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Self-force

• GW astronomy: need for accurate results describing the
2-body motion of a small black hole (m) in the field of a large
black hole (M).

• Calculate the self-force of the small black hole, and treat the
motion as the deviation from a geodesic of the background
gravitational field of the large black hole or as a geodesic of
the perturbed spacetime.

• Work with the scalar field toy model.

• Equation of motion (scalar version of MiSaTaQuWa ):

maα = q(gαβ + uαuβ)∇βΦrad.



• The term required is

∇αΦrad = local stuff + q lim
ε→0+

∫ τ−ε

−∞
∇αGret(z(τ), z(τ ′))dτ ′,

where Gret(x , x ′) is the retarded Green’s function, satisfying

�Gret(x , x ′) = −4πδ4(x , x ′), Gret(x , x ′) = 0 if x 6∈ J+(x ′).

• NB Gret is required globally.



Local representation: Hadamard form of Gret

• Within a convex normal neighbourhood N of x ′,

Gret(x , x ′) = [U(x , x ′)δ(σ(x , x ′))+V (x , x ′)θ(−σ(x , x ′))]θ(t−t ′),

where σ(x , x ′) is Synge’s world function, δ, θ are the usual
distributions.

• Given σ, there is an algorithm for generating U,V (involves
solving transport equations for the Hadamard coefficients Vk

of V ).

• But this form is not valid once light-crossings occur
(∆t = 27.62M for circular geodesic at r = 6M).



Gret on Schwarzschild

• Useful simplification:

Gret(x , x ′) =
1

r · r ′
Ĝret(x , x ′),

where Ĝret is the retarded Green function for the conformally
invariant wave equation on the conformal Schwarzschild
spacetime with line element

dŝ2 = − f (r)

r 2
(dt2 − dr 2

∗ ) + dΩ2, (1)

where f (r) = 1− 2M/r and r∗ is the usual tortoise coordinate.



Null separations

• σ̂4 = σ(xA, xA′) + 1
2γ

2, where σ(xA, xA′) is the 2-dim the
world function, γ is geodesic distance on the unit 2-sphere.

• Furthermore, we can write (globally) σ = −1
2η

2 where η is
geodesic distance along a causal geodesic in M2.

• Then a null geodesic connects (x , x ′) in Schwarzschild iff ditto

in conformal Schwarzschild iff σ̂
even/odd
k = 0 where

σ̂
even/odd
k = −1

2
η2 +

1

2
(γ ± 2kπ)2,

and even/odd refers to the number of light-crossings that the
geodesic has passed through.



Mode sum decomposition

• Separation of variables:

Ĝret(x , x ′) =
1

4π

∞∑
`=0

(2`+ 1)G`(xA, xA′)P`(cos γ),

where P` are Legendre polynomials and G` satisfies the PDE
for the Green function on the 1+1 dimensional spacetime with
line element

ds2 = − f (r)

r 2
(dt2 − dr 2

∗ ).

• The relevant 1+1 dim wave equation is

Pφ− λ2φ = �φ− (λ2 +
1

4
(1− 8M

r
))φ = 0,

where λ = `+ 1
2 .



• A large body of work on this equation then moves to the
frequency domain: write φ(t, r∗) =

∑
ω φ̄(r∗;ω)e iωt , which

yields the Regge-Wheeler equation for φ̄. Proceed by
analysing the spectrum: QNM, branch cut, large frequency
arc (Casals - previous talk).

• Our aim is to apply PDE theory to the 1+1 dimensional
problem, and then resum to obtain Gret.

• Principal technique: large-` expansion for G`.



The spacetime M2.

• A theoretical advantage is present: the 1+1 dimensional
spacetime M2 is (almost certainly) a causal domain
(geodesically convex with a certain causality condition).

• Theorem: If Ω is a causal domain, then the results of
Friedlander’s book apply on Ω.

• In particular, results that are typically valid only locally in 3+1
are globally valid for the 1+1 problem.



M2 is (almost certainly) a causal domain.

• Geodesic convexity: there is a unique geodesic connecting
every pair (t, r∗) and (t ′, r ′∗).

• Only timelike separations cause any difficulty:(
dr∗
dt

)2

= 1− α(r∗)

E 2
, α(r∗) =

1

r 2

(
1− 2m

r

)
.

• Most uniqueness problems are resolved simply by comparing
slopes.

• Not so straightforward for particles with sub-critical energies
E < E0 = 1/(3

√
3m) which reflect off the potential barrier at

r+ = r+(E ).
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• A geodesic from r0 and sub-critical energy E arrives at the
potential barrier after time

∆t =

∫ r0

r+(E)

f −1√
1− f

E2r2

dr .

• Lemma 1: If E1 < E2 < E0, then r+(E1) > r+(E2) > 3m
(that is, dr+

dE < 0).



• Lemma 2: If d(∆t)
dE > 0, then geodesics are unique.
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Figure: Arrival time for geodesics from r = 6M.



• The causality condition required is the following: for all pairs
of points p, q ∈ M2, the set

J+(p) ∩ J−(q)

is either compact or empty.

• J±(p) = D±(p), the closure of the chronological future (past)
of p ∈ M2.

• Thanks to global conformal flatness of M2, the sets in
question are either empty or are closed rectangles with sides
at ±45◦.



Hadarmard-Bessel series

• Back to the main theme: large−` asymptotics of

1

r 2f
(−∂2

t φ+ ∂2
r∗φ)− (λ2 +

1

4
(1− 8M

r
))φ = 0.

• Lewis, Keller, Bleistein, others (NYU, 1960’s):∑
k ak(x)e iλs/(iλk).

• The following result is due to Zauderer; cited in Friedlander.

G`(xA, xA′) =
1

2

∞∑
k=0

Uk

(
2η

λ

)k

Jk(λη)θ(−σ)θ(∆t).
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• Jk are Bessel functions;

• σ = −η2/2 where η is the 2-dim geodesic distance;

• Uk are the Hadamard coefficients for the retarded Green
function of the operator P - that is, for the equation above
with λ = 0.

• The Uk satisfy certain recurrence relations in the form of
transport equations along the geodesic from xA to xA′ .

• These coefficients and the series for G` are defined globally on
M2.

• The result is not perturbative: holds for all λ ∈ C\{0}.



Large−` expansion: singularity structure of Gret

• We apply a large-argument asymptotic expansion for the
Bessel functions (large−λ - i.e. large−`).

• Collecting inverse powers of λ and resumming allows us to
identify the singular and the non-singular (continuous) parts
of Gret:

G sing
ret =

2

r · r ′
U0

η1/2
√

sin γ
×
∞∑

k=0

(−1)k {[
δ(η − (γ + 2kπ)) + µ−0 (η, γ)θ(η − (γ + 2kπ))

]
+

1

π

[
PV

(
1

η − (2kπ − γ)

)
+ µ+

0 (η, γ) ln |η − (2kπ − γ)|
]}

µ±0 =
1

8
(cot γ ± 1

η
± 16η

U1

U0
).



Comments

• Ori’s observation: spherical symmetry induces a 4-fold
recursion in the singularity structure of the retarded Green’s
function as successive caustics are met:

δ(σ)→ PV

(
1

σ

)
→ −δ(σ)→ −PV

(
1

σ

)
→ δ(σ)→ · · ·

• Established in general spacetimes via Penrose limits by Harte
& Drivas; see also previous work in Schwarzschild by Dolan &
Ottewill and in M2 × S2 by Casals & Nolan.

• Four-fold recursion demonstrated for the “tail” term:
θ → log→ · · · .

• The result above identifies exactly the locations of the

singularities at σ̂
even/odd
k = 0.



Calculations

• Ultimate aim is to calculate Gret(t, r , θ, φ; t ′, r ′, θ′, φ′) for pairs
of points on the orbit of the small black hole.

• Consider geodesic motion: Gret(∆t, r , r ′, γ).

• Given inputs ∆t, r , r ′, we must first determine the timelike
geodesic of M2 that connects (t, r) and (t ′, r ′), and calculate
the total proper time η∗ along this geodesic segment.

• Solve transport equations (η dX
dη = f (X , η)) for N variables

along this geodesic (cf. Ottewill and Wardell) to determine
U0(N = 6) and U1(N = 96).

• This yields one data point on the graph of Gret(∆t).



Transport equations

• In 2-d, U0 is the square root of the van Vleck determinant:

U0 = 41/2 ⇔ σA∇AU0 = (1−�σ)U0, [U0] = 1.

• The transport equations are

2σA∇AUk + (�σ + 2(k − 1))Uk =
1

2
PUk−1, k ≥ 1.
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Figure: Decay of U0 = 41/2 for r = r ′ = 6M.
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Figure: Log-plot of approximations to Gret as functions of ∆t for points
on a timelike circular geodesic at r = 6M. Cyan: the Bessel expansion
including just the k = 0 term, summed up to ` = 100. Brown: leading
order in the large-` expansion including only the k = 0 term. Green:
QNM sum. Blue: large-` asymptotics in the QNM sum. First two due to
Casals; last two due to Casals, Dolan, Ottewill and Wardell.



Gret as a sum over Hadamard forms

• Begin with Gret =
∑

` G`P`,

G`(xA, xA′) =
1

2

∞∑
k=0

Uk

(
2η

λ

)k

Jk(λη)θ(−σ)θ(∆t).

• Expand P`(cos γ) in Bessel functions:

P`(cos γ) =
∞∑
j=0

αj(γ)
Jj(λγ)

λj
.

• Expand Bessel functions:

Jk(λx) =
1√

2πλx

∞∑
m=0

Em(λx − π

2
k − π

4
)

ak,m

(2x)mλm ,

Ek(x) =
e ikπ/2

2
(e ix + (−1)ke−ix).

• Expand sums, collect powers of λ (Cauchy product formula).
• Re-expand in powers of ` and collect terms by phase.



• This results in

G `≥1
ret =

∞∑
k=0

( ∞∑
`=1

e±i`(η±γ)

`k

)
V

(±,±)
k (η, γ).

• Define

Ak(x) =
∞∑
`=1

e i`x

`k
.

Then
A1(x) = D(x) + iU(x),

with

D(x) = − ln |x | − 2
∞∑

n=0

ln

∣∣∣∣1− x2

4n2π2

∣∣∣∣ ,
U(x) =

1

2
(π − x) + π

∞∑
n=1

[θ(x − 2nπ)− θ(−x − 2nπ)]− πθ(−x).

.



• Notice that

Ak(x) = Ak(0)︸ ︷︷ ︸
=ζ(k)

+i

∫ x

0
Ak−1(y)dy , k ≥ 2,

and
A0(x) = −iA′1(x) =

∑
PV + δ.

• Thus we have the regularity results

Ak ∈ C k−2(R), A(k−1)
k ∈ L1

loc(R).

• The overall structure is

Gret =
∞∑

N=−∞

∞∑
j=0

{Aj(η)Bj(γ)×[
(σ̂even

N )j ln |σ̂odd
N |+ (σ̂even

N )jθ(σ̂even
N )

]
+

[
(σ̂odd

N )jPV

(
1

σ̂odd
N

)
+ (σ̂odd

N )j log(σ̂odd
N )

]}



Conclusions/To-Do List

• First identification of a “sum over Hadamard forms” for
spacetimes with a 4-fold singularity structure (cf. Einstein
static universe and Bertotti-Robinson: Gret =

∑
δ + θ is

known; 2-fold singularity structure).

• Exact form for singular part of Gret as data to support other
approaches (quasi-local, spectral methods, matched
expansions).

• Calculation of U1: include this term in the ‘flat’ sum and the
large−` sum.

• Calculation of η,U0,Uk , k ≥ 1 using numerical PDE solvers in
1+1 dimensions.

• Calculate ∇αGret; carry out self-force calculations.


