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Motivation

One of the main sources of gravitational waves is the inspiral of compact objects
into massive black holes in galactic nuclei.

We work in the extreme mass-ratio inspiral (EMRI) regime, where the separation
distance is small but the mass ratio of the bodies is large.

The EMRI problem is amenable to a perturbative treatment, where the
perturbation gives rise to the self-force (SF).

Obtain accurate theoretical templates of EMRI waveforms. These waveforms
have to include deviations from geodesic motion due to the SF.

Current calculations of the SF rely on numerical solutions of the linearised
Einstein’s equations in the Lorenz gauge. For Kerr the field equations in the
Lorenz gauge are not separable.
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The treatment of black-hole perturbations for Kerr is much simpler in the
radiation gauge, where it is possible to reconstruct the perturbations from the
Weyl scalars.

In the radiation gauge we don’t have a SF formulation. The perturbation due to
a point particle is a string-like 2-D singularity.

We work in a gauge where it is “easy” to obtain the metric perturbations and
relates through a regular gauge transformation to the Lorenz gauge. We call it
locally Lorenz radiation gauge (LLR).

The implementation will give the gravitational SF in the LLR gauge starting

from a “force” in the ingoing radiation gauge. We obtain a mode-sum formula

for the SF that has the form

F
α

self (x0) =
∞
∑

ℓ=0

(

F
αℓ

full±(x0)∓ A
α
L− B

α
− C

α/L
)

− D
α, (L ≡ ℓ+ 1/2).
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SF in a locally Lorenz radiation gauge: Schwarzschild

Consider a particle of mass m moving along Γ. Let the particle be embedded in the
background spacetime of a massive Schwarzschild black hole of mass M.

Γ

δu = 0

ǫ0 xα

xα0

In LLR the perturbation near the particle
has the same leading-order singularity as the
Lorenz gauge,

hLLR

αβ = 2mǫ−1
0 (gαβ + 2uαuβ) + O(1).

We associate a given field point xα with a “nearby” point xα0 on the worldline, at the

separation δxα. The most convenient choice is to take xα0 (x) to be the point on Γ

with the same retarded time as xα (δu = 0).
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The metric perturbation tensor transforms (from Rad→LLR) according to

hLLR

αβ = hRad

αβ + ξα;β + ξβ;α.

Which admits analytical solutions given by

ξ±α = ∓2uα ln(ǫ0 ∓ uαδx
α) +

δα

ǫ0 ∓ uαδxα
+ O(δxα),

where

δα ≡ 2L

{

0,−
δϕ

uu
,
δθ

uϕ
,
δϕ

uϕ

}

.

Γ
δu = 0

ǫ0xα

xα0
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Before calculating the contributions to the SF we decompose ξ±α in ℓ-modes,

ξ±ℓ
α⊥

= ±δℓ0

(

0, −
L2f0

r20 (E − ṙ)
, 0,L

)

(in EF coordinates).

We compare with the mode sum formula

FLLR
α =

∞
∑

ℓ=0

[

FRad ℓ
α + δFRad→LLR ℓ

α − AαL − Bα − Cα/L
]

−Dα.

Because ξ has only an ℓ = 0 contribution, we can see that

δAα = δBα = δCα = 0, δDα = δξF
Rad→LLR ℓ=0
α .
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Finally we calculate the change in the SF with

δFα ℓ
grav = −m

[

(gαλ + uαuλ)
D2ξℓλ
Dτ2

+ Rα
µλνu

µξℓ λuν

]

.

We obtain the explicit value of δDα:

δD±
α =

{

±
m2L2Ct(E, r , ṙ)

r7(E − ṙ)3
,
m2L2Cr (E, r , ṙ)

r7f (E − ṙ)3
, 0,±

2m2LCϕ(E, r , ṙ)

r4(E − ṙ)2

}

.

For circular orbits they reduce to

δD±
α =

{

0,±
3m2M2

r5/2(r − 3M)3/2
, 0, 0

}

.
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Metric reconstruction in the IRG.

Weyl Scalar
̺−4ψ4

Hertz potential
Ψ

Metric
Perturbations

hαβ

The procedure to obtain the metric perturbations in the radiation gauge starting from
the curvature scalars ψ0 and ψ4 was first proposed by Chrzanowski and also by Cohen
and Kegeles. The CCK reconstruction can be computed from the expression

hIRG

αβ =
{

−ℓαℓβ(δ + 2β)(δ + 4β)−mαmβ(D− 2̺)

(D+ 3̺) + ℓ(αmβ) [(δ + 4β)(D+ 3̺) + D(δ + 4β)]
}

ΨIRG + c.c.,

where ΨIRG is found from ψ0 or ̺−4ψ4 inverting a radial equation or an angular
equation:

ψ0 =
1

2
D4ΨIRG

̺−4ψ4 =
1

8

[

L̄
4Ψ̄IRG − 12M∂tΨ

IRG

]
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What happens to the string singularity when implementing CCK reconstruction?

How do we deal with the ℓ = 0, 1 modes that are not included in the
reconstruction?

Example: We performed the metric reconstruction for the static flat-spacetime mode
by mode, starting from ψ0

The Hertz potential is continuous at the particle mode by mode.

The reconstruction procedure gives regular MP on both sides of the sphere.

The modes of the MP are in general discontinuous but without string
singularities.
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Wald showed (1973) that the only things we can add to the metric
reconstruction are:

Mass and angular momentum perturbations (δM and δJ).

C-metric and Kerr-NUT perturbations.

Gauge perturbations.

Our current understanding is:

C-metric and Kerr-NUT are physically unacceptable.

For the flat reconstruction: Mass and Mass dipole outside the sphere
and gauge inside.

In Kerr we expect: Mass and Angular momentum outside the orbit
and gauge inside.

Cesar Antonio Merlin Gonzalez, Leor Barack, Adam Pound Gravitational self-force from curvature scalars



Outline Motivation SF in a locally Lorenz radiation gauge Numerical Implementation Summary and future work

Numerical Implementation

Weyl Scalar
̺−4ψ4

Hertz potential
Ψ

Metric
Perturbations

hαβ

Full force
Fα
full

Self-force
Fα
self

mode-sum

Analytically solve for the m = 0 modes for ℓ > 2.

We integrate numerically the homogeneous Teukolsky
equation (with s = −2) with ingoing boundary
conditions for each ℓ,m.

We obtain the corresponding Weyl curvature scalar
̺−4ψ4 at xα0 by imposing junction conditions at xα0
given by the source.
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Weyl Scalar
̺−4ψ4

Obtained from Teukolsky equation for s = −2

(r2 − 2Mr)(̺−4ψ4)
′′ − 2(r −M)(̺−4ψ4)

′ −

[

ω2r4

r2 − 2Mr

−
4ir2ω(r − 3M)

r2 − 2Mr
+ ð̄−1ð−2

]

(̺−4ψ4) = −4πr2T−2.
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Weyl Scalar
̺−4ψ4

Hertz potential
Ψ

For circular orbits it can be obtained algebraically in terms of
ψ−2 ≡ ̺−4ψ4

Ψℓm = 8
(−1)m(ℓ+ 2)(ℓ + 1)ℓ(ℓ− 1)ψ−2 ℓ,−m − 12imMΩψ−2 ℓm

[(ℓ+ 2)(ℓ + 1)ℓ(ℓ − 1)]2 + 144m2M2Ω2
.
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Weyl Scalar
̺−4ψ4

Hertz potential
Ψ

Metric
Perturbations

hαβ

In terms of the Hertz potential

hαβ =
{

−ℓαℓβ(δ + 2β)(δ + 4β)−mαmβ(D− 2̺)

(D+ 3̺) + ℓ(αmβ) [(δ + 4β)(D + 3̺)

+D(δ + 4β)]}Ψ+ c.c.
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Weyl Scalar
̺−4ψ4

Hertz potential
Ψ

Metric
Perturbations

hαβ

Full force
Fα
full

Each tensor harmonic of the full force is obtained with the
equation of motion

Fα
full ≡ −m(gαβ + uαuβ)

(

∇µhνβ −
1

2
∇βhµν

)

uµuν .
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Weyl Scalar
̺−4ψ4

Hertz potential
Ψ

Metric
Perturbations

hαβ

Full force
Fα
full

Self-force
Fα
self

mode-sum

We regularize each mode using the mode-sum formula:

FLLR
α =

∞
∑

ℓ=0

[

FRad ℓ
α − AαL− Bα

]

+ δDα.
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Self-force in ℓ-modes
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Gauge invariant red-shift

Detweiler showed that for circular orbits in Schwarszchild there are two gauge
invariant quantities that carry out non-trivial information about the conservative SF
dynamics: Ω and ut ≡ U. In practical calculations we compute:

H ≡
1

2
hRαβu

αuβ ,
dτ

d τ̃
= 1 + H,

where τ̃ is the proper time along the geodesic of the effective metric g̃ = g + hR and
τ along the projection on g .

HLLR =
∞
∑

ℓ=0

[

HRad ℓ − (BH − δBH )− (CH − δCH )/L
]

− (DH − δDH ),

with δBH = δCH = δDH = 0, for circular orbits.
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H in ℓ-modes

ℓ-modes of H after regularization.
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Preliminary values

r0/M F r IRG(r+0 )× M2

µ2 F r ORG(r0)×
M2

µ2 F r (r+0 )× M2

µ2

10 1.49E-02 (1) 1.3580536E-02 1.969800E-02 (1)
12 1.09E-02 (1) 1.0019806E-02 1.4776563E-02 (3)
20 4.37E-03 (5) 4.0997900E-03 6.147348E-03 (1)
25 2.88E-03 (3) 2.7292140E-03 4.100090E-03 (1)
50 7.60E-04 (9) 7.3864055E-04 1.110554E-03 (1)

r0/M ∆U × M
µ

∆USD × M
µ

10 -0.12912222 (1) -0.1291222
12 -0.10193561 (1) -0.1019355
20 -0.0558278 (1) -0.05582771
25 -0.0435999 (1) -0.04359984
50 -0.020844686 (3) -0.02084465
100 -0.010205291 (2) -0.01020528
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Summary and future work

We have obtained the gauge transformation from the radiation gauge to a
locally Lorenz radiation gauge. This transformation naturally has a string
singularity, but it is possible to construct a regular solution in each half
spacetime. The regular halves can be combined into a string-free solution at the
cost of introducing a discontinuity across the sphere intersecting the particle

The new mode-sum formula to obtain the GSF in a new locally Lorenz radiation
gauge (Schwarzschild and Kerr).

We have calculated numerically ℓ-modes contributions to SF and showed that
the results from our implementation are consistent with all the regularization
parameters given by the mode-sum formula.

Extend the numerical implementation to obtain the SF for non-circular orbits.

Compute numerically the gravitational SF and the gauge invariant quantity H for
the Kerr case.
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