Eccentric motion on a

Schwarzschild background:
Self-force in a modified Regge-Wheeler gauge

Seth Hopper - Albert Einstein Institute
Capra 16 - July 16, 2013

Outline

- Gauge freedom on Schwarzschild
- Infinitesimal gauge transformations
- Lorenz gauge
- Modified Regge-Wheeler gauge

Gauge freedom

- In GR, gauge freedom is coordinate freedom
- Zeroth order: use Schwarzschild coordinates
- First-order options:
- Lorenz
- Regge-Wheeler
- Modified Regge-Wheeler?

Lorenz gauge

$$
g_{\mu \nu}=g_{\mu \nu}^{\mathrm{Schw}}+p_{\mu \nu}
$$

Lorenz gauge

$$
\begin{aligned}
& g_{\mu \nu}=g_{\mu \nu}^{\mathrm{Schw}}+p_{\mu \nu} \\
& \square \bar{p}_{\mu \nu}+2 R_{\alpha \mu \beta \nu} \bar{p}^{\alpha \beta}=-16 \pi T_{\mu \nu}, \quad \bar{p}^{\mu \nu}{ }_{\mid \nu}=0
\end{aligned}
$$

Lorenz gauge

$$
\begin{aligned}
& g_{\mu \nu}=g_{\mu \nu}^{\mathrm{Schw}}+p_{\mu \nu} \\
& \square \bar{p}_{\mu \nu}+2 R_{\alpha \mu \beta \nu} \bar{p}^{\alpha \beta}=-16 \pi T_{\mu \nu}, \quad \bar{p}_{\mid \nu}^{\mu \nu}=0
\end{aligned}
$$

- 10 coupled wave equations
- Locally isotropic solutions
- Regularization procedure in Lorenz gauge
- Other gauges may be possible ...

Regge-Wheeler gauge

- Schematically: $p_{\mu \nu} \rightarrow \sum_{\ell, m} h_{\mu \nu}^{\ell m} Y^{\ell m}$
- Set four components of $h_{\mu \nu}^{\ell m}$ to zero
- Field equations simplify greatly:

$$
\left[-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial r_{*}^{2}}-V_{\ell}(r)\right] \Psi_{\ell m}(t, r)=S_{\ell m}(t)
$$

- Reconstruct metric perturbation:

$$
\Psi_{\ell m}(t, r) \rightarrow p_{\mu \nu}
$$

RW gauge fields: odd-parity

- Two non-vanishing amplitudes: $h_{t}^{\ell m}, h_{r}^{\ell m}$

RW gauge fields: even-parity

- Four non-vanishing amplitudes: $h_{t t}^{\ell m}, h_{t r}^{\ell m}, h_{r r}^{\ell m}, K^{\ell m}$

$$
(\ell, m)=(2,2)
$$

Benefits and drawbacks of RW gauge

- Benefits:
- Simple field equations
- Computationally efficient

Benefits and drawbacks of RW gauge

- Benefits:
- Simple field equations
- Computationally efficient
- Drawbacks:
- Only valid for radiative modes, $\ell \geq 2$
- Singularities/discontinuities at the particle
- Self-force not well-defined

A regular, well-defined self-force

- Barack and Ori, 2001
- "Gravitational self force and gauge transformations"

A regular, well-defined self-force

- Barack and Ori, 2001
- "Gravitational self force and gauge transformations"
- Lorenz gauge yields a regular, well-defined SF

A regular, well-defined self-force

- Barack and Ori, 2001
- "Gravitational self force and gauge transformations"
- Lorenz gauge yields a regular, well-defined SF
- SF transformation with gauge vector Ξ^{μ} :

$$
\delta F_{\mathrm{self}}^{\alpha}=-\mu\left[\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right) \ddot{\Xi}_{\beta}+R^{\alpha}{ }_{\mu \beta \nu} u^{\mu} \Xi^{\beta} u^{\nu}\right]
$$

A regular, well-defined self-force

- Barack and Ori, 2001
- "Gravitational self force and gauge transformations"
- Lorenz gauge yields a regular, well-defined SF
- SF transformation with gauge vector Ξ^{μ} :

$$
\delta F_{\text {self }}^{\alpha}=-\mu\left[\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right) \ddot{\Xi}_{\beta}+R^{\alpha}{ }_{\mu \beta \nu} u^{\mu} \Xi^{\beta} u^{\nu}\right]
$$

- SF is well-defined if and only if $\delta F_{\text {self }}^{\alpha}$ relative to Lorenz gauge is

A regular, well-defined self-force

- Barack and Ori, 2001
- "Gravitational self force and gauge transformations"
- Lorenz gauge yields a regular, well-defined SF
- SF transformation with gauge vector Ξ^{μ} :

$$
\delta F_{\text {self }}^{\alpha}=-\mu\left[\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right) \ddot{\Xi}_{\beta}+R^{\alpha}{ }_{\mu \beta \nu} u^{\mu} \Xi^{\beta} u^{\nu}\right]
$$

- SF is well-defined if and only if $\delta F_{\text {self }}^{\alpha}$ relative to Lorenz gauge is
- If vector Ξ^{μ} is well-defined, the SF will be also

A regular, well-defined self-force

- Barack and Ori, 2001
- "Gravitational self force and gauge transformations"
- Lorenz gauge yields a regular, well-defined SF
- SF transformation with gauge vector Ξ^{μ} :

$$
\delta F_{\text {self }}^{\alpha}=-\mu\left[\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right) \ddot{\Xi}_{\beta}+R^{\alpha}{ }_{\mu \beta \nu} u^{\mu} \Xi^{\beta} u^{\nu}\right]
$$

- SF is well-defined if and only if $\delta F_{\text {self }}^{\alpha}$ relative to Lorenz gauge is
- If vector Ξ^{μ} is well-defined, the SF will be also
- Then, regularization is done with Lorenz gauge parameters $A^{\alpha}, B^{\alpha}, C^{\alpha}, D^{\alpha}$

First-order gauge transformations

- Transform from RW to Lorenz gauge:

$$
x_{\mathrm{L}}^{\mu}=x_{\mathrm{RW}}^{\mu}+\Xi_{\mathrm{RW} \rightarrow \mathrm{~L}}^{\mu}, \quad\left|\Xi_{\mathrm{RW} \rightarrow \mathrm{~L}}^{\mu}\right| \sim\left|p_{\mu \nu}\right| \ll\left|g_{\mu \nu}^{\mathrm{Schw}}\right|
$$

First-order gauge transformations

- Transform from RW to Lorenz gauge:

$$
x_{\mathrm{L}}^{\mu}=x_{\mathrm{RW}}^{\mu}+\Xi_{\mathrm{RW} \rightarrow \mathrm{~L}}^{\mu}, \quad\left|\Xi_{\mathrm{RW} \rightarrow \mathrm{~L}}^{\mu}\right| \sim\left|p_{\mu \nu}\right| \ll\left|g_{\mu \nu}^{\mathrm{Schw}}\right|
$$

- Metric perturbation transforms:

$$
p_{\mu \nu}^{\mathrm{L}}=p_{\mu \nu}^{\mathrm{RW}}-\Xi_{\mu \mid \nu}^{\mathrm{RW} \rightarrow \mathrm{~L}}-\Xi_{\nu \mid \mu}^{\mathrm{RW} \rightarrow \mathrm{~L}}
$$

First-order gauge transformations

- Transform from RW to Lorenz gauge:

$$
x_{\mathrm{L}}^{\mu}=x_{\mathrm{RW}}^{\mu}+\Xi_{\mathrm{RW} \rightarrow \mathrm{~L}}^{\mu}, \quad\left|\Xi_{\mathrm{RW} \rightarrow \mathrm{~L}}^{\mu}\right| \sim\left|p_{\mu \nu}\right| \ll\left|g_{\mu \nu}^{\mathrm{Schw}}\right|
$$

- Metric perturbation transforms:

$$
p_{\mu \nu}^{\mathrm{L}}=p_{\mu \nu}^{\mathrm{RW}}-\Xi_{\mu \mid \nu}^{\mathrm{RW} \rightarrow \mathrm{~L}}-\Xi_{\nu \mid \mu}^{\mathrm{RW} \rightarrow \mathrm{~L}}
$$

- Gauge vector satisfies a wave equation:

$$
\square \Xi_{\mathrm{RW} \rightarrow \mathrm{~L}}^{\mu}=\bar{p}_{\mathrm{RW} \mid \nu}^{\mu \nu}
$$

RW->Lorenz gauge vector: odd-parity

- Transform the global solution, mode-by-mode

Lorenz gauge fields: odd-parity

- Amplitudes are now C^{0} and asymptotically flat

Benefits/drawbacks of global gauge transf.

$$
\square \Xi_{\mathrm{RW} \rightarrow \mathrm{~L}}^{\mu}=\bar{p}_{\mathrm{RW} \mid \nu}^{\mu \nu}
$$

Benefits/drawbacks of global gauge transf.

$$
\square \Xi_{\mathrm{RW} \rightarrow \mathrm{~L}}^{\mu}=\bar{p}_{\mathrm{RW} \mid \nu}^{\mu \nu}
$$

- Benefits:
- Gives the solution, everywhere in Lorenz gauge
- Gives solution to low-order modes

Benefits/drawbacks of global gauge transf.

$$
\square \Xi_{\mathrm{RW} \rightarrow \mathrm{~L}}^{\mu}=\bar{p}_{\mathrm{RW} \mid \nu}^{\mu \nu}
$$

- Benefits:
- Gives the solution, everywhere in Lorenz gauge
- Gives solution to low-order modes
- Drawbacks:
- Computationally difficult and expensive
- Discontinuous, extended source terms
- Excessive, if you just want the self-force

A modified RW gauge

- Gralla, 2011-Simple gauge transf. to reach "parity-regular" gauge

A modified RW gauge

- Gralla, 2011-Simple gauge transf. to reach "parity-regular" gauge
- Split gauge transformation into two steps

$$
\Xi_{\mathrm{RW} \rightarrow \mathrm{~L}}^{\mu}=\Xi_{\mathrm{RW} \rightarrow \mathrm{MRW}}^{\mu}+\Xi_{\mathrm{MRW} \rightarrow \mathrm{~L}}^{\mu}
$$

A modified RW gauge

- Gralla, 2011-Simple gauge transf. to reach "parity-regular" gauge
- Split gauge transformation into two steps

Remove major discontinuities

A modified RW gauge

- Gralla, 2011-Simple gauge transf. to reach "parity-regular" gauge
- Split gauge transformation into two steps

$$
+\Xi_{\mathrm{MRW} \rightarrow \mathrm{~L}}^{\mu}
$$

Remove major discontinuities

$$
\Xi_{\mathrm{RW} \rightarrow \mathrm{~L}}^{\mu}=
$$

Smooth enough to ignore

A modified RW gauge

- The metric perturbation in MRW gauge is

$$
p_{\mu \nu}^{\mathrm{MRW}}=p_{\mu \nu}^{\mathrm{RW}}-2 \Xi_{(\mu \mid \nu)}^{\mathrm{RW} \rightarrow \mathrm{MRW}}
$$

A modified RW gauge

- The metric perturbation in MRW gauge is

$$
p_{\mu \nu}^{\mathrm{MRW}}=p_{\mu \nu}^{\mathrm{RW}}-2 \Xi_{(\mu \mid \nu)}^{\mathrm{RW} \rightarrow \mathrm{MRW}}
$$

- Decompose into spherical harmonics, e.g.

$$
h_{t}^{\ell m, \mathrm{MRW}}=h_{t}^{\ell m, \mathrm{RW}}-\partial_{t} \xi_{\mathrm{odd}}^{\ell m}
$$

A modified RW gauge

- We demand $\llbracket h_{t}^{\ell m, \mathrm{MRW}} \rrbracket=\llbracket h_{t}^{\ell m, \mathrm{~L}} \rrbracket=0$

A modified RW gauge

- We demand $\llbracket h_{t}^{\ell m, \mathrm{MRW}} \rrbracket=\llbracket h_{t}^{\ell m, \mathrm{~L}} \rrbracket=0$
- Given $h_{t}^{\ell m, \mathrm{MRW}}=h_{t}^{\ell m, \mathrm{RW}}-\partial_{t} \xi_{\text {odd }}^{\ell m}$

A modified RW gauge

- We demand $\llbracket h_{t}^{\ell m, \mathrm{MRW}} \rrbracket=\llbracket h_{t}^{\ell m, \mathrm{~L}} \rrbracket=0$
- Given $h_{t}^{\ell m, \mathrm{MRW}}=h_{t}^{\ell m, \mathrm{RW}}-\partial_{t} \xi_{\mathrm{odd}}^{\ell m}$
- Therefore $\llbracket h_{t}^{\ell m, R W} \rrbracket=\llbracket \partial_{t} \xi_{\text {odd }}^{\ell m} \rrbracket$

A modified RW gauge

- We demand $\llbracket h_{t}^{\ell m, \mathrm{MRW}} \rrbracket=\llbracket h_{t}^{\ell m, \mathrm{~L}} \rrbracket=0$
- Given $h_{t}^{\ell m, \mathrm{MRW}}=h_{t}^{\ell m, \mathrm{RW}}-\partial_{t} \xi_{\mathrm{odd}}^{\ell m}$
- Therefore $\frac{\llbracket h_{t}^{\ell m, R W} \rrbracket}{\nearrow}=\llbracket \partial_{t} \xi_{\text {odd }}^{\ell m} \rrbracket$

We know this

A modified RW gauge

- We demand $\llbracket h_{t}^{\ell m, \mathrm{MRW}} \rrbracket=\llbracket h_{t}^{\ell m, \mathrm{~L}} \rrbracket=0$
- Given $h_{t}^{\ell m, \mathrm{MRW}}=h_{t}^{\ell m, \mathrm{RW}}-\partial_{t} \xi_{\mathrm{odd}}^{\ell m}$
- Therefore $\frac{\llbracket h_{t}^{\ell m}, \mathrm{RW} \rrbracket}{\nearrow}=\frac{\llbracket \partial_{t} \xi_{\text {odd }}^{\ell m} \rrbracket}{\text { ºn }}$

We know this
Restriction on the gauge vector

A modified RW gauge

- Restrictions on $\llbracket \xi_{\text {odd }}^{\ell m} \rrbracket, ~ \llbracket \partial_{t} \xi_{\text {odd }}^{\ell m} \rrbracket, \llbracket \partial_{r} \xi_{o d d}^{\ell m} \rrbracket$
- Away from the particle, no restrictions

A modified RW gauge

- Restrictions on $\llbracket \xi_{\text {odd }}^{\ell m} \rrbracket, ~ \llbracket \partial_{t} \xi_{\text {odd }}^{\ell m} \rrbracket, \llbracket \partial_{r} \xi_{\text {odd }}^{\ell m} \rrbracket$
- Away from the particle, no restrictions
- A possible vector:

$$
\xi_{\mathrm{odd}}^{\ell m}(t, r)=\left(r-r_{p}\right) \llbracket h_{r}^{\ell m, \mathrm{RW}} \rrbracket \theta\left[r-r_{p}\right]
$$

A modified RW gauge

- Restrictions on $\llbracket \xi_{\text {odd }}^{\ell m} \rrbracket, ~ \llbracket \partial_{t} \xi_{\text {odd }}^{\ell m} \rrbracket, \llbracket \partial_{r} \xi_{\text {odd }}^{\ell m} \rrbracket$
- Away from the particle, no restrictions
- A possible vector:

$$
\xi_{\mathrm{odd}}^{\ell m}(t, r)=\left(r-r_{p}\right) \llbracket h_{r}^{\ell m, \mathrm{RW}} \rrbracket \theta\left[r-r_{p}\right]
$$

Metric perturbation in modified RW gauge

$$
\left(p, e, t_{p}\right)=(8.75455,0.764124,80.17) \quad(\ell, m)=(2,1)
$$

Even-parity gauge vector

$$
\left(p, e, t_{p}\right)=(8.75455,0.764124,80.17) \quad(\ell, m)=(2,2)
$$

Metric perturbation in modified RW gauge

$$
\left(p, e, t_{p}\right)=(8.75455,0.764124,80.17) \quad(\ell, m)=(2,2)
$$

Metric perturbation in modified RW gauge

$$
\left(p, e, t_{p}\right)=(8.75455,0.764124,80.17) \quad(\ell, m)=(2,2)
$$

Is this good enough?

- Split gauge transformation into two steps

$$
\Xi_{\mathrm{RW} \rightarrow \mathrm{~L}}^{\mu}=\Xi_{\mathrm{RW} \rightarrow \mathrm{MRW}}^{\mu}+\Xi_{\mathrm{MRW} \rightarrow \mathrm{~L}}^{\mu}
$$

Remove major discontinuities

Is this good enough?

- Split gauge transformation into two steps

$$
\overbrace{\text { discontinuities }}^{\Xi_{\mathrm{RW} \rightarrow \mathrm{~L}}^{\mu}=\underbrace{\Xi_{\text {Smooth enough to ignore }}^{\mu}}_{\mathrm{RW} \rightarrow \mathrm{MRW}}+\overbrace{\mathrm{MRW} \rightarrow \mathrm{~L}}^{\mu}}
$$

- The remaining transformation comes from

$$
\square \Xi_{\mathrm{MRW} \rightarrow \mathrm{~L}}^{\mu}=\bar{p}_{\mathrm{MRW} \mid \nu}^{\mu \nu}
$$

Is this good enough?

- Split gauge transformation into two steps

$$
\overbrace{\text { discontinuities }}^{\Xi_{\mathrm{RW} \rightarrow \mathrm{~L}}^{\mu}=\underbrace{\Xi_{\text {Smooth enough to ignore }}^{\mu}}_{\mathrm{RW} \rightarrow \mathrm{MRW}}+\overbrace{\mathrm{MRW} \rightarrow \mathrm{~L}}^{\mu}}
$$

- The remaining transformation comes from

$$
\square \Xi_{\mathrm{MRW} \rightarrow \mathrm{~L}}^{\mu}=\frac{\bar{p}_{\mathrm{MRW}}^{\mu \nu} \mid \nu}{\nearrow_{\text {This is now } C^{0}}}
$$

Is this good enough?

- Split gauge transformation into two steps

$$
\overbrace{\text { discontinuities }}^{\Xi_{\mathrm{RW} \rightarrow \mathrm{~L}}^{\mu}=\underbrace{\Xi_{\mathrm{RW} \rightarrow \mathrm{MRW}}^{\mu}}_{\text {Smooth enough to ignore }}+\overbrace{\mathrm{MRW} \rightarrow \mathrm{~L}}^{\Xi_{\mathrm{L}}^{\mu}}}
$$

- The remaining transformation comes from

$$
\square \Xi_{\mathrm{MRW} \rightarrow \mathrm{~L}}^{\mu}=\frac{\bar{p}_{\mathrm{MRW}}^{\mu \nu} \mid \nu}{\nearrow}
$$

- But we can do better

Extending the modified RW gauge

- We demand $\llbracket \partial_{r} h_{t}^{\ell m, \mathrm{MRW}} \rrbracket=\llbracket \partial_{r} h_{t}^{\ell m, \mathrm{~L}} \rrbracket$

Extending the modified RW gauge

- We demand $\llbracket \partial_{r} h_{t}^{\ell m, M R W} \rrbracket=\llbracket \partial_{r} h_{t}^{\ell m, \mathrm{~L}} \rrbracket$
- Given $h_{t}^{\ell m, \mathrm{MRW}}=h_{t}^{\ell m, \mathrm{RW}}-\partial_{t} \xi_{\mathrm{odd}}^{\ell m}$

Extending the modified RW gauge

- We demand $\llbracket \partial_{r} h_{t}^{\ell m, \mathrm{MRW}} \rrbracket=\llbracket \partial_{r} h_{t}^{\ell m, \mathrm{~L}} \rrbracket$
- Given $h_{t}^{\ell m, \mathrm{MRW}}=h_{t}^{\ell m, \mathrm{RW}}-\partial_{t} \xi_{\mathrm{odd}}^{\ell m}$
- Therefore $\llbracket \partial_{t} \partial_{r} \xi_{o d d}^{\ell m} \rrbracket=\llbracket \partial_{r} h_{t}^{\ell m, \mathrm{RW}} \rrbracket-\llbracket \partial_{r} h_{t}^{\ell m, \mathrm{~L}} \rrbracket$

Extending the modified RW gauge

- We demand $\llbracket \partial_{r} h_{t}^{\ell m, \mathrm{MRW}} \rrbracket=\llbracket \partial_{r} h_{t}^{\ell m, \mathrm{~L}} \rrbracket$
- Given $h_{t}^{\ell m, \mathrm{MRW}}=h_{t}^{\ell m, \mathrm{RW}}-\partial_{t} \xi_{\text {odd }}^{\ell m}$
- Therefore $\llbracket \partial_{t} \partial_{r} \xi_{o \mathrm{dd}}^{\ell m} \rrbracket=\frac{\llbracket \partial_{r} h_{t}^{\ell m, \mathrm{RW}} \rrbracket}{\square} \frac{\llbracket \partial_{r} h_{t}^{\ell m, \mathrm{~L}} \rrbracket}{\nearrow}$

We know these

Extending the modified RW gauge

- We demand $\llbracket \partial_{r} h_{t}^{\ell m, M R W} \rrbracket=\llbracket \partial_{r} h_{t}^{\ell m, \mathrm{~L}} \rrbracket$
- Given $h_{t}^{\ell m, \mathrm{MRW}}=h_{t}^{\ell m, \mathrm{RW}}-\partial_{t} \xi_{\mathrm{odd}}^{\ell m}$
- Therefore $\frac{\llbracket \partial_{t} \partial_{r} \xi_{\text {odd }}^{\ell m} \rrbracket}{\nearrow}=\frac{\llbracket \partial_{r} h_{t}^{\ell m, R W} \rrbracket}{\nearrow} \frac{\llbracket \partial_{r} h_{t}^{\ell m, \mathrm{~L}} \rrbracket}{\nearrow}$

Restriction on the gauge vector
We know these

Updated gauge vector: odd-parity

$$
\left(p, e, t_{p}\right)=(8.75455,0.764124,80.17) \quad(\ell, m)=(2,1)
$$

Updated gauge vector: even-parity

$$
\left(p, e, t_{p}\right)=(8.75455,0.764124,80.17) \quad(\ell, m)=(2,2)
$$

And so on ...

- Jumps in RW amplitudes and jumps in Lorenz amplitudes yield new restrictions on gauge vector

And so on

- Jumps in RW amplitudes and jumps in Lorenz amplitudes yield new restrictions on gauge vector
- Will always disagree with Lorenz by:

$$
p_{\mu \nu}^{\mathrm{L}}=p_{\mu \nu}^{\mathrm{MRW}}-2 \Xi_{(\mu \mid \nu)}^{\mathrm{MRW}} \rightarrow \mathrm{~L}
$$

And so on

- Jumps in RW amplitudes and jumps in Lorenz amplitudes yield new restrictions on gauge vector
- Will always disagree with Lorenz by:

$$
p_{\mu \nu}^{\mathrm{L}}=p_{\mu \nu}^{\mathrm{MRW}}-2 \Xi_{(\mu \mid \nu)}^{\mathrm{MRW} \rightarrow \mathrm{~L}}
$$

- Modified RW gauge will have the same discontinuities as Lorenz gauge, to arbitrary orders of discontinuity

Where does this leave us?

- SF is well-defined if and only if $\delta F_{\text {self }}^{\alpha}$ is also
- If vector Ξ^{μ} is well-defined, the SF will be also

Where does this leave us?

- SF is well-defined if and only if $\delta F_{\text {self }}^{\alpha}$ is also
- If vector Ξ^{μ} is well-defined, the SF will be also
- We can make the gauge vector $\Xi_{\mathrm{MRW} \rightarrow \mathrm{L}}^{\mu}$ as smooth as necessary

Preliminary results

Preliminary results

- Dissipative SF yields local E and J losses which agree with fluxes

Preliminary results

- Dissipative SF yields local E and J losses which agree with fluxes
- Working on the conservative SF
- Want same value on both sides of particle
- If not, why not?

Preliminary results

- Dissipative SF yields local E and J losses which agree with fluxes
- Working on the conservative SF
- Want same value on both sides of particle
- If not, why not?
- Non-radiative modes should follow from a "Modified Zerilli gauge"

Preliminary results

- Dissipative SF yields local E and J losses which agree with fluxes
- Working on the conservative SF
- Want same value on both sides of particle
- If not, why not?
- Non-radiative modes should follow from a "Modified Zerilli gauge"
- Solving field equations in Mathematica yields high (theoretically arbitrary) accuracy

Conclusions

Conclusions

- Regge-Wheeler gauge is very convenient for solving the field equations on Schwarzschild

Conclusions

- Regge-Wheeler gauge is very convenient for solving the field equations on Schwarzschild
- Local singularities make a "well-defined" selfforce impossible in this gauge

Conclusions

- Regge-Wheeler gauge is very convenient for solving the field equations on Schwarzschild
- Local singularities make a "well-defined" selfforce impossible in this gauge
- Global gauge transformations to Lorenz are possible but difficult

Conclusions

- Regge-Wheeler gauge is very convenient for solving the field equations on Schwarzschild
- Local singularities make a "well-defined" selfforce impossible in this gauge
- Global gauge transformations to Lorenz are possible but difficult
- Modified RW gauge (hopefully) yields a way to find the self-force with no extra computational cost

