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The problem

t

~x

v � c

q



Motivation

I 2-fold:

I Observational: model PN GW sources.
I Theoretical: analytic insight to GR 2-body problem.

I We have ALD:

FµALD =
2

3

...
x µ⊥

Why look at EM in PN?

I Composite systems of EM charges.
I Lab for gravitational case: linear but many similarities.

I For gravity add nonlinearity (+ more gauge freedom).



Will simplify to:

ŜEM =

AE

+

AM



ŜEM =

AE

+

AM

=
∑(

Q G Q̂
)
E

+
(
Q G Q̂

)
M



Zones & symmetries

In PN: λ ∝ R
v � R .

I System zone: ∼ stationary.

I Radiation zone: ∼ spherical symmetry.



Odd propagation

I Dissipative RR force due to φodd .

I �φodd = 0 ⇒ φodd determined by incoming waves.

I ⇒ Matching regions automatically gives φodd .



Field doubling

I In order to treat classical dissipative effects need to double
fields (Galley & Hu 2009, Galley 2012).

I In our version:

Ŝ :=

∫
dx
δS [φ]

δφ(x)
φ̂(x)

I Hatted in system zone ⇒ linearization:

Q̂[x , x̂ ] =

∫
dt
δQ[x ]

δx(t)
x̂(t)

I EOM:

δŜ

δx̂
= 0



The action

I Starting point: EM action

S =− 1

16π

∫
d4xF 2 −

∫
d4xAµJ

µ

I Reduce to 1D by decomposing

At/r =
∑
Lω

A Lω
t/r xL e

−iωt

AΩ =
∑
Lω

(
A Lω
S ∂Ω xL + ALω

V xLΩ

)
e−iωt



Reduction to 1D

A few manipulations:

I eliminate (”integrate out”) algebraic Ar

I ∂µJ
µ = 0

I pack in E/M masterfunctions

S(E/M) =
∑
Lω

#(`)

∫
dr
[
A∗LÔAL −

(
ρALA

∗
L + c .c .

)]

Ô :=
(2`+ 1)!!

r2`+2

[
ω2 + ∂2

r +
2(`+ 1)

r
∂r

]



Reading the far region Feynman rules

Propagator: solution of ÔALω = δ(r − r ′) with outgoing ⇔
retarded BC.

Gret(r
′, r) = #(`)ω2`+1 j̃`(ωr

′) h̃+
` (ωr) δLL′

where:

j̃l(x) := (2`+ 1)!!
j`(x)

x`
h̃+/− := j̃ ± i h̃



Reading the far region Feynman rules

I Work in far region ⇒ eliminate near region.

I Vertices defined as

:=Q
(E/M)
Lω ≡



Reading the far region Feynman rules

I In far region source is at r = 0:

AL
EFT = −QE

Lω#(`)ω2`+1h̃+
` (ωr)

I In the full theory the solution outside the sources is

AL = −
[∫

dr ′ j̃`(ωr
′)ρALω(r ′)

]
ω2`+1#(`)h̃+

` (ωr)



Reading the far region Feynman rules

I Matching gives the E/M radiation source multipoles

QL
E =

∫
d3x

`+ 1

[
1

r `

(
r `+1 j̃`(ir∂t)

)′
ρ(~x)− j̃`(ir∂t) ∂t~J(~x ′) · ~x

]
xLTF

QL
M =

∫
d3x j̃`(ir∂t)

[
(~r × ~J(~r))k`xL−1

]STF
Match to Thorne(1980), significantly economizing

Ross(2012) in EFT.



Feynman rules

= −QL = −Q̂∗L

L r

r′

= Gret(r
′, r) = #(`)ω2`+1 j̃`(ωr) h̃+

` (ωr ′)

I In GR - also interaction vertices...



Radiation

AL
E =

r
AE

= −QL′
E Gret(0, r) =

`+ 1

`
(−iw)`

QL
E

r `
e iwr

r

AL
M =

r
AM

= −QL′
MGret(0, r) =

`

`+ 1
(−iw)`

QL
M

r `
e iwr

r



Reaction

ŜEM =

AE

+

AM

=
1

2

∑
L,L′,ω

[
QE

L G
AE
ret (0, 0)Q̂E∗

L′ + QM
L GAV

ret (0, 0)Q̂M∗
L′

]
+ c .c .

=

∫
dt
∑
L

(−)`+1

(2`+ 1)!!

[
`+ 1

`
Q̂E

L ∂
2`+1
t QL

E +
`

`+ 1
Q̂M

L ∂
2`+1
t QL

M

]
Now eliminated far region too!



Comparison to ALD

I Compare to ALD:

FµALD ≡
dpµ

dτ
=

2

3
q2

(
d3xµ

dτ3
− d3xν

dτ3

dxν
dτ

dxµ

dτ

)
I Expand:

~FALDLO =
2

3
q2~̇a

I From Ŝ :

Ŝ =
2

3
q x̂i ∂

3
t q x

i ⇒ ~F :=
∂Ŝ

∂x̂
=

2

3
q2

...
~x

I Consistent with ALD.



Discussion

I Use of symmetry, matching & field doubling to obtain
dissipative effective action.

I Simple, practical Feynman rules.

I 2 fields for 2 polarizations - optimal.



The road to gravity

I EM captures many aspects including (some) gauge issues, but:
I Main obstacle - nonlinearity. Possible interactions:

I near-near: corrections to QL. Present at 3.5 - gravitating
energy.

I near-far: RW/Z type - replace Bessel with RW? ≥ 4PN
I far-far ≥ 5PN
I spin ≥ 4PN - replace Bessel with Teukolsky?

I +1 PN correction to all mass multipoles.

I Extra gauge issues.



Multi-index and spherical harmonics

φ(r , t,Ω) = φL(r , t) xL :=
∞∑
`=0

1

`!

3∑
i1...i`=1

φi1...i`(r , t) x i1 . . . x i`

=
∑
m

φ`m Y`m(Ω)

∫
xL`x

L′
`′dΩ =

4πr2`

(2`+ 1)!!
δ``′δL`L′`′

,

∫
gΩΩ′

∂ΩxL`∂Ω′xL
′
`′dΩ =

4π`(`+ 1)r2`

(2`+ 1)!!
δ``′δL`L′`′

,

∫
xΩ
L`
x
L′
`′

Ω dΩ =
4π`(`+ 1)r2`

(2`+ 1)!!
δ``′δL`L′`′

,

∫
gΩΩ′

gPP′
DΩx

L`
P DΩ′x

L′
`′

P′ dΩ =
8π`2(`+ 1)2r2`

(2`+ 1)!!
δ``′δL`L′`′



Masterfunctions & sources

AS =
(`+ 1)r1−`(r `ÃS)′

(`(`+ 1)− ω2r2)

ρ
A(E/M)

Lω =
4πr `+1(r `+2ρSLω)′

(`+ 1)(2`+ 1)!!

=
1

`+ 1

∫
dΩ rxL

[
−r2ρω(~r) +

i

ω

(
r2 Λ

Λ− 1
~Jω(~r) · ~n

)′]′
AM =

`AV

r

ρAV
Lω =

4π`r2`+3

(2`+ 1)!!
ρVLω(r) = `r2

∫
~Jω(~r)·

[
~r×~∇xL

]
dΩ
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