Adiabatic evolution of the constants of motion in resonance

Soichiro Isoyama

Based on the collaboration
with Ryuichi Fujita, Hiroyuki Nakano, Norichika Sago and Takahiro Tanaka

Old strategy for computing $\langle d Q / d \lambda\rangle$

Kerr metric is invariant under this transformation

$$
(t, r, \theta, \phi) \quad \triangleleft(-t, r, \theta,-\phi)
$$

If the resonance is absent, the geodesic is also invariant with $\lambda \rightarrow-\lambda$

This invariance validates the use of radiative field

In the resonance case, the geodesic is not invariant.
S.I. et al.,1302.4035

$$
\left(P_{i}^{(0)}, \Delta \lambda\right) \quad \Rightarrow \quad\left(P_{i}^{(0)},-\Delta \lambda\right)
$$

Go back to the original R-part description.
$\left\langle\frac{d P_{i}}{d \lambda}\right\rangle^{(R)}=\frac{1}{2}\left\{\left\langle\frac{d P_{i}}{d \lambda}\right\rangle^{(\text {ret) }}-\left\langle\frac{d P_{i}}{d \lambda}\right\rangle^{\text {(adv) }}\right\}+\frac{1}{2}\left\{\left\langle\frac{d P_{i}}{d \lambda}\right\rangle^{(\text {rett })}+\left\langle\frac{d P_{i}}{d \lambda}\right\rangle^{\text {(adv) }}\right\}-\left\langle\frac{d P_{i}}{d \lambda}\right\rangle^{(S)}$
Radiative part
Symmetric part

The Hamiltonian of the geodesic : $H:=\frac{1}{2} g^{\alpha \beta} p_{\alpha} p_{\beta}$
A particle moves along the geodesic on a smooth perturbed space time.

Detweiler and Whiting 0202086

$$
\begin{gathered}
\frac{H}{\mu^{2}}=-\frac{1}{2}-\frac{1}{2 \mu^{2}}\left[h^{\mu \nu(R)}(x) p_{\mu}^{(0)} p_{\nu}^{(0)}\right]+O\left(\frac{\mu^{2}}{M^{2}}\right) \\
g_{(0)}^{\alpha \beta} p_{\alpha} p_{\beta}=-\mu^{2}: \text { "background" geodesics } \\
H_{\mathrm{int}}(x):=-\frac{1}{2} h^{\mu \nu(R)}(x) p_{\mu}^{(0)} p_{\nu}^{(0)}: \text { Interaction } \\
\text { Hamiltonian }
\end{gathered}
$$

Canonical transformation to the "constants of

 motion" coordinate $\left(x^{\mu}, p_{\mu}\right) \rightarrow\left(X^{\alpha}, P_{\alpha}\right)$$$
P_{\alpha}:=\left\{-\mu^{2} / 2, \xi_{(t)}^{\mu} p_{\mu}, \xi_{(\phi)}^{\mu} p_{\mu}, K^{\mu \nu} p_{\mu} p_{\nu}\right\}
$$

$\left(\approx\left\{-\mu^{2} / 2, E, L_{z}, Q\right\}\right)$ at the background geodesics

Rewrite the interaction Hamiltonian in $\left(x^{\mu}, P_{\alpha}\right)$

$$
H_{\mathrm{int}}\left(x^{\mu}, P_{\alpha}\right):=H_{\mathrm{int}}\left(x^{\mu}, p_{\mu}\left(x^{\mu}, P_{\alpha}\right)\right)
$$

Hamilton equation in the transformed coordinate

$$
\begin{aligned}
\mu \frac{d P_{\gamma}}{d \tau} & \left.=-\left(\frac{\partial x^{\sigma}}{\partial X^{\gamma}} \frac{\partial H\left(x^{\mu}, P_{\alpha}\right)}{\partial x^{\sigma}}\right)_{P_{\alpha}} \quad \begin{array}{l}
p_{\sigma}^{(0)}=\frac{\partial \mathcal{W}\left(x_{0}^{\mu}, P_{\alpha}^{(0)}\right)}{\partial x_{(0)}^{\sigma}} \quad \text { Canonical transformation } \\
\\
\end{array} X_{\gamma_{(0)}^{\gamma}=\frac{\partial \mathcal{W}\left(x_{(0)}^{\mu}, P_{\alpha}^{(0)}\right)}{\partial P_{\gamma}^{(0)}}}^{\partial p_{\sigma}^{(0)}}\right)_{x_{\mu}}\left(\frac{\partial H_{\mathrm{int}}\left(x^{\mu}, P_{\alpha}^{(0)}\right)}{\partial x^{\sigma}}\right)_{P_{\alpha}^{(0)}}+O\left(\frac{\mu^{2}}{M^{2}}\right)
\end{aligned}
$$

Rewrite them in the more familiar form.:

$$
\mu \frac{d E}{d \tau}=\frac{\partial H_{\mathrm{int}}}{\partial t} \quad \mu \frac{d L_{z}}{d \tau}=-\frac{\partial H_{\mathrm{int}}}{\partial \phi} \quad \mu \frac{d Q}{d \tau}=-2 K^{\rho \sigma} p_{\rho}^{(0)} \frac{\partial H_{\mathrm{int}}}{\partial x^{\sigma}}
$$

Mode decomposition of the metric perturbation:

$$
h_{\mu \nu}(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} d \omega \sum_{m=-\infty}^{+\infty} \tilde{h}_{\mu \nu}^{m}(\omega ; r, \theta) e^{-i(\omega t+m \phi)}
$$

Symmetry of the Kerr space time admits at least the separation of variables (t, ϕ)

Gauge transformation

$$
\delta_{\xi} \tilde{H}_{\mathrm{int}}^{m}=-\mu^{2} \frac{D}{d \tau}\left(\left[\tilde{\xi}^{\alpha} u_{\alpha}\right]^{m}\right)
$$

We find that $\tilde{H}_{\mathrm{int}}^{m}$ is "gauge invariant" if
$\boldsymbol{\checkmark}$ the gauge vector is physically reasonable.
Barack and Sago 1101.3331

$$
\tilde{\xi}_{\alpha}^{m}[z(\lambda)]=\tilde{\xi}_{\alpha}^{m}[z(\lambda+\Lambda)]
$$

\checkmark and take the average over one period

Comment 1.

\checkmark The averaged change rate of the constants of motion are also "gauge invariant".
$\boldsymbol{\checkmark} \tilde{\xi}_{\alpha}^{m}$ must be regular at the particle location.

Long time average $=\lim _{t \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} d \lambda \cdots \Leftrightarrow \frac{1}{\Lambda} \int_{0}^{\Lambda} d \lambda \ldots$ average over one period

For example, the Carter constant becomes

$$
\mu \frac{d Q}{d \tau}^{(R)}=-2 K^{\rho \sigma} p_{\rho}^{(0)}{\frac{\partial H_{\mathrm{int}}}{\partial x^{\sigma}}}^{(R)}
$$

$$
\mu\left\langle\frac{d Q}{d \lambda}\right\rangle^{(R)}=\frac{1}{\Lambda} \int_{0}^{\Lambda} d \lambda\left\{\left(V_{t r}(r) \partial_{t}+V_{\phi r}(r) \partial_{\phi}+\frac{d r(\lambda)}{d \lambda} \partial_{r}\right)\left[\Sigma(x) H_{\mathrm{int}}^{(R)}(x)\right]\right\}_{x=z(\lambda)}
$$

$$
\pi
$$

$$
\frac{d t}{d \lambda}=V_{t \theta}(\theta)+V_{t r}(r) \quad \frac{d \phi}{d \lambda}=V_{\phi \theta}(\theta)+V_{\phi r}(r) \quad \text { Kerr geodesic equation }
$$

Decompose the R-part integrands into the radiative and symmetric via the "Green functions"

$$
\begin{array}{r}
H_{\mathrm{int}}(x)=\int_{-\infty}^{\infty} d \lambda^{\prime} \Sigma\left[z\left(\lambda^{\prime}\right)\right] I\left(x, x^{\prime}\right)_{x^{\prime}=z\left(\lambda^{\prime}\right)} \\
I\left(x, x^{\prime}\right):=G_{\alpha \beta \gamma^{\prime} \delta^{\prime}}\left(x, x^{\prime}\right) p_{(0)}^{\alpha}(x) p_{(0)}^{\beta}(x) p_{(0)}^{\gamma^{\prime}}\left(x^{\prime}\right) p_{(0)}^{\delta^{\prime}}\left(x^{\prime}\right)
\end{array}
$$

Radiative part

$$
I^{(\mathrm{rad})}\left(x, x^{\prime}\right):=\frac{1}{2}\left[I^{(\mathrm{ret})}\left(x, x^{\prime}\right)-I^{(\mathrm{adv})}\left(x, x^{\prime}\right)\right]
$$

Symmetric (and S-part)
$I^{(\mathrm{sym})}\left(x, x^{\prime}\right)-I^{(S)}\left(x, x^{\prime}\right):=\frac{1}{2}\left[I^{(\mathrm{ret})}\left(x, x^{\prime}\right)+I^{(\mathrm{adv})}\left(x, x^{\prime}\right)\right]-I^{(S)}\left(x, x^{\prime}\right)$

In the rest of the talk, I will limit my attention to discuss the symmetric (minus-S) part only.

Radiative part is given our preparing paper or Falanagan,Hughes and Ruangsri 1208.3906

The translation invariance in the Killing direction

$$
\begin{aligned}
& F\left(t, \phi ; t^{\prime} \phi^{\prime}\right) \\
& =F\left(t-t^{\prime}, \phi-\phi^{\prime}\right) \quad \triangleleft
\end{aligned} \quad \begin{aligned}
& \partial_{t} I^{(\mathrm{sym})}\left(x, x^{\prime}\right)=-\partial_{t^{\prime}} I^{(\mathrm{sym})}\left(x, x^{\prime}\right) \\
& \partial_{\phi} I^{\text {(sym) }}\left(x, x^{\prime}\right)=-\partial_{\phi^{\prime}} I^{\text {sym }}\left(x, x^{\prime}\right)
\end{aligned}
$$

The symmetric (minus S -) part is simplified as,

$$
\left\langle\frac{d Q}{d \lambda}\right\rangle^{(\mathrm{sym}-S)}=-\frac{1}{2} \frac{d}{d \Delta \lambda} \Phi(\Delta \lambda)^{(\mathrm{sym}-S)}
$$

with the potential function (= averaged ${\left.H_{i n t}^{(s y m}-S\right)}^{\text {(s) }}$. $)$.
$\Phi(\Delta \lambda)^{(\mathrm{sym}-S)}:=\frac{1}{\Lambda} \int_{0}^{\lambda} \Sigma[z(\lambda)] \int_{-\infty}^{\infty} d \lambda^{\prime} \Sigma\left[z\left(\lambda^{\prime}\right)\right] I^{(\mathrm{sym}-S)}\left(z(\lambda), z\left(\lambda^{\prime}\right)\right)$

Comment 2.

$\boldsymbol{\checkmark}$ The symmetric (and S-part) "Green function" diverges at the coincidence limit.

$$
I^{(\mathrm{sym})}\left(z(\lambda), z\left(\lambda^{\prime}\right)\right) \quad \Longleftrightarrow I^{(\mathrm{sym})}\left(z_{+}(\lambda), z_{-}\left(\lambda^{\prime}\right)\right)
$$

Point splitting regularization into Killing direction

$$
z_{ \pm}^{\mu}(\lambda):=z^{\mu}(\lambda) \pm \frac{\epsilon}{2} \xi^{\mu}(\zeta) \quad \xi^{\mu}(\zeta):=\cos \zeta \xi_{(t)}^{\mu}+\left(\Omega_{\phi} \cos \zeta-\Omega \sin \zeta\right) \xi_{(\phi)}^{\mu}
$$

The potential function admits the (m, N)-mode decomposition with Teukolsky formalism.

$$
\begin{gathered}
\Phi(\Delta \lambda)^{(\mathrm{sym}-S)}=\lim _{\epsilon \rightarrow 0} \sum_{N=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} e^{-i \Omega\left(\epsilon_{1} N+\epsilon_{2} m\right)}\left[\Phi_{m N}^{(\mathrm{sym})}(\Delta \lambda)-\Phi_{m N}^{(S)}(\Delta \lambda)\right] \\
\left(\epsilon_{1}, \epsilon_{2}\right):=(\epsilon \cos \zeta, \epsilon \sin \zeta)
\end{gathered}
$$

The frequency spectrum for the bounded geodesics is discretized.

Drasco and Hughes 0308479

$$
\omega_{m N}:=m \Omega_{\phi}+N \Omega
$$

Common resonance frequency

Work in the (half-ingoing) radiation gauge

Chrzanowski Phys. Rev. D11 2042 (1975)
Wald Phys.Rev.Lett. 41203 (1978)

$$
\ell^{\mu} h_{\mu \nu}^{(\mathrm{IRG})}=g^{\mu \nu} h_{\mu \nu}^{(\mathrm{IRG})}=0
$$

Project the potential function onto the Teukolsky variables (with s=2)

$$
H_{\mathrm{int}}(x):=-\frac{1}{2} h^{\mu \nu(R)}(x) p_{\mu}^{(0)} p_{\nu}^{(0)}
$$

$$
\begin{aligned}
& \Phi(\Delta \lambda)^{(\mathrm{sym}-S)}= \frac{\mu^{2}}{2} \int d^{4} x \sqrt{-g_{0}} h_{\alpha \beta}^{(\mathrm{sym}-S)}(x) T^{\alpha \beta}[x ; z(\lambda)] \\
&= \frac{\mu^{2}}{2 \Lambda} \int_{0}^{\Lambda} d \lambda \Sigma\left[z_{+}(\lambda)\right]_{2} \mathcal{T}\left[z_{+}(\lambda)\right] \mathcal{D}_{0}^{-4}\left\{{ }_{2} \Psi^{(\text {sym })}\left[z_{+}(\lambda)\right]-{ }_{2} \Psi^{(S)}\left[z_{+}(\lambda)\right]\right\} \\
& \mathcal{D}_{0}^{-1}:=\left(\ell^{\mu} \partial_{\mu}\right)^{-1} \\
& \text { Integration in the (in)going null direction }
\end{aligned}
$$

(m, N) mode decomposition

$\Phi_{m N}^{(\text {sym })}(\Delta \lambda)$ is finite even at the particle location.

$$
\begin{aligned}
\sum_{l} \Phi(\Delta \lambda)_{l m N}^{(\mathrm{sym}-S)} & \approx \lim _{x \rightarrow z_{+}(\lambda)} \sum_{l} \int_{0}^{\Lambda} d \lambda \Sigma(x)_{2} \mathcal{T}_{l m N}(x)\left(\mathcal{D}_{0}^{-4}\right)_{l m N}\left\{{ }_{2} \Psi_{l m N}^{(\mathrm{sym})}\left[x, z_{-}(\lambda)\right]\right\} \\
& \approx \sum_{l} O\left(\frac{1}{l^{2}}\right) \\
& \approx\left(\partial_{r}\right)^{-1}
\end{aligned}
$$

We can treat the symmetric and S-part separately at the (m, N) mode level.

(m, N) mode decomposition

Derive the S-part in the Lorentz gauge at first.

$$
\begin{aligned}
\Phi(\Delta \lambda ; \epsilon, \zeta)^{(S-\text { Lor })} & \approx \int d^{4} x \sqrt{-g_{0}} h_{\alpha \beta}^{(S-\text { Lor })}(x) T^{\alpha \beta}\left[x ; z_{+}(\lambda)\right] \\
& =-\frac{f(\zeta)}{\epsilon}+O(\epsilon)
\end{aligned}
$$

Decompose it via inverse Fourier transformation.

$$
\Phi_{m N}^{(S-\text { Lor })}(\Delta \lambda)=\frac{\Omega^{2}}{4 \pi^{2}} \int_{-\frac{\pi}{\Omega}}^{\frac{\pi}{\Omega}} d \epsilon_{1} \int_{-\frac{\pi}{\Omega}}^{\frac{\pi}{\Omega}} d \epsilon_{2} e^{i \Omega\left(\epsilon_{1} N+\epsilon_{2} m\right)} \Phi^{(S-\text { Lor })}(\Delta \lambda)
$$

$\Phi_{m N}^{(S-\text { Lor })}(\Delta \lambda)$ is also finite at the particle location.

Intermediate gauge approach heuristicargument

Formal gauge transformation at (m,N)-modes

$$
\left.\left.\begin{array}{rl}
\Phi(\Delta \lambda)^{(\mathrm{sym}-S)}= & \lim _{\epsilon \rightarrow 0} \sum_{N=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} e^{-i \Omega\left(\epsilon_{1} N+\epsilon_{2} m\right)} \\
& \times\left\{\Phi_{m N}\left[h^{\text {sym }} \mathrm{IRGG}\right]\right.
\end{array}-\Phi_{m N}\left[h^{(S-\mathrm{Lor})}-2 \nabla \xi^{(\mathrm{Lor} \rightarrow \text { IRG })}\left[h^{(S-\mathrm{Loror})}\right]\right]\right\}\right]
$$

Contribution from gauge transformation vanishes

S-part can be subtracted mode-by-mode thanks to the "gauge invariance" at (m, N)-modes level.

Comment 3.

$\boldsymbol{\checkmark} \xi_{\mu}^{(\text {Lor } \rightarrow \mathrm{IRG})}$ itself has string-like singularity begins at the particle, and diverges logarithmically.
(m, N) mode decomposition is crucial.
$\checkmark l=0,1$ modes on the metric perturbation give rise only the phase errors that scales as $O\left((\mu / M)^{0}\right)$

Irrelevant here.

CO

The leading orbital evolution in the adiabatic regime:

1) $P_{(0)}^{i}:=\left\{E_{(0)}, L_{z(0)}, Q_{(0)}\right\} \square P^{i}(\lambda):=\left\{E(\lambda), L_{z}(\lambda), Q(\lambda)\right\}$

Long time average.
2)

$$
\frac{d P^{i}}{d \lambda}=\left\langle\frac{d P^{i}}{d \lambda}\right\rangle
$$

Accumulate for long time

Common resonance
frequency in Mino time $\searrow^{\frac{\Upsilon_{r}}{j_{r}}=\frac{\Upsilon_{\theta}}{j_{\theta}}:=\Upsilon}$

$$
+\sum_{N \neq 0} I_{N}^{i}\left[P_{(0)}^{j}\right] e^{i N \Upsilon \lambda}
$$

Not accumulate

The averaged value dominates the whole evolution.

Tricks for the simplification:

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} d \lambda \cdots=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} d \lambda_{\theta} \int_{-\infty}^{+\infty} d \lambda_{r} \delta\left(\lambda_{r}-\lambda_{\theta}+\Delta \lambda\right) \ldots
$$

Eliminate the r-derivative terms with the identity that holds at the particle's location.

$$
\begin{gathered}
\left.\frac{d}{d \lambda_{r}} F\left(\bar{z}\left(\lambda_{r}, \lambda_{\theta}\right)\right)=\left[\left(\frac{d r\left(\lambda_{r}\right)}{d \lambda_{r}} \partial_{r}\right]+\frac{d \Delta t_{r}\left(\lambda_{r}\right)}{d \lambda_{r}} \partial_{t}+\frac{d \Delta \phi_{r}\left(\lambda_{r}\right)}{d \lambda_{r}} \partial_{\phi}\right) F(x)\right]_{x=\bar{z}\left(\lambda_{r}, \lambda_{\theta}\right)} \\
\frac{d \Delta t_{r}\left(\lambda_{r}\right)}{d \lambda_{r}}=V_{t r}\left[r\left(\lambda_{r}\right)\right]-\left\langle V_{t r}\right\rangle \\
\text { r-oscillatory part of the motion } \\
\text { in the t-direction }
\end{gathered}
$$

After integrating by parts, the radiative in Takahiro's talk parts becomes

Sago et al. 0506092
Falanagan,Hughes and Ruangsri 1208.3906

$$
\begin{aligned}
\left\langle\frac{d Q}{d \lambda}\right\rangle^{(\mathrm{rad})}= & \frac{-\mu^{2}}{\Lambda} \int_{0}^{\Lambda} d \lambda \Sigma[z(\lambda)] \int_{-\infty}^{\infty} d \lambda^{\prime} \Sigma\left[z\left(\lambda^{\prime}\right)\right]\left[\left(\left\langle V_{t r}\right\rangle \partial_{t}+\left\langle V_{\phi r}\right\rangle \partial_{\phi}\right) I^{(\mathrm{rad})}\left(x, z\left(\lambda^{\prime}\right)\right)\right]_{x=z(\lambda)} \\
& +\frac{\mu^{2}}{\Lambda} \int_{0}^{\Lambda} d \lambda \int_{-\infty}^{\infty} d \lambda^{\prime} \Sigma\left(x^{\prime}\right)\left[\frac{d}{d(\Delta \lambda)}\left\{\Sigma[z(\lambda)] I^{(\mathrm{rad})}\left(z(\lambda), x^{\prime}\right)\right\}\right]_{x^{\prime}=z\left(\lambda^{\prime}\right)}
\end{aligned}
$$

Teukolsky formalism

$$
\left\langle\frac{d Q}{d t}\right\rangle=2\left\langle\frac{\left(r^{2}+a^{2}\right) P(r)}{\Delta}\right\rangle\left\langle\frac{d E}{d t}\right\rangle-2\left\langle\frac{a P(r)}{\Delta}\right\rangle\left\langle\frac{d L}{d t}\right\rangle+2 \sum_{\underline{l, m, n, n}, n_{\theta}} \frac{n_{r} \Omega_{r}}{\omega}\left|A_{l, m, n_{n}, n_{\theta}}\right|^{2}
$$

$$
\rightarrow 2 \sum_{l, m, N} \frac{\Omega_{r}}{\omega} A_{l, m, N} \overline{B_{l, m, N}}
$$

Sum for the same frequency is to be taken first.

Harmonic structure

[Schmidt(2002), Drasco+ (2004), Fujita+ (2009)]

- Both radial and polar motions are periodic

$$
r(\lambda)=r\left(\lambda+2 \pi \Upsilon_{r}^{-1}\right) \quad \theta(\lambda)=\theta\left(\lambda+2 \pi \Upsilon_{\theta}^{-1}\right)
$$

- Time and axial motion are linear + doubly-periodic

$$
\begin{aligned}
& t(\lambda)=t_{0}+\Upsilon_{t} \lambda+\Delta t_{r}(\lambda)+\Delta t_{\theta}(\lambda) \\
& \phi(\lambda)=\phi_{0}+\Upsilon_{\phi} \lambda+\Delta \phi_{r}(\lambda)+\Delta \phi_{\theta}(\lambda)
\end{aligned}
$$

$$
\text { r-oscillation } \quad \theta \text {-oscillation }
$$

- Only three parameters are needed in general.
$\boldsymbol{\checkmark}$ Reparameterization. $\lambda_{\theta}^{\prime}=\lambda_{\theta 0}+\frac{j_{\theta} \Lambda_{\theta}}{2} \quad \lambda_{r}^{\prime}=\lambda_{r 0}+\frac{j_{r} \Lambda_{r}}{2}$

$$
\{E, L_{z}, Q, t_{0}, \phi_{0}, \underbrace{\lambda_{r 0}, \lambda_{\theta 0}}_{r}\} \quad\left\{E, L_{z}, Q\right\}
$$

Translation sym. Periodicity. $\quad\left|\lambda_{\theta}^{\prime}-\lambda_{r}^{\prime}\right| \leq \epsilon$

Evolution of the resonant orbit

[Flanagan and Hinderer (2010), SI+ (2012)]
$\Delta \lambda$ also evolves during resonance with const. of motion.
Master equation

$$
\Delta \Upsilon:=j_{\theta} \Upsilon_{r}-j_{r} \Upsilon_{\theta} \quad \Upsilon^{\prime}=\Upsilon /\left(j_{r} j_{\theta}\right)
$$

$$
\frac{d^{2} \Delta \lambda}{d \lambda^{2}}=\frac{\partial\left(\Upsilon^{\prime-1} \Delta \Upsilon\right)}{\partial I^{j}}\left\langle\frac{d I^{i}(\Delta \lambda)}{d \lambda}\right\rangle:=H\left(\Delta \lambda, I^{i}[\Delta \lambda]\right)
$$

1) Transient resonance $H(\Delta \lambda) \neq 0$
$\square \Delta \lambda$ varies slowly and leaves the resonance.
2) Sustained resonance $H\left(\Delta \lambda_{c}\right)=0$

$$
\frac{d^{2} \Delta \lambda}{d \lambda^{2}}=\frac{-\varpi^{2}\left(I^{i}\right)\left(\Delta \lambda-\Delta \lambda_{c}\left(I^{i}\right)\right)}{\text { esonance can last for whole adiabatic regime. }} \text { Harmonic oscill }
$$

