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Extended bodies: We all use them

Distributional sources don’t work in GR (or even ordinary EM).

Rather, distributional sources (with special rules [regularization]) can
describe limiting behaviors for classes of extended sources.

Perturbative methods usually apply only on scales much larger than the
body’s. What happens a little closer in?
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Approaches to motion problems

Consider a compact clump of matter interacting with long-range fields
(charged solid in Maxwell EM, star in GR, . . . )

1 Either compute “everything” (numerics)

Many inputs: detailed matter model, initial and boundary conditions
Complicated output: detailed density, velocity, temperature fields
“Complete”
Describes only very specific systems

2 ...or focus only on a few “bulk” or “external” quantities (CM etc.)

Simple input
Simple output: center of mass, spin, ...
Not complete
Can describe large classes of systems simultaneously
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Internal and external variables in celestial mechanics

Ordinary celestial mechanics makes “PDEs → ODEs:”

External (or bulk) variables

Center of mass positions
Linear momenta
Angular momenta

Internal variables

Density distributions
Internal velocities
Thermodynamic variables

Focus on the external variables.
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Effective point particles

An extended mass can partially be replaced by an effective point
particle where bulk variables are evolved on a worldline.

1 Choose a “representative” worldline

2 Define momenta

3 Find force and torque as integrals

4 Expand these integrals in multipole series

These steps aren’t entirely independent.

Self-force causes trouble mostly in step 4.
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Representative worldlines

There are several approaches.

1 Various perturbative constructions (see Pound)

Limiting worldtubes
Parameter in a metric perturbation

2 Look at structure of null geodesic congruences far away and define a
worldline in an auxiliary space (Newman, Adamo, Kozameh)

3 Fix a genuine worldline in the physical spacetime

All of these arise from setting a “mass dipole moment” to zero.
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Flat spacetime centroids

Defining a mass dipole is subtle even for a free object in flat spacetime (!).

Sµν(z) = 2

∫
(x − z)[µTµ]λ(x)dSλ

∼ (spin ⊕ mass dipole moment)

Mass dipole vanishes wrt a timelike observer field va if

Sab(z)vb(z) = 0.

“Spin supplementary condition” (actually a choice of centroid)
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Which mass dipole?

Which va to use in Sabv
b = 0?

Do you want to describe lone objects, collisions, . . . ?

pa or ża both seem reasonable.

1 va = ża gives an infinite number of (mostly) accelerated worldlines!

2 va = pa gives a unique geodesic worldline
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Tube of centroids

The centroids formed from all possible observer fields va form a disk of
radius ∼ S/m.

S/m < r , so maybe you don’t care.

1 S/m . 10−6r for everyday objects, the
Earth and Sun

2 But LLR measurements get to this
level. . .

⇠ S/m

S

All of this is well-understood only for a freely-falling mass in flat spacetime!

Abraham Harte (AEI) Self-interaction and extended bodies July 17, 2013 10 / 27



Momenta

Something like Sabp
b = 0 is probably a good choice for a center of mass.

But what are pa,Sab anyway?

In the presence of Killing fields, a linear combination of momenta should
be conserved:

Pξ = (paξ
a +

1

2
Sab∇aξb)|z(s) =

∫
Σ
T a

bξ
bdSa = (constant)

A generalized version of this can be imposed in general.

Linear and angular momenta are treated on equal footing.
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Forces and torques

∇aT
ab = 0 implies that

dPξ
ds

=
d

ds
(paξa +

1

2
Sab∇aξb) =

1

2

∫
Σ
T abLξgabdS .

Demanding that Lξgab|z = ∇aLξgbc |z = 0 recovers Papapetrou
terms from the LHS.

RHS measures the degree to which the ξa fails to be Killing inside the
body.

Abraham Harte (AEI) Self-interaction and extended bodies July 17, 2013 12 / 27



Papapetrou terms (monopole and dipole) are just kinematics

ṗa − 1

2
Rbcd

aSbc żd = (. . .)

Ṡab − 2p[ażb] = (. . .)

RHSs here depend only on Lξgab (Always zero in de Sitter, Minkowski!)

Deviations from the Papapetrou equations measure the lack of symmetry
inside a body.
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Multipole expansions

Writing a force as an integral isn’t useful in practice. Expand this:

If an object doesn’t backreact at all (small test body),∫
Σ
T abLξgabdS ∼

∫
Σ
T ab

∑
X · · ·X (∂ · · · ∂Lξgab)|zdS

=
∞∑
n=2

1

n!
I c1···cnabLξgab,c1···cn .

Quadrupole term: Lξgab,cd ∼ LξRabcd(z),

Octupole: Lξ∇aRbcdf (z).
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Right answer, wrong reason

Writing Lξgab in a power series with g → gbackground is a ridiculously
strong assumption.

Curvature inside a rock due to itself is comparable to the curvature
produced by the entire Earth.

The integral form for the force must be manipulated before anything can
be said about contributions from individual moments. One needs an
analog of Detweiler-Whiting subtraction (even in Newtonian gravity!).
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Newtonian gravity

Total force acting on a Newtonian mass:

dpi
dt

=−
∫
B
ρ∇iφd

3x =: Fi [φ]

This is hard to use as-is.

First show that F [φ] = F [φ̂] with ∇2φ̂|B = 0. Only then,

dpi
dt

= Fi [φ̂] ≈ −m∇i φ̂ 6= −m∇iφ.
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Self-field subtraction

The natural field with which to compute motion in Newtonian gravity is

φ̂(x) := φ(x)−
∫
B
ρ(x ′)GS(x , x ′)dV ′.

φ̂ is fictitious but useful.

In more complicated theories, reasonably-defined self-forces don’t
vanish: F [φ] 6= F [φ̂].
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F [φ]− F [φ̂] is “ignorable”

Consider a small charged particle in flat spacetime:

mu̇a = qF ext
ab ub +

2

3
q2habü

b − δmu̇a

(m + δm)u̇a = q(F ext
ab +

4

3
qu[aüb])u

b = qF̂abu
b

So self-field subtractions can still be useful if all of their effects may be
interpreted as renormalizations:

dPξ
ds

= Fξ[φ; q, qa, . . .]

= Fξ[φ̂; q̂, q̂a, . . .]− dEξ
ds
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Effective test bodies

An effective metric ĝab[g ] may be defined around the body such that if
ĝab varies slowly inside the body,

d

ds
(Pξ + Eξ) =

1

2

∞∑
n=2

1

n!
Î c1···cnabLξĝab,c1···cn .

1 This looks like a test body moving in ĝab 6= gab.

2 Forces and torques all at once.

3 All multipole moments are (finitely) renormalized.

4 ĝab is a dynamically selected (rather than chosen) “background”

5 Under the usual assumptions, ĝab is the DW R-metric.
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Effective test bodies II

Equivalently,
D̂p̂a

ds
=

1

2
R̂bcd

a(z)Ŝbc żd + . . .

D̂Ŝab

ds
= 2p̂[ażb] + . . .

ĝab, p̂
a, Ŝab, . . . can be computed from gab and T ab.

Appropriately interpreted, test-body equations also work with
self-interaction (to all multipole orders)
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A simple application

The simplest freely-falling test masses move on geodesics and have
constant mass.

⇒ The simplest self-interacting masses satisfy

D̂ża

ds
= 0

and m̂ = const.

Using the definition for ĝab, this implies the standard MiSaTaQuWa
equation used to describe 1st-order gravitational self-force.
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Spin effects

The simplest freely-falling test bodies parallel-transport their angular
momentum.

⇒ Spins of simple self-interacting masses satisfy

D̂Ŝa
ds

= 0.

This can be interpreted as a “precession-inducing self-torque.”
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Some comments

1 Directions of momenta are renormalized as well as magnitudes.

2 Incorporating self-field inertia into momenta introduces some
“temporal fuzziness.”

3 Detweiler-Whiting S-type Green functions play a central role.

4 Renormalizations of higher moments depend on LξĜ aba′b′
S

(“Violations of Newton’s 3rd law”)
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A problem

The current definition for ĝab doesn’t satisfy R̂ab = 0 exactly.

This makes it less likely that ĝab is well-behaved “generically enough.”

It also means that more than the usual number of multipole moments
enter the laws of motion.
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A proposal: geometric flows and effective metrics

1 Don’t define ĝab in one large step.

2 Continuously deform gab → ĝab.

3 Every infinitesimal step is a linear perturbation.

4 So apply the DW-type subtraction at every step:

gab(λ+ dλ) = gab(λ)− dλ

(∫
T (λ)GS(λ)

)
GS(λ) is a Green function for the Einstein eqn. linearized off of g(λ).
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This converts nonvacuum solutions to vacuum solutions, but I also want
to relate forces exerted by gab to forces exerted by ĝab.

Maybe
d

dλ
(Force) =

d

dλ

∫
T ab(λ)Lξĝab(λ) = 0

can be used to derive

dT ab(λ)

dλ
= (· · · ), dgab(λ)

dλ
= (· · · )

such that Rab(λ)→ 0 and (physical force) = (force in ĝ).

Next Capra. . .
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Conclusions

1 Theory of motion is well-developed for arbitrarily-structured
relativistic objects.

2 Self-interaction just gives effective test bodies with renormalized
moments falling in an effective metric.

3 The Detweiler-Whiting subtraction is very general. It has nothing to
do with perturbation theory or point particles.

You save work and gain insight by doing non-perturbative things
before applying perturbation theory.
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