# Direct Integration of the Lorenz Gauge Equations in the Frequency Domain: Unconstrained Approach to the EHS Method 

Erik Forseth<br>(with Tommy Osburn, Charles R. Evans, Seth Hopper)

Univ. of North Carolina - Chapel Hill

July 16, 2013

## Introduction and Motivation

- EMRI are example of unsolved two-body problem in GR
- EMRI evolution involves Gravitational Self-Force (GSF)

SCO as point mass $\rightarrow$ lowest order geodesic motion on background
Acceleration causes radiation, small $\mu$ affects geometry locally
Radiation/field acts back (locally)
Corrects motion-conservative and nonconservative effects

Field is divergent locally
Has "singular" and "regular" parts
Regularization finds finite Self-Force


Dirac (1938), DeWitt and Brehme (1960), Mino, Sasaki \& Tanaka (1997) and Quinn \& Wald (1997)

- EMRIs are potential promising source of GWs for eLISA, NGO, etc. (e.g. Gair)


## Calculational Accuracy Requirements

Example: $\epsilon=\mu / M=10^{-6}, \quad \Delta \Phi / \Phi \lesssim 10^{-8}-10^{-7}$

| (metric size) | $\mathcal{O}(1)$ |  | $\mathcal{O}\left(10^{-6}\right)$ |  | $\mathcal{O}\left(10^{-12}\right)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \| |  | \| |  | \| |  |  |
| Metric : | $g_{\mu \nu}$ | + | ${ }_{1} p_{\mu \nu}$ | + | ${ }_{2} p_{\mu \nu}$ | + | $\ldots$ |
|  |  |  | \| |  | \| |  |  |
| Self - force : |  |  | $\begin{aligned} & { }_{1} f_{\mu} \end{aligned}$ | + | ${ }_{2} f_{\mu}$ | + |  |
| (self - force size) |  |  | $\mathcal{O}(1)$ |  | $\mathcal{O}\left(10^{-6}\right)$ |  | $\mathcal{O}\left(10^{-12}\right)$ |

- Must calculate 1st order $\ll \mathcal{O}\left(10^{-8}-10^{-7}\right)$ numerical accuracy
- Required accuracy $\Longrightarrow$ compute metric in frequency domain (FD)


## Schwarzschild Metric Perturbations in Lorenz Gauge

- SF regularization parameters traditionally calculated in Lorenz gauge; therefore efforts to calculate retarded field have mostly used Lorenz gauge
- Perturbed field equations are:

$$
\square \bar{p}_{\mu \nu}+2 R_{\mu \alpha \nu \beta} \bar{p}^{\alpha \beta}=-16 \pi T_{\mu \nu}
$$

along with Lorenz gauge condition

$$
\nabla^{\beta} \bar{p}_{\alpha \beta}=0
$$

where $\bar{p}$ is the trace-reversed metric perturbation

$$
\bar{p}_{\alpha \beta}=p_{\alpha \beta}-\frac{1}{2} g_{\alpha \beta} p
$$

- see Akcay (2011); Warburton, et. al. (2012); talks at Capra 15


## Metric perturbation amplitudes

- Decompose the metric in tensor spherical harmonics (notation from Martel and Poisson, 2005)

$$
\begin{aligned}
& p_{\alpha \beta}=\left(\begin{array}{cc:cc}
p_{t t} & p_{t r} & \mid & p_{t \theta} \\
* & p_{t \phi} \\
* & p_{r r} & \mid & p_{r \theta}
\end{array} p_{r \phi},(-)^{-}\right) \\
& p_{\alpha \beta}=\sum_{l, m}\left(\right)
\end{aligned}
$$

Odd Parity:
Harmonics: $\quad X_{A}^{l m}, X_{A B}^{l m}$
Amplitudes: $\quad h_{t}, h_{r}, h_{2}$
$Y^{l m}, Y_{A}^{l m}, Y_{A B}^{l m}, \Omega_{A B} Y^{l m}$
$h_{t t}, h_{t r}, h_{r r}, j_{t}, j_{r}, K, G$

## Source Terms

- Decompose stress-energy tensor as well to obtain source terms:
- Even-parity:

$$
\begin{array}{rlrl}
Q^{a b} & =8 \pi \int T^{a b} \bar{Y}^{l m} d \Omega, & Q^{a} & =\frac{16 \pi r^{2}}{l(l+1)} \int T^{a B} \bar{Y}_{B}^{l m} d \Omega \\
Q^{b} & =8 \pi r^{2} \int T^{A B} \Omega_{A B} \bar{Y}^{l m} d \Omega, & Q^{\sharp}=\frac{32 \pi r^{4}}{(l-1) l(l+1)(l+2)} \int T^{A B} \bar{Y}_{A B}^{l m} d \Omega
\end{array}
$$

- Odd-parity:

$$
P^{a}=\frac{16 \pi r^{2}}{l(l+1)} \int T^{a B} \bar{X}_{B}^{l m} d \Omega, \quad P=\frac{16 \pi r^{4}}{(l-1) l(l+1)(l+2)} \int T^{A B} \bar{X}_{A B}^{l m} d \Omega
$$

- Source terms have form

$$
F(t, r) \equiv f(t) \delta\left[r-r_{p}(t)\right]
$$

## Even-parity Equations, Frequency Domain

$$
\begin{aligned}
& -f\left[\tilde{Q}^{r r}+f\left(\tilde{Q}^{b}+f \tilde{Q}^{t t}\right)\right]=\omega^{2} \tilde{h}_{t t}+\frac{d^{2} \tilde{h}_{t t}}{d r_{*} 2}+\frac{2(r-4 M)}{r^{2}} \frac{d \tilde{h}_{t t}}{d r_{*}}-\frac{4 i M \omega f}{r^{2}} \tilde{h}_{t r}+\frac{2 M(3 M-2 r) f^{2}}{r^{4}} \tilde{h}_{r r} \\
& +\left[\frac{2 M^{2}}{r^{4}}-l(l+1) \frac{f}{r^{2}}\right] \tilde{h}_{t t}+\frac{4 M f^{2}}{r^{3}} \tilde{K} \\
& 2 f \tilde{Q}^{t r}=\omega^{2} \tilde{h}_{t r}+\frac{d^{2} \tilde{h}_{t r}}{d r_{*}^{2}}+\frac{2 f}{r} \frac{d \tilde{h}_{t r}}{d r_{*}}-\frac{2 i M \omega}{f r^{2}} \tilde{h}_{t t}-\frac{2 i M \omega f}{r^{2}} \tilde{h}_{r r} \\
& -\left(\frac{4 M^{2}}{r^{4}}+[l(l+1)+2] \frac{f}{r^{2}}\right) \tilde{h}_{t r}+\frac{2 l(l+1) f}{r^{3}} \tilde{j}_{t} \\
& \frac{1}{f}\left(f \tilde{Q}^{b}-f^{2} \tilde{Q}^{t t}-\tilde{Q}^{r r}\right)=\omega^{2} \tilde{h}_{r r}+\frac{d^{2} \tilde{h}_{r r}}{d r_{*} 2}+\frac{2}{r} \frac{d \tilde{h}_{r r}}{d r_{*}}-\frac{4 i M \omega}{f r^{2}} \tilde{h}_{t r}+\left[\frac{2 M}{r^{4}}(4 r-7 M)\right. \\
& \left.-[4+l(l+1)] \frac{f}{r^{2}}\right] \tilde{h}_{r r}+\frac{2 M(3 M-2 r)}{f^{2} r^{4}} \tilde{h}_{t t}+\frac{4 l(l+1) f}{r^{3}} \tilde{j}_{r}+\frac{4(r-3 M)}{r^{3}} \tilde{K} \\
& f^{2} \tilde{Q}^{t}=\omega^{2} \tilde{j}_{t}+\frac{d^{2} \tilde{j}_{t}}{d r_{*}^{2}}-\frac{2 M}{r^{2}} \frac{d \tilde{j}_{t}}{d r_{*}}-\frac{2 i M \omega f}{r^{2}} \tilde{j}_{r}-\frac{f}{r^{2}}\left[l(l+1)-\frac{4 M}{r}\right] \tilde{j}_{t}+\frac{2 f^{2}}{r} \tilde{h}_{t r}
\end{aligned}
$$

## Even-parity Equations, Frequency Domain (cont'd)

$$
\begin{aligned}
& -\tilde{Q}^{r}=\omega^{2} \tilde{j}_{r}+\frac{d^{2} \tilde{j}_{r}}{d r_{*}^{2}}+\frac{2 M}{r^{2}} \frac{d \tilde{j}_{r}}{d r_{*}}-\frac{2 i M \omega}{f r^{2}} \tilde{j}_{t}-\frac{f}{r^{2}}[l(l+1)+4 f] \tilde{j}_{r}+\frac{2 f^{2}}{r} \tilde{h}_{r r} \\
& -\quad-\frac{2 f}{r} \tilde{K}+\frac{[l(l+1)-2] f}{r} \tilde{G} \\
& \tilde{Q}^{r r}-f^{2} \tilde{Q}^{t t} \\
& =\omega^{2} \tilde{K}+\frac{d^{2} \tilde{K}}{d r_{*}^{2}}+\frac{2 f}{r} \frac{d \tilde{K}}{d r_{*}}-\frac{f}{r^{2}}\left[l(l+1)+2-\frac{8 M}{r}\right] \tilde{K}+\frac{2 M}{r^{3}} \tilde{h}_{t t}-\frac{2 f^{2}(3 M-r)}{r^{3}} \tilde{h}_{r r} \\
& \quad-\frac{2 l(l+1) f}{r^{3}} \tilde{j}_{r} \\
& -\frac{f}{r^{2}} \tilde{Q}^{\sharp}=\omega^{2} \tilde{G}+\frac{d^{2} \tilde{G}}{d r_{*}^{2}}+\frac{2 f}{r} \frac{d \tilde{G}}{d r_{*}}-\frac{f}{r^{2}}[l(l+1)-2] \tilde{G}+\frac{4 f^{2}}{r^{3}} \tilde{j}_{r}
\end{aligned}
$$

- Even-parity is a set of seven coupled $2^{\text {nd }}$-order equations
- Therefore, the system is $14^{\text {th }}$-order


## Odd-parity Equations, Frequency Domain

$$
\begin{aligned}
f^{2} \tilde{P}^{t}= & \omega^{2} \tilde{h}_{t}
\end{aligned}+\frac{d^{2} \tilde{h}_{t}}{d r_{*}{ }^{2}}+\frac{f[4 M-l(1+l) r]}{r^{3}} \tilde{h}_{t}-\frac{2 M}{r^{2}}\left(\frac{d \tilde{h}_{t}}{d r_{*}}+i \omega f \tilde{h}_{r}\right) ~ 子 \begin{aligned}
-\tilde{P}^{r}= & \omega^{2} \tilde{h}_{r} \\
+ & +\frac{d^{2} \tilde{h}_{r}}{d r_{*}{ }^{2}}+\frac{f\left(l^{2}+l-2\right)}{r^{3}} \tilde{h}_{2}+\frac{f\left[8 M-\left(4+l+l^{2}\right) r\right]}{r^{3}} \tilde{h}_{r} \\
& +\frac{2 M}{f r^{2}}\left(f \frac{d \tilde{h}_{r}}{d r_{*}}-i \omega \tilde{h}_{t}\right) \\
-2 f \tilde{P}=\omega^{2} \tilde{h}_{2}+ & \frac{d^{2} \tilde{h}_{2}}{d r_{*}{ }^{2}}-\frac{f\left[8 M+\left(-4+l+l^{2}\right) r\right]}{r^{3}} \tilde{h}_{2}+\frac{4 f^{2} \tilde{h}_{r}}{r} \\
& -\frac{2\left[6 M^{2}+(f-5) M r+r^{2}\right]}{f r^{3}} \frac{d \tilde{h}_{2}}{d r_{*}}
\end{aligned}
$$

- Odd-parity is a set of three coupled $2^{\text {nd }}$-order equations
- Therefore, the system is $6^{\text {th }}$-order


## Homogeneous Solutions, Boundary Conditions



- Equations are source-free outside libration region
- To find particular solution, we'll need a complete set of independent homogeneous solutions (for method of variation of parameters)
- For even-parity, we need 7 causal downgoing homogeneous solutions and 7 causal outgoing homogeneous solutions
- For odd-parity, 3 causal downgoing and 3 causal outgoing solutions


## Algorithmic Roadmap

- Use geodesic motion for point particle; compute source terms
- Find complete set of causal homogeneous solutions
- Use method of variation of parameters to normalize homogeneous solutions
- Use method of extended homogeneous solutions (EHS) (Barack, Ori, Sago 2008) to return to the time domain
- Check constraints
- Check accuracy of modes
- Use quad-precision (EF), use constrained equations (TO)
- Compute first-order self-force


## Variation of Parameters

- Integrate 6 homogeneous odd-parity solutions and 14 homogeneous even-parity solutions through the libration region
- General particular solutions have the form (odd-parity, even-parity):

$$
\begin{aligned}
\tilde{\mathcal{H}} & =c_{0}^{+}(r) \tilde{\mathcal{H}}_{0}^{+}+c_{1}^{+}(r) \tilde{\mathcal{H}}_{1}^{+}+\cdots+c_{0}^{-}(r) \tilde{\mathcal{H}}_{0}^{-}+c_{1}^{-}(r) \tilde{\mathcal{H}}_{1}^{-}+\cdots \\
\tilde{\mathcal{J}} & =d_{0}^{+}(r) \tilde{\mathcal{J}}_{0}^{+}+d_{1}^{+}(r) \tilde{\mathcal{J}}_{1}^{+}+\cdots+d_{0}^{-}(r) \tilde{\mathcal{J}}_{0}^{-}+d_{1}^{-}(r) \tilde{\mathcal{J}}_{1}^{-}+\cdots
\end{aligned}
$$

where each of the $\tilde{\mathcal{H}}_{i}^{ \pm}, \tilde{\mathcal{J}}_{i}^{ \pm}$is a vector of metric amplitudes for the $i^{\text {th }}$ outgoing ( + ) or downgoing ( - ) homogeneous solution:

$$
\tilde{\mathcal{J}}_{i}^{ \pm}=\left(\begin{array}{l}
\tilde{h}_{t t} \\
\tilde{h}_{t r} \\
\tilde{h}_{r r} \\
\tilde{j}_{t} \\
\tilde{j}_{r} \\
\tilde{K} \\
\tilde{G}
\end{array}\right)_{i}^{ \pm} \text {(even) } \quad \tilde{\mathcal{H}}_{i}^{ \pm}=\left(\begin{array}{c}
\tilde{h}_{t} \\
\tilde{h}_{r} \\
\tilde{h}_{2}
\end{array}\right)_{i}^{ \pm} \text {(odd) }
$$

and $i$ runs from 0 to 6 for even and 0 to 2 for odd-parity

## Variation of Parameters

- Plug into equations, demand that (odd-parity example:)

$$
\sum_{k} c_{k}^{+^{\prime}} \tilde{\mathcal{H}}_{k}^{+}+c_{k}^{-{ }^{\prime}} \tilde{\mathcal{H}}_{k}^{-}=0
$$

- May then show that

$$
\mathcal{W} \mathbf{c}^{\prime}=\tilde{\mathbf{Z}}
$$

where $\mathcal{W}$ is the Wronskian matrix of homogeneous solutions and derivatives, and

$$
\begin{aligned}
\mathbf{c} & =\binom{c_{i}^{+}}{c_{i}^{-}} \\
\tilde{\mathbf{Z}} & =\binom{\mathbf{0}}{\tilde{Z}_{i}}
\end{aligned}
$$

for $\tilde{Z}$ 's the Fourier amplitudes of the source terms

## Variation of Parameters

For odd-parity this looks like:

$$
\left(\begin{array}{cccccc}
\tilde{h}_{t 0}^{+} & \tilde{h}_{t 1}^{+} & \tilde{h}_{t 2}^{+} & \tilde{h}_{t 0}^{-} & \tilde{h}_{t 1}^{-} & \tilde{h}_{t 2}^{-} \\
\tilde{h}_{r 0}^{+} & \tilde{h}_{r 1}^{+} & \tilde{h}_{r 2}^{+} & \tilde{h}_{r 0}^{-} & \tilde{h}_{r 1}^{-} & \tilde{h}_{r 2}^{-} \\
\tilde{h}_{20}^{+} & \tilde{h}_{21}^{+} & \tilde{h}_{22}^{+} & \tilde{h}_{20}^{-} & \tilde{h}_{21}^{-} & \tilde{h}_{22}^{-} \\
\partial_{r} \tilde{h}_{t 0}^{+} & \partial_{r} \tilde{h}_{t 1}^{+} & \partial_{r} \tilde{h}_{t 2}^{+} & \partial_{r} \tilde{h}_{t 0}^{-} & \partial_{r} \tilde{h}_{t 1}^{-} & \partial_{r} \tilde{h}_{t 2}^{-} \\
\partial_{r} \tilde{h}_{r 0}^{+} & \partial_{r} \tilde{h}_{r 1}^{+} & \partial_{r} \tilde{h}_{r}^{+} & \partial_{r} \tilde{h}_{r 0}^{-} & \partial_{r} \tilde{h}_{r 1}^{-} & \partial_{r} \tilde{h}_{r 2}^{-} \\
\partial_{r} \tilde{h}_{20}^{+} & \partial_{r} \tilde{h}_{21}^{+} & \partial_{r} \tilde{h}_{2}^{+} & \partial_{r} \tilde{h}_{20}^{-} & \partial_{r} \tilde{h}_{21}^{-} & \partial_{r} \tilde{h}_{22}^{-}
\end{array}\right)\left(\begin{array}{c}
\partial_{r} c_{0}^{+} \\
\partial_{r} c_{1}^{+} \\
\partial_{r} c_{2}^{+} \\
\partial_{r} c_{0}^{-} \\
\partial_{r} c_{1}^{-} \\
\partial_{r} c_{2}^{-}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\tilde{Z}_{t} \\
\tilde{Z}_{r} \\
\tilde{Z}_{2}
\end{array}\right)
$$

Solve via Cramer's rule:

$$
c_{j}^{+}(r)=\int_{r_{\min }}^{r} d r^{\prime} \frac{\operatorname{det}\left(\mathcal{W}^{j+}\right)}{\operatorname{det}(\mathcal{W})}, \quad c_{j}^{-}(r)=\int_{r}^{r_{\max }} d r^{\prime} \frac{\operatorname{det}\left(\mathcal{W}^{j-}\right)}{\operatorname{det}(\mathcal{W})}
$$

## EHS for a System of Equations

- Extend Barack, Ori, and Sago's (2008) EHS method to a system of coupled equations
- Homogeneous solutions are normalized by the constants

$$
C_{i}^{ \pm}=\int_{r_{\min }}^{r_{\max }} d r^{\prime} \frac{\operatorname{det}\left(\mathcal{W}^{i \pm}\right)}{\operatorname{det}(\mathcal{W})}
$$

- The normalized homogeneous solutions are

$$
\tilde{\mathcal{H}}_{l m n}{ }^{ \pm}(r)=\sum_{i} C_{i}^{l m n \pm} \tilde{\mathcal{H}}_{i}^{ \pm}(r)
$$

- Define time-domain homogeneous solutions

$$
\mathcal{H}_{l m}^{ \pm}(t, r) \equiv \sum_{n} \tilde{\mathcal{H}}_{l m n}^{ \pm}(r) e^{-i \omega_{m n} t}
$$

- For any $t$ and $r$ the actual solution to the inhomogeneous equation is

$$
\mathcal{H}_{l m}^{\mathrm{EHS}}(t, r) \equiv \mathcal{H}_{l m}^{+}(t, r) \theta\left[r-r_{p}(t)\right]+\mathcal{H}_{l m}^{-}(t, r) \theta\left[r_{p}(t)-r\right]
$$

## Example Lorenz Gauge Solution (Odd-Parity)

$$
\begin{aligned}
& l=2, m=1, p=8.75455, e=0.764124, t=93.58 \\
& n=-40 \text { to }+40
\end{aligned}
$$



## Lorenz Gauge: Constrained vs. Unconstrained

- The Lorenz gauge condition yields one odd-parity constraint:

$$
0=(l+2)(l-1) f \tilde{h}_{2}-4(r-M) f \tilde{h}_{r}-2 r^{2}\left(f \partial_{r_{*}} \tilde{h}_{r}+i \omega \tilde{h}_{t}\right)
$$

and three even-parity constraints:

$$
\begin{aligned}
& 0=2 l(l+1) f \tilde{j}_{t}+4 f(M-r) \tilde{h}_{t r}-r^{2}\left[2 f \partial_{r_{*}} \tilde{h}_{t r}+i \omega\left(f^{2} \tilde{h}_{r r}+2 f \tilde{K}+\tilde{h}_{t t}\right)\right] \\
& 0=4(r-M) f \tilde{h}_{r r}+\frac{4 M r}{f} \partial_{r_{*}} \tilde{K}-4 f r \tilde{K}-2 l(l+1) f \tilde{j}_{r} \\
&+r^{2}\left[f \partial_{r_{*}} \tilde{h}_{r r}-f\left(i \omega f \tilde{h}_{r r}+2 i \omega \tilde{K}+2 \partial_{r_{*}} \tilde{h}_{t r}\right)\right] \\
& 0=f r^{3}\left[(l+2)(l-1) \tilde{G}+f \tilde{h}_{r r}\right]+4(M-r) r f \tilde{j}_{r}-r^{3}\left(\tilde{h}_{t t}+2 f \partial_{r_{*}} \tilde{j}_{r}\right)-2 i \omega r^{3} \tilde{j}_{t}
\end{aligned}
$$

## Lorenz Gauge: Unconstrained Approach

- The space of homogeneous solutions to the unconstrained system is larger than the space of gauge-constrained solutions
- An arbitrary causal homogeneous solution will not necessarily "know" about gauge conditions
- But the source does!
- Integration through the source region constrains the normalized particular solution so that the gauge condition is satisfied


## Example: Unconstrained Odd-Parity as $r_{*} \rightarrow+\infty$

Asymptotic analysis led to choice of boundary conditions for three independent, outgoing homog. solutions:

$$
\mathcal{H}_{0}^{+}=\left(\begin{array}{l}
h_{t} \\
h_{r} \\
h_{2}
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) e^{i \omega r_{*}}, \mathcal{H}_{1}^{+}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) e^{i \omega r_{*}}, \mathcal{H}_{2}^{+}=\left(\begin{array}{l}
0 \\
0 \\
r
\end{array}\right) e^{i \omega r_{*}}
$$



## Example: Unconstrained Odd-Parity as $r_{*} \rightarrow+\infty$

Asymptotic analysis led to choice of boundary conditions for three independent, outgoing homog. solutions:

$$
\mathcal{H}_{0}^{+}=\left(\begin{array}{l}
h_{t} \\
h_{r} \\
h_{2}
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) e^{i \omega r_{*}}, \mathcal{H}_{1}^{+}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) e^{i \omega r_{*}}, \mathcal{H}_{2}^{+}=\left(\begin{array}{l}
0 \\
0 \\
r
\end{array}\right) e^{i \omega r_{*}}
$$

- $\mathcal{H}_{2}^{+}$lies in space of gauge-adhering solutions



## Example: Unconstrained Odd-Parity as $r_{*} \rightarrow+\infty$

Asymptotic analysis led to choice of boundary conditions for three independent, outgoing homog. solutions:

$$
\mathcal{H}_{0}^{+}=\left(\begin{array}{l}
h_{t} \\
h_{r} \\
h_{2}
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) e^{i \omega r_{*}}, \mathcal{H}_{1}^{+}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) e^{i \omega r_{*}}, \mathcal{H}_{2}^{+}=\left(\begin{array}{l}
0 \\
0 \\
r
\end{array}\right) e^{i \omega r_{*}}
$$

- $\mathcal{H}_{2}^{+}$lies in space of gauge-adhering solutions
- As it turns out, so does $\mathcal{H}_{0}^{+}$ (we chose wisely!)



## Example: Unconstrained Odd-Parity as $r_{*} \rightarrow+\infty$

Asymptotic analysis led to choice of boundary conditions for three independent, outgoing homog. solutions:

$$
\mathcal{H}_{0}^{+}=\left(\begin{array}{l}
h_{t} \\
h_{r} \\
h_{2}
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) e^{i \omega r_{*}}, \mathcal{H}_{1}^{+}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) e^{i \omega r_{*}}, \mathcal{H}_{2}^{+}=\left(\begin{array}{c}
0 \\
0 \\
r
\end{array}\right) e^{i \omega r_{*}}
$$

- $\mathcal{H}_{2}^{+}$lies in space of gauge-adhering solutions
- As it turns out, so does $\mathcal{H}_{0}^{+}$

- So $\mathcal{H}_{0}^{+}$and $\mathcal{H}_{2}^{+}$want to satisfy LG condition, $\mathcal{H}_{1}^{+}$does not


## Satisfaction of the Lorenz Gauge Condition



## LG Condition and the Particular Solution

- So what happens to the second homogeneous solution?
- Well, it is nulled out by the source integration
- For $(l, m, n)=(2,1,0), p=7.50478, e=0.188917$, EHS normalization coefficients are:

$$
\begin{aligned}
\left|C_{0}^{+}\right| & =4.06024242465630790 \mathrm{e}-02 \\
\left|C_{1}^{+}\right| & =0.00000000000000006 \mathrm{e}-02 \\
\left|C_{2}^{+}\right| & =4.03688409448409460 \mathrm{e}-02
\end{aligned}
$$

- Note: quad precision


## LG Condition and the Particular Solution

- So what happens to the second homogeneous solution?
- Well, it is nulled out by the source integration
- For $(l, m, n)=(2,1,0), p=7.50478, e=0.188917$, EHS normalization coefficients are:

$$
\begin{aligned}
& \left|C_{0}^{+}\right|=4.06024242465630790 \mathrm{e}-02 \\
& \left|C_{1}^{+}\right|=0.00000000000000006 \mathrm{e}-02 \\
& \left|C_{2}^{+}\right|=4.03688409448409460 \mathrm{e}-02
\end{aligned}
$$

- Note: quad precision


## LG Condition and the Particular Solution

- So what happens to the second homogeneous solution?
- Well, it is nulled out by the source integration
- For $(l, m, n)=(2,1,0), p=7.50478, e=0.188917$, EHS normalization coefficients are:

$$
\begin{aligned}
\left|C_{0}^{+}\right| & =4.06024242465630790 \mathrm{e}-02 \\
\left|C_{1}^{+}\right| & =0.00000000000000006 \mathrm{e}-02 \\
\left|C_{2}^{+}\right| & =4.03688409448409460 \mathrm{e}-02
\end{aligned}
$$

- Note: quad precision


## LG Condition and the Particular Solution

- So what happens to the second homogeneous solution?
- Well, it is nulled out by the source integration
- For $(l, m, n)=(2,1,0), p=7.50478, e=0.188917$, EHS normalization coefficients are:

$$
\begin{aligned}
\left|C_{0}^{+}\right| & =4.06024242465630790 \mathrm{e}-02 \\
\left|C_{1}^{+}\right| & =0.00000000000000006 \mathrm{e}-02 \\
\left|C_{2}^{+}\right| & =4.03688409448409460 \mathrm{e}-02
\end{aligned}
$$

- Note: quad precision


## Satisfaction of Gauge Condition vs. Integration

 Precision $\quad(l, m, n)=(2,1,0), p=7.50478, e=0.188917$

Note: quad precision

## Near-static Modes and Ill-Conditioned Wronskian

- Two-fold frequency spectrum:

$$
\omega_{m n}=m \Omega_{\phi}+n \Omega_{r}
$$

- Values of $m$ and $n$ can conspire to bring the frequency near zero, especially for larger values of semi-latus rectum $p$
- For such modes, matrix inversion of the Wronskian becomes numerically inaccurate
- Runtimes increase, but more importantly we lose digits of accuracy!


## Ill-Conditioning of the Wronskian



## Agreement with Regge-Wheeler Code

How does the double precision Lorenz gauge code compare with Regge-Wheeler for near-static modes? ( $p=8.75455$,
$\mathrm{e}=0.764124$ )


Note: double precision
$\omega_{m n}$

## Agreement with Regge-Wheeler Code

- Now, how about the quad precision Lorenz gauge code?
- Comparing our Regge-Wheeler code with our quad precision Lorenz code for two of the worst-case modes:
- For (2,2,-3):

$$
\left|C_{\mathrm{RW}}^{+}-C_{G}^{+}\right|=1 \times 10^{-15}
$$

- For $(3,1,-2)$ :

$$
\left|C_{\mathrm{RW}}^{+}-C_{G}^{+}\right|=5 \times 10^{-12}
$$

## Conclusions

- Demonstrated extension of EHS method to coupled system of equations
- Solved directly for metric perturbation in Lorenz gauge, unconstrained
- Problem is more subtle than it seems: gauge constraints, near-static modes
- May "brute-force" through static modes problem with high precision code
- Quad code is slow!
- Call as routine from double precision code when needed

