Selfforce from
 equivalent periodic sources

Barak Kol

Hebrew University, Jerusalem
Capra 16 Dublin, July 2013

Based on arXiv:1307.xxxx

Selfforce from
 equivalent periodic sources

Barak Kol
 Hebrew University, Jerusalem
 Capra 16 Dublin, July 2013

Based on arXiv:1307.xxxx

Outline

- Orbits and frequencies
- Equivalent sources
- Regularization
- Discussion

Issues

Issues

- Regularization

MiSaTaQuWa
Mode sum Regularization (Barack \& Ori)
Detweiler-Whiting decomposition

Issues

- Regularization

MiSaTaQuWa
Mode sum Regularization (Barack \& Ori) Detweiler-Whiting decomposition

- Computational cost

Issues

- Regularization

MiSaTaQuWa
Mode sum Regularization (Barack \& Ori) Detweiler-Whiting decomposition

- Computational cost
- Characterization of conservative sector

Hinderer-Flanagan Brinholtz-Hadar-BK

Goal

Goal

Trajectory Parameters
$\left(E, l, t_{0}, \phi_{0}\right)$

Goal

Trajectory Parameters $\quad\left(E, l, t_{0}, \phi_{0}\right)$

- Obtain the adiabatic flow in the space of trajectories - first order EMR

Osculating orbits

Orbits and frequencies

Orbits and frequencies

Quasi periodic frequency spectrum

$$
\begin{gathered}
\omega_{m n}=m \Omega_{\phi}+n \Omega_{r} \\
\Omega_{r}=\frac{2 \pi}{P_{t}} \\
\Omega_{\phi}=\frac{P_{\phi}}{P_{t}}
\end{gathered}
$$

Orbits and frequencies

Quasi periodic frequency spectrum

$$
\begin{gathered}
\omega_{m n}=m \Omega_{\phi}+n \Omega_{r} \\
\Omega_{r}=\frac{2 \pi}{P_{t}} \\
\Omega_{\phi}=\frac{P_{\phi}}{P_{t}}
\end{gathered}
$$

Frequency requirement - constructive interference in azimuthal direction

A stroboscope

A stroboscope

- Imagine a stroboscope flashing every P_{mn}

A stroboscope

- Imagine a stroboscope flashing every P_{mn}
- The body traces a curve

A stroboscope

- Imagine a stroboscope flashing every P_{mn}
- The body traces a curve
- It is equivalent to folding the trajectory over a periodic time coordinate

(m,n) equivalent source

(m, n) equivalent source

ergodic: time average to ensemble average

(m, n) equivalent source

ergodic: time average to ensemble average equation

$$
0=\psi(r, \phi)=\omega_{m n} t(r)+m(\phi-\phi(r))
$$

(m, n) equivalent source

ergodic: time average to ensemble average equation $\quad 0=\psi(r, \phi)=\omega_{m n} t(r)+m(\phi-\phi(r))$
parametric form

$$
\begin{aligned}
& \sigma=-m \alpha \\
& \phi=n \alpha+\left(\phi(\sigma)-\frac{P_{\phi}}{2 \pi} \sigma\right)
\end{aligned}
$$

(m, n) equivalent source

ergodic: time average to ensemble average equation $\quad 0=\psi(r, \phi)=\omega_{m n} t(r)+m(\phi-\phi(r))$
parametric form

$$
\begin{aligned}
& \sigma=-m \alpha \\
& \phi=n \alpha+\left(\phi(\sigma)-\frac{P_{\phi}}{2 \pi} \sigma\right)
\end{aligned}
$$

winds (-m) times around phi and n times around r

Examples

(00)

0

(01)
Ω_{r}

(10)
Ω_{Φ}

(11)
$\Omega_{\Phi}-\Omega_{r}$

(20)
$2 \Omega_{\Phi}$

Zero frequency

Zero frequency

- Is in the conservative sector

Zero frequency

- Is in the conservative sector

$$
\bar{\rho}:=\langle\rho\rangle_{t}=\frac{q}{2 \pi P_{t} r(d r / d \tau)} \delta(z)
$$

Zero frequency

- Is in the conservative sector

$$
\bar{\rho}:=\langle\rho\rangle_{t}=\frac{q}{2 \pi P_{t} r(d r / d \tau)} \delta(z)
$$

- Only (phio,to) drift

Zero frequency

- Is in the conservative sector

$$
\bar{\rho}:=\langle\rho\rangle_{t}=\frac{q}{2 \pi P_{t} r(d r / d \tau)} \delta(z)
$$

- Only (phio,to) drift
- The dissipative part

$$
\rho^{\prime}:=\rho-\bar{\rho}
$$

Solving the field equations

Solving the field equations

$$
\left(\triangle-f^{-1} \partial_{t}^{2}\right) \Phi=4 \pi \rho
$$

Solving the field equations

$$
\left(\triangle-f^{-1} \partial_{t}^{2}\right) \Phi=4 \pi \rho
$$

- Frequency domain - natural here, elliptic equations

Solving the field equations

$$
\left(\triangle-f^{-1} \partial_{t}^{2}\right) \Phi=4 \pi \rho
$$

- Frequency domain - natural here, elliptic equations
- Time domain

Regularization

Regularization

- Singular source

Regularization

- Singular source
- Less singular (1d density) for aperiodic motion and equivalent source

Regularization

- Singular source
- Less singular (1d density) for aperiodic motion and equivalent source
- Zero freq. sector: surface charge density

Regularization

- Singular source
- Less singular (1d density) for aperiodic motion and equivalent source
- Zero freq. sector: surface charge density
- In frequency space - similar to electrostatics with singular source

Electrostatics

Electrostatics

$$
\Phi=\Phi_{S}+\Phi_{R}
$$

Electrostatics

$$
\begin{aligned}
& \Phi=\Phi_{S}+\Phi_{R} \\
& 4 \pi \rho_{R}:=4 \pi \rho-\left[\triangle+f^{-1} \omega^{2}\right] \Phi_{S}
\end{aligned}
$$

Electrostatics

$$
\begin{aligned}
& \Phi=\Phi_{S}+\Phi_{R} \\
& 4 \pi \rho_{R}:=4 \pi \rho-\left[\triangle+f^{-1} \omega^{2}\right] \Phi_{S} \\
& {\left[\triangle+f^{-1} \omega^{2}\right] \Phi_{R}=4 \pi \rho_{R}}
\end{aligned}
$$

Electrostatics

$$
\Phi=\Phi_{S}+\Phi_{R}
$$

$$
4 \pi \rho_{R}:=4 \pi \rho-\left[\triangle+f^{-1} \omega^{2}\right] \Phi_{S}
$$

$$
\left[\triangle+f^{-1} \omega^{2}\right] \Phi_{R}=4 \pi \rho_{R}
$$

Time domain in Progress - generalizing Hadamard's local construction $\quad \Phi_{S} \sim \lambda \log \Gamma$

Edge

Charge density near $r_{\text {min }}\left(\right.$ or $r_{\text {max }}$)

$$
\rho(x, y, z)=\frac{\sigma_{-1 / 2}}{\sqrt{x}} \delta(z) \quad x \geq 0
$$

Edge

Charge density near $r_{\text {min }}$ (or $r_{\text {max }}$)

$$
\rho(x, y, z)=\frac{\sigma_{-1 / 2}}{\sqrt{x}} \delta(z) \quad x \geq 0
$$

Solution

$\Phi=2 \pi \sigma_{-1 / 2} \Re \sqrt{-w}$
$w=x+i z$

Outgoing radiation and selffforce

Outgoing radiation and selffforce

- Outgoing radiation

$$
\Phi \sim \frac{\Phi_{\infty}(\theta, \phi)}{r} e^{-i \omega r}+0 \cdot e^{i \omega r} \text { for } r \rightarrow \infty
$$

Outgoing radiation and selffforce

- Outgoing radiation

$$
\Phi \sim \frac{\Phi_{\infty}(\theta, \phi)}{r} e^{-i \omega r}+0 \cdot e^{i \omega r} \text { for } r \rightarrow \infty
$$

- Self-force throughout trajectory: drift in
$\left(E, l, t_{0}, \phi_{0}\right)$

Method summary

Method summary

- Goal: drift in trajectory parameters

Method summary

- Goal: drift in trajectory parameters
- Equivalent periodic source

Method summary

- Goal: drift in trajectory parameters
- Equivalent periodic source
- Conservative is zero frequency

Method summary

- Goal: drift in trajectory parameters
- Equivalent periodic source
- Conservative is zero frequency
- Regularization

Method summary

- Goal: drift in trajectory parameters
- Equivalent periodic source
- Conservative is zero frequency
- Regularization
- Self-force computed throughout at once

Generalizations

Generalizations

- Electromagnetism and gravity: source, waves

Generalizations

- Electromagnetism and gravity: source, waves
- Rotating BH (Kerr)

Generalizations

- Electromagnetism and gravity: source, waves
- Rotating BH (Kerr)
- Higher EMR orders

Range of usefulness

Range of usefulness

- Relativistic - or else hierarchy of scales

Range of usefulness

- Relativistic - or else hierarchy of scales
- For freq. space: few freq. (low eccen.)

Range of usefulness

- Relativistic - or else hierarchy of scales
- For freq. space: few freq. (low eccen.)
- Nearly incommensurate - the rational w. smallest denominator within the freq. ratio range

Paths for continuation

Paths for continuation

- Gauge choice

Paths for continuation

- Gauge choice
- Invitation for collaboration: Numerical evaluation

Paths for continuation

- Gauge choice
- Invitation for collaboration: Numerical evaluation
- Time domain regularization - local expansion generalizing Hadamard

Paths for continuation

- Gauge choice
- Invitation for collaboration: Numerical evaluation
- Time domain regularization - local expansion generalizing Hadamard
- Formulate conservative sector of EMR

