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This invariance validates the use of radiative field  

If the resonance is absent, the geodesic is also 
invariant with 

Kerr metric is invariant under this transformation 

Mino 0302075 Old strategy for computing   

Constants of motion 



Go back to the original R-part description. 

In the resonance case,       
the geodesic is not invariant. 

Radiative part Symmetric part 

S.I. et al.,1302.4035 



The Hamiltonian of the geodesic : 

A particle moves along the geodesic on a smooth 
perturbed space time. Detweiler and Whiting  0202086 

: Interaction 
Hamiltonian 

: “background” geodesics 



Canonical transformation to the “constants of 
motion” coordinate 

Carter Phys. Rev. 174 1559  

Rewrite the interaction Hamiltonian in  

at the background geodesics 



Rewrite them in the more familiar form.:  

Hamilton equation in the transformed coordinate 

Canonical transformation 



Mode decomposition of the metric perturbation:  

Symmetry of the Kerr space time admits 
at least the separation of variables of  



Gauge transformation 

We find that         is “gauge invariant” if 

 ✔ the gauge vector is physically reasonable. 

 ✔ and take the average over one period 

Barack and Sago 1101.3331 



Comment 1. 

 ✔      must be regular at the particle location. 

 ✔ The averaged change rate of the 
constants of motion are also “gauge invariant”. 



Kerr geodesic equation 

For example, the Carter constant becomes  

Long time average = 
average over one period 



Decompose the R-part integrands into the radiative 
and symmetric via the “Green functions” 

Radiative part 

Symmetric (and S-part) 



 In the rest of the talk, I will limit my attention to 
discuss the symmetric (minus-S) part only. 

Radiative part is given our preparing paper or 
Falanagan,Hughes and Ruangsri 1208.3906 



The translation invariance in the Killing direction 

The symmetric (minus S-)part is simplified as,  

with the potential function (= averaged                 )  



Comment 2. 

 ✔The symmetric (and S-part) “Green function” 
diverges at the coincidence limit. 

Point splitting regularization into Killing direction 



The frequency spectrum  for the bounded 
geodesics is discretized. Drasco and Hughes 0308479 

The potential function admits the (m,N)-mode 
decomposition with Teukolsky formalism. 

Common resonance frequency 



Project the potential function onto the Teukolsky 
variables (with s=2)  

Work in the (half-ingoing) radiation gauge  

Wald Phys.Rev.Lett. 41 203 (1978) 
Chrzanowski Phys. Rev. D11 2042 (1975) 

Integration in the (in)going null direction 



heuristic argument (m,N) mode decomposition 

           is finite even at the particle location.  

We can treat the symmetric and S-part separately   
at the (m,N) mode level.  



heuristic argument (m,N) mode decomposition 

Derive the S-part in the Lorentz gauge at first. 

Decompose it via inverse Fourier transformation. 

           is also finite at the particle location.  



heuristic argument Intermediate gauge approach 

Formal gauge transformation at (m,N)-modes 

S-part can be subtracted mode-by–mode thanks to 
the “gauge invariance” at (m,N)-modes level.   

Contribution from gauge transformation  vanishes 



Comment 3. 

 ✔              modes on the metric perturbation give 
rise only the phase errors that scales as 

 ✔               itself has string-like singularity begins 
at the particle, and diverges logarithmically. 

Irrelevant here. 

(m,N) mode decomposition is crucial. 



糸冬 
(Fin.) 



The leading orbital evolution in the adiabatic regime:  

Hinderer and Falanagan 0805.3337 
Tanaka 0508144 

Not accumulate Accumulate for long time 

Long time average. 

The averaged value dominates the whole evolution.  

Common resonance 
frequency in Mino time 



Tricks for the simplification: 

Eliminate the r-derivative terms with the identity 
that holds at the particle’s location.  

r-oscillatory part of the motion 
in the t-direction 



After integrating by parts, the radiative 
parts becomes  Sago et al. 0506092 

Falanagan,Hughes and Ruangsri 1208.3906 

Teukolsky formalism 

( ) ( ) ( ) 2

,,,
,,,

22

222 ∑ Ω
+

∆
−

∆
+

=
θ

θωnnml
nnml

rr

r

r
An

dt
dLraP

dt
dErPar

dt
dQ

∑ Ω

Nml
NmlNml

r BA
,,

,,,,2
ω

θjj
r

r

r Ω
=

Ω
≡Ω

Ω=Ω+Ω Nnn rr θθ

∑= θnnmlNml r
AA ,,,,, ∑= θnnmlrNml r

AnB ,,,,,
Ω=Ω+Ω Nnn rr θθ

Sum for the same frequency is to be taken first. 

In Takahiro’s talk 

Amplitude of the partial waves 



Harmonic structure 

・Time and axial motion are linear + doubly-periodic 

・ Both radial and polar motions are periodic 
[Schmidt(2002),Drasco+ (2004), Fujita+ (2009)] 

・ Only three parameters are needed in general. 
r-oscillation θ-oscillation 

Periodicity. Translation sym. 

✔ Reparameterization. 



Evolution of the resonant orbit  
[ Flanagan and Hinderer (2010), SI+ (2012) ] 

2) Sustained resonance  

also evolves during resonance with const. of motion. 

1) Transient resonance  

Harmonic oscillator 

varies slowly and leaves the resonance.  

Master equation 

Resonance can last for whole adiabatic regime.   
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