
\mathcal{A}_{0}(x)=-i \mathcal{A}_{1}^{\prime}(x)=\sum \mathrm{PV}+\delta
$$

- Thus we have the regularity results

$$
\mathcal{A}_{k} \in C^{k-2}(\mathbb{R}), \quad \mathcal{A}_{k}^{(k-1)} \in L_{\mathrm{loc}}^{1}(\mathbb{R})
$$

- The overall structure is

$$
\begin{aligned}
G_{\text {ret }}= & \sum_{N=-\infty}^{\infty} \sum_{j=0}^{\infty}\left\{A_{j}(\eta) B_{j}(\gamma) \times\right. \\
& {\left[\left(\hat{\sigma}_{N}^{\text {even }}\right)^{j} \ln \left|\hat{\sigma}_{N}^{\text {odd }}\right|+\left(\hat{\sigma}_{N}^{\text {even }}\right)^{j} \theta\left(\hat{\sigma}_{N}^{\text {even }}\right)\right] } \\
& \left.+\left[\left(\hat{\sigma}_{N}^{\text {odd }}\right)^{j \mathrm{PV}}\left(\frac{1}{\hat{\sigma}_{N}^{\text {odd }}}\right)+\left(\hat{\sigma}_{N}^{\text {odd }}\right)^{j} \log \left(\hat{\sigma}_{N}^{\text {odd }}\right)\right]\right\}
\end{aligned}
$$

Conclusions/To-Do List

- First identification of a "sum over Hadamard forms" for spacetimes with a 4-fold singularity structure (cf. Einstein static universe and Bertotti-Robinson: $G_{\text {ret }}=\sum \delta+\theta$ is known; 2-fold singularity structure).
- Exact form for singular part of $G_{\text {ret }}$ as data to support other approaches (quasi-local, spectral methods, matched expansions).
- Calculation of U_{1} : include this term in the 'flat' sum and the large- ℓ sum.
- Calculation of $\eta, U_{0}, U_{k}, k \geq 1$ using numerical PDE solvers in $1+1$ dimensions.
- Calculate $\nabla_{\alpha} G_{\text {ret }}$; carry out self-force calculations.

