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Self-force

GW astronomy: need for accurate results describing the
2-body motion of a small black hole (m) in the field of a large
black hole (M).

Calculate the self-force of the small black hole, and treat the
motion as the deviation from a geodesic of the background
gravitational field of the large black hole or as a geodesic of
the perturbed spacetime.

Work with the scalar field toy model.
Equation of motion (scalar version of MiSaTaQuWa ):

ma® = q(gaﬁ + uauB)V3¢rad.



e The term required is
Vao®aq = local stuff +q I|m / VaGret(2(7), 2(7"))dT

where Gpet(x, x') is the retarded Green's function, satisfying
OGret(x, X') = —47d4(x, x), Gret(x, X)) = 0 if x & JT(xX).

e NB G, is required globally.



Local representation: Hadamard form of G,

e Within a convex normal neighbourhood N of x/,
Gret(x, X') = [U(x, x")0(o(x, X))+ V(x, x)0(—0(x, x"))]0(t—1t'),

where o(x, x’) is Synge’s world function, ¢,6 are the usual
distributions.

e Given o, there is an algorithm for generating U, V (involves
solving transport equations for the Hadamard coefficients Vy
of V).

e But this form is not valid once light-crossings occur
(At = 27.62M for circular geodesic at r = 6M).



Gyt Oon Schwarzschild

e Useful simplification:

1

rer

Gret(x) X/)u

Gret(Xaxl) =
where (A;ret is the retarded Green function for the conformally
invariant wave equation on the conformal Schwarzschild
spacetime with line element

f‘
ds? = —ﬂ(dt2 — dr?) + dQ?, (1)

where f(r) = 1—2M/r and r, is the usual tortoise coordinate.



Null separations

o 64 =o(x* xY) + 92, where o(x?, x*) is the 2-dim the
world function, «y is geodesic distance on the unit 2-sphere.

e Furthermore, we can write (globally) o = —%772 where 7 is
geodesic distance along a causal geodesic in M.

e Then a null geodesic connects (x, x") in Schwarzschild iff ditto

in conformal Schwarzschild iff 6zven/0dd = 0 where
v 1 1
5’2 en/odd == —5772 + 5(’)/ + 2/(7'&')2,

and even/odd refers to the number of light-crossings that the
geodesic has passed through.



Mode sum decomposition

e Separation of variables:

A 1 & /
Gret - 2€ + ]- g@ A )PE(COS 7)7
" 4
£=0
where P, are Legendre polynomials and G, satisfies the PDE
for the Green function on the 1+1 dimensional spacetime with

line element

f(r)
ds® = —r—z(dt2 —dr?).
e The relevant 141 dim wave equation is

Pé— X6 =06~ (X + 1 (1~ )6 =0,

r

where )\:E+%.



e A large body of work on this equation then moves to the
frequency domain: write ¢(t, r.) = > ¢(r.; w)e™t, which
yields the Regge-Wheeler equation for ¢. Proceed by
analysing the spectrum: QNM, branch cut, large frequency
arc (Casals - previous talk).

e Our aim is to apply PDE theory to the 141 dimensional
problem, and then resum to obtain Gyt.

e Principal technique: large-¢ expansion for G,.



The spacetime M,.

o A theoretical advantage is present: the 1+1 dimensional
spacetime M, is (almost certainly) a causal domain
(geodesically convex with a certain causality condition).

e Theorem: If Q is a causal domain, then the results of
Friedlander’'s book apply on €.

e In particular, results that are typically valid only locally in 3+1
are globally valid for the 1+1 problem.



M, is (almost certainly) a causal domain.

Geodesic convexity: there is a unique geodesic connecting
every pair (t,r.) and (t',r]).
Only timelike separations cause any difficulty:

dr.\ 2 a(ry) 1 2m
=1-— == |1—-—].
( dt ) E2 "’ a(r) r2 r
Most uniqueness problems are resolved simply by comparing
slopes.

Not so straightforward for particles with sub-critical energies
E < Ey = 1/(3v/3m) which reflect off the potential barrier at

ry = ri(E).
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e A geodesic from ry and sub-critical energy E arrives at the
potential barrier after time

ro f_l
At:/ ——dr.
r(E) /1 — #
e Lemma 1: If £; < E; < Ep, then ry(E1) > ri(E2) > 3m
(that is, ZLE < 0).



e Lemma 2: If d(dAEt) > 0, then geodesics are unique.
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Figure: Arrival time for geodesics from r = 6 M.



e The causality condition required is the following: for all pairs
of points p, g € Ma, the set

JH(p) NI (q)

is either compact or empty.

e J*(p) = D*(p), the closure of the chronological future (past)
of p € Ms.
e Thanks to global conformal flatness of M5, the sets in

question are either empty or are closed rectangles with sides
at £45°.



Hadarmard-Bessel series

e Back to the main theme: large—/ asymptotics of

1
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Hadarmard-Bessel series

e Back to the main theme: large—/ asymptotics of
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o Lewis, Keller, Bleistein, others (NYU, 1960's):
Yok ak(x)es/(iNK).



Hadarmard-Bessel series

e Back to the main theme: large—/ asymptotics of

M
e ae) - (s Mo

o Lewis, Keller, Bleistein, others (NYU, 1960's):
Yok ak(x)es/(iNK).

e The following result is due to Zauderer; cited in Friedlander.

Go(xA, x*) Zuk< ”) J(On)8(=0)d(At).



Ji are Bessel functions;
o = —n?/2 where 7 is the 2-dim geodesic distance;

Uy are the Hadamard coefficients for the retarded Green
function of the operator P - that is, for the equation above
with A = 0.

The U satisfy certain recurrence relations in the form of
transport equations along the geodesic from x* to X~

These coefficients and the series for G, are defined globally on
M.

The result is not perturbative: holds for all A € C\{0}.



Large—/¢ expansion: singularity structure of G

e We apply a large-argument asymptotic expansion for the
Bessel functions (large—A\ - i.e. large—/).

e Collecting inverse powers of A and resumming allows us to

identify the singular and the non-singular (continuous) parts
of Gret:

, 2 Uo =
sing _ 2 : 71 k
Grct r. r, ’171/2 /75”]’}; X k:O( ) {

[6(n = (v + 2km)) + pg (1, 7)0(n — (7 + 2kn))]
1

2oV (s ) b )l — @k =]}

1 1 U
pE = glcoty & ; - 167770).



Comments

Ori's observation: spherical symmetry induces a 4-fold
recursion in the singularity structure of the retarded Green's
function as successive caustics are met:

-

g

1
o

5(0)—>PV< >—>5(0)—>~~
Established in general spacetimes via Penrose limits by Harte

& Drivas; see also previous work in Schwarzschild by Dolan &
Ottewill and in My x S, by Casals & Nolan.

Four-fold recursion demonstrated for the “tail” term:

0 —log — ---

The result above identifies exactly the locations of the

. .. n dd
singularities at Uiven/o =0.



Calculations

Ultimate aim is to calculate Gyet(t, r, 0, ¢; t', r', 0, ¢') for pairs
of points on the orbit of the small black hole.
Consider geodesic motion: Gyet(At, r,r', 7).

Given inputs At, r,r’, we must first determine the timelike
geodesic of M, that connects (t,r) and (t',r’), and calculate
the total proper time 7, along this geodesic segment.

Solve transport equations (n% = f(X,n)) for N variables
along this geodesic (cf. Ottewill and Wardell) to determine
Uo(N = 6) and U;(N = 96).

This yields one data point on the graph of Get(At).



Transport equations
e In 2-d, Uy is the square root of the van Vleck determinant:

Uy = A2 & o*Valp=(1-00)lp, [Ug] =1.

e The transport equations are

1
202V AUk + (Do + 2(k — 1)) Ui = 5PUc1, k=1
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Figure: Decay of Uy = AY2 for r = r' = 6M.
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Figure: Log-plot of approximations to G,e; as functions of At for points
on a timelike circular geodesic at r = 6M. Cyan: the Bessel expansion
including just the kK = 0 term, summed up to £ = 100. Brown: leading
order in the large-¢ expansion including only the kK = 0 term. Green:
QNM sum. Blue: large-¢ asymptotics in the QNM sum. First two due to
Casals; last two due to Casals, Dolan, Ottewill and Wardell.



Gyet as a sum over Hadamard forms
Begin with Gyt = >, GoPy,
/ 2
G (P X Z U < A”) JOn)B(—o)8(At).
Expand Py(cos7) in Bessel functions:

2(cos ) ZO‘J

Expand Bessel functions:

o0

1 T T, aAkm
J)\X = Em)\X—*k—*i’m,
k( ) m m§:0 ( 2 4 ) (2X)m)\
_ ’kﬂ-/2 ix k —ix
Eilx) = S (" + (-1)ke ™).

Expand sums, collect powers of A (Cauchy product formula).
Re-expand in powers of ¢ and collect terms by-phase.



e This results in

e}

> oEib(nty) L4
o' = Z (Z ik V;S ’ )(77,7)-
¢

k=0 \/¢=1
e Define
0 ein
Aw(x) = Z 7k
=1
Then
Ax(x) = D(x) + iU(x),
with




e Notice that

Ap(x) = / Aa(y)dy, k=2,
—C( )

and

Ao(x) = —iAy(x) =D PV +4.
e Thus we have the regularity results
_ k—1
Ape C2m), AlY el (R).
e The overall structure is

Gret = Z Z{AJ(U)BJ(’Y)X

N=—oc0 j=0
|:(U/e\ren)1 In |Aodd‘ + ( even)Je(A«la\;zen)}

+@xyev (o ) + @3V ato3)| |

~od
ONn




Conclusions/To-Do List

First identification of a “sum over Hadamard forms" for
spacetimes with a 4-fold singularity structure (cf. Einstein
static universe and Bertotti-Robinson: Gy = > 0 + € is
known; 2-fold singularity structure).

Exact form for singular part of Gt as data to support other
approaches (quasi-local, spectral methods, matched
expansions).

Calculation of Uj: include this term in the ‘flat’ sum and the
large—¢ sum.

Calculation of n, Uy, Uk, k > 1 using numerical PDE solvers in
141 dimensions.

Calculate V Gyet; carry out self-force calculations.



