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Ultra-relativistic regime & limit

Ultra-relativistic speeds parametrized by boost factor

= ! > 1 yH — ﬁ
\/_gozﬁ veys dt

~

— (1,7) ~ 1

Contexts:

e Circular orbit near
Schwarzschild light ring

e Fast "fly-by" motions

e Fast motion in any background
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Motivations

Self-force experienced by a "photon"?
What is the nature of self-force at very high speeds?

Does perturbation theory change?

mo_r, om Aichelbure & Sex! (1971
Vi > Vi ichelburg ex )

Help calibrate semi-analytical merger models Akcay + (2072)
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Effective field theory & perturbation theory

CRG & Hu (2009)

Black hole
Neutron star
White dwarf
Star, ...
R A
\ Relevant degrees of
freedom:

2(A) hap(x")
Expansion parameter:

R m
Ty ~ Finite size effects at (m/M)*
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How is perturbation theory effected?

ut = yvh ~ v
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Gravity & effective particle action:

S(z", hag] = Sen|has] — m/ dT\/l -~ vzh(w v@vP 4+ finite size corrections
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Expansion parameter M

is naturally
Ultra-relativistic limit:
3
v m
A= Vi <1 v — o0, m—0 A = constant
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Which terms contribute to effective action in ultra-relativistic
regime?
(L~ymM, N=+°)

Serf| 2] = + T+ T + ST
L AL 2L 3L
N N N N
+e““15{::‘}3 +
3L
N

Only diagrams without
interactions in bulk contribute
to ultra-relativistic limit!

Resembles large-N
expansions in QFT

5(z", hap] = Senlhas] — m/ dT\/]. — Y?ha v vP + finite size corrections
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For example, ignoring 1/N? terms and truncating after 4th order:
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To derive the master source:

 Use an action that accommodates outgoing boundary conditions
CRG & Tiglio (2009); CRG (2010); CRG (2013) [PRL Editors' Highlight]
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Classical Mechanics of Nonconservative Systems

Chad R. Galley™
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Hamilton’s principle of stationary action lies at the foundation of theoretical physics and is applied in
many other disciplines from pure mathematics to economics. Despite its utility, Hamilton’s principle has a
subtle pitfall that often goes unnoticed in physics: it is formulated as a boundary value problem in time but
is used to derive equations of motion that are solved with initial data. This subtlety can have undesirable
effects. I present a formulation of Hamilton’s principle that is compatible with initial value problems.
Remarkably, this leads to a natural formulation for the Lagrangian and Hamiltonian dynamics of generic
nonconservative systems, thereby filling a long-standing gap in classical mechanics. Thus, dissipative
effects, for example, can be studied with new tools that may have applications in a variety of disciplines.
The new formalism is demonstrated by two examples of nonconservative systems: an object moving in a
fluid with viscous drag forces and a harmonic oscillator coupled to a dissipative environment.

DOI: 10.1103/PhysRevLett.110.174301 PACS numbers: 45.20.—d, 02.30.Xx, 05.20.—y, 47.10.—¢g
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To derive the master source:

Use an action that accommodates outgoing boundary conditions
CRG & Tiglio (2009); CRG (2010); CRG (2013) [PRL Editors' Highlight]

Features of the Causal Action Principle
CRG (2013) [PRL Editors' Highlight]; CRG & Stein (in prep)

Applicable to any generic system, including non-conservative ones
A variational principle consistent with initial data

Naturally gives definitions of action, Lagrangian, & Hamiltonian for
general non-conservative (e.g., dissipative) systems

Applies to "non-Hamiltonian" systems
Can handle non-holonomic constraints
Consistent quantization of open systems CRG & Chen (in progress)

Gives a powerful framework to tackle any real-world problem with
similar tools learned in courses
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Radiation reaction at 3.5 post-Newtonian order in effective field theory
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To derive the self-force: crG (2011)

 Use master source to construct regular field on worldline

hgﬁ(x) — /dT/ D§57/5/(X, z“/) Sg/é(z“/)

» Use regular field in full worldline equations of motion (in ultra-rel limit)

» Expand to desired order in A = v>m/M



Example: Circular orbits in Schwarzschild

For ultra-relativistic circular orbits in a Schwarzschild background

Ir is a constant on a given orbital radius
Barack & Sago (2007); Detweiler (2008)
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Example: Circular orbits in Schwarzschild

For ultra-relativistic circular orbits in a Schwarzschild background

Ir is a constant on a given orbital radius
Barack & Sago (2007); Detweiler (2008)

Y, 5 2 3
U (14 TIr(2) + - TR(2) + - 13(2) + O | + -

a' / m
SR 5 (Z’u) — EUO o 4 32

o

Circular orbits possess certain

'gauge-invariant" quantities Q. &, z
Detweiler (2008), Le Tiec, Whiting, Blanchet,...

Need to compute Iz numerically in ultra-relativistic regime to

make predictions
Akcay + (2013)
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Effective action in strict ultra-relativistic limit is degenerate...

vV — 00 m — 0 5 5
AM A
Seff[2"] ~ —; 1+>\+)\2+—2+-~
)\—73m = constant gv_/ !
— M_

—m/dT
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Self-force on "photon"

Effective action in strict ultra-relativistic limit is degenerate...

Seff[Z"] ~ L+ A+ N+ =+

Y — 00 m—0 Nz ( \2 )
v2
m/dT
...but massless limit exists

m
A= 73M = constant

Spo|yakov[z“]:/d)\(§;’<)l —m2e()\)> m—9 /d)\ (gap(2*) e(}\ga(z“’))uo‘uﬁ



Self-force on "photon"

Effective action in strict ultra-relativistic limit is degenerate...

v — 00 m— 0 5 5
M A
Seff[Z"] ~ (1+)\+)\2+—+ )
\ — 3&_ 7
=70 — constant
m/dT
...but massless limit exists

Spo|yakov[z“]:/d)\(§;’<)l —m2e()\)> m—9 /d)\ (gap(2*) e(}\ga(z“’))uo‘uﬁ

Massless:

L R N S G S SR
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Massless:

Serr|2"] = 4 CPM'L i m + % 4+ % 4.
Massive: / J

Sale'| = 7 b gy oy g
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Does the massless limit of a massive particle give same
answers as massless case?

ES

Suggests a duality
between certain bulk and
worldline diagrams



Massless:

Sete[2H] = 4 CPM'L i m + % 4+ % 4.
Massive: / J

Sale'| = 7 b gy oy g

> -

Does the massless limit of a massive particle give same
answers as massless case?

YES NO
Suggests a duality Why is the limit
between certain bulk and discontinuous?

worldline diagrams
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Conclusion & Outlook

In the ultra-relativistic regime: v>1 X\ =~3m/M = constant

* Perturbation theory reorganizes itself and drastically simplifies

 There exists a master source from which all other self-force quantities
are derivable

* Master source, waveform, self-force,... derived explicitly through
NNNLO in CRG & Porto (2013)

e v — 00 ;
In the ultra-relativistic limit:  , _ o A = v°m/M = constant

 Generalization of Aichelburg-Sexl solution in a curved background

Are the massless limit and massless case equal???

* If so, worldline diagrams are somehow dual to certain bulk diagrams
(would aid self-force calculations for EMRIs, etc.)
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Normal neighborhood decomposition

[(z") = uo‘u5</ —I—/ +/ )dT/ G557/5/(ZM,ZM/)U7/U5/

Singular part:

(8%

Tout
Is(z") = uo‘uB/ dr’ Gsﬂ,yl(;,(z“,z“ Ju? u®

Tin

O
IS(Z'U) — UaUB/ d'T/ G&SIB,Y/é/(Z'u,Z'u )U,y ch

— 0

normal
neighborhood

Regular part:

Ir(z") = I(2") — Is(2")

V\Worldline



Normal neighborhood decomposition

Tout , , ,
I(ZM = UaUB </ / / )dT aﬁfy’é/(zu;zu )U,7 U5
Tout

Singular part:

Tout , ,
IS(Z'M) — UaU'B/ dT G 5’7/5/(2/1’2# )U7 U5

Tin

IS(Z'U) — UaUB/ dT G IB,.Y/&/(Z'U,Z'UJ/)UW/U(S/

— 0

normal
neighborhood

Regular part:

Ir(z") = I(2") — Is(2")

IR(Z'u) = UaUIB/ dT Daﬁ,y/(;/(Z’u,Z“,)u’y/ Uél

— 00

V\Worldline

aﬂ,y/(g/(Z'u Z'u ) — @(T Tout@(Tm ) reﬁt,y/(g/ (ZM, zH )

+ O(Tout — 7)O(7" — 70n) G 57/5,(2“, z“,)

(8%



Momentum space representation

G557,5,(X, X') = 4P, 5/ (x, X' VA2 (x, x")5(0) — 4Vy5r6:(x, X' )O(0)
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Momentum space representation

GS 5150 (%,X') = 4Pusorsr (x, X YAV (x, X')3(0) = #Viagrri (x, X )O(0)

Gy (2", 2) = 4Pagyrsr (2, 2 ) A2 (24, 2)5(o)

Real part of Feynman Green function in flat spacetime

d4k e—ikos

(2m)* (k0)2 — k2 + e

Go‘fm,(;,(z“, M) = 4Py s s (2", Z*)AY?(z*, z* ) Re



Momentum space representation

G 57/5/(X, x") = 4Pupy5 (X, X’)Al/z(x, x")0(0) — 4Vpps:(x, x")O(0)

(8%

Giprrs (2, 2") = 4Paprysr (2, 24 ) AV (21, 2)5 (o)

Real part of Feynman Green function in flat spacetime

d4k e—ikos

G2 g5 (2", Pt — 4P, 55 (2", M YAL/? zH, 7" ) Re -
[3’)/ ) ( ) By ( ) ( ) (27’(‘)4 (k0)2 _ k2 1e

Finally, in d spacetime dimensions (for dimensional regularization):

ddk e—ikos
(2m)9 (k0)2 — k2 + je

«

G 57/5,(2“, z*) = 4Py p5 (2, Z*)AY?(z*, z* ) Re



