Self-force loops

Ian Vega^{1,2} Barry Wardell^{3,4} Peter Diener⁵ Samuel Cupp⁶ Roland Haas⁷

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

¹University of Guelph 2SISSA³Albert-Finstein-Institute ⁴University College Dublin ⁵Louisiana State University ⁶Austin Peay State University ⁷Caltech

16 July 2013 16th Capra Meeting on Radiation Reaction in General Relativity University College Dublin, Ireland

Outline

- The problem
- Effective source
- Evolution code
- e-p parametrization of the motion
- Comparison with (1+1) results
- Energy and angular momentum losses

- Self force loops
- Conclusions and future work

[arXiv:1307.3476]

We wish to determine the self-forced motion and field (e.g. energy and angular momentum fluxes) of a particle with scalar charge

$$\Box \psi^{\text{ret}} = -4\pi q \int \delta^{(4)}(x - z(\tau)) \, d\tau.$$

2 general approaches:

- Compute enough "geodesic"-based self-forces and then use this to drive the motion of the particle. (Post-processing, fast, accurate self-forces, relies on slow orbit evolution)
- Compute the "true" self-force <u>while</u> simultaneously driving the motion. (Slow and expensive, less accurate self-forces)

Effective source

... is a general approach to self-force and self-consistent orbital evolution that doesn't use any delta functions.

Key ideas

 \blacktriangleright Compute a regular field, $\psi^{\rm R},$ such that the self-force is

$$F_{\alpha} = \nabla_{\alpha} \psi^{\mathsf{R}}|_{x=z},$$

where $\psi^{\mathsf{R}} = \psi^{\mathsf{ret}} - \psi^{\mathsf{S}}$, and ψ^{S} can be approximated via local expansions: $\psi^{\mathsf{S}} = \tilde{\psi}^{\mathsf{S}} + O(\epsilon^n)$.

▶ The effective source, S, for the field equation for ψ^{R} is regular at the particle location.

$$\Box \psi^{\mathsf{R}} = \Box \psi^{\mathsf{ret}} - \Box \psi^{\mathsf{S}} = S(x|z, u)$$

where $\Box \psi^{\mathsf{S}} = -4\pi q \int \delta^{(4)}(x - z(\tau)) d\tau - S.$

Evolution code

- A 3D multi-block scalar wave equation code.
- Schwarzschild background spacetime in Kerr-Schild coordinates.

$$\Box \psi^{\mathrm{R}} = S(x|z^{\alpha}(\tau), u^{\alpha}(\tau))$$
$$\frac{Du^{\alpha}}{d\tau} = 0\left(\frac{q}{m(\tau)} \left(g^{\alpha\beta} + u^{\alpha}u^{\beta}\right) \nabla_{\beta}\psi^{\mathrm{R}}\right)$$
$$\frac{dm}{d\tau} = 0\left(-qu^{\beta}\nabla_{\beta}\psi^{\mathrm{R}}\right)$$

- Spherical inner boundary placed inside the black hole.
- We use 8th order summation by parts finite differencing and penalty boundary conditions at patch boundaries.
- ► We can evolve the orbit using the geodesic equations directly as well as using the osculating orbits framework.
- ► We use hyperboloidal slicings and place J⁺ at a finite coordinate radius.
- ▶ We extract the self-force by interpolation of $\nabla_{\beta}\psi^{R}$ to the particle location and calculate energy and angular momentum fluxes through the horizon and \mathcal{J}^{+} .

e-p parametrization of the motion

A bound orbit can be specified by its eccentricity (e) and semi-latus rectum (p):

$$r_1 = \frac{pM}{1+e}, \ r_2 = \frac{pM}{1-e}$$

where r_1 and r_2 are the turning points of the radial motion.

Comparison with (1+1) results

900

Comparison with (1+1) results

900

Comparison with (1+1) results

୍ର୍ଚ୍

Energy and angular momentum losses

The dissipative pieces of the self force

$$F_t^{\text{diss}}(r_o + \Delta r_p) = \frac{1}{2} \left[F_t^{\text{ret}}(r_o + \Delta r_p) + F_t^{\text{ret}}(r_o - \Delta r_p) \right]$$
$$F_{\phi}^{\text{diss}}(r_o + \Delta r_p) = \frac{1}{2} \left[F_{\phi}^{\text{ret}}(r_o + \Delta r_p) + F_{\phi}^{\text{ret}}(r_o - \Delta r_p) \right]$$

In terms of which the energy and angular momentum losses are

$$-\Delta \mathcal{E} = \Delta u_t = 2 \int_{r_{\min}}^{r_{\max}} \frac{F_t^{\text{diss}}}{u^r} dr$$
$$\Delta \mathcal{L} = \Delta u_\phi = 2 \int_{r_{\min}}^{r_{\max}} \frac{F_\phi^{\text{diss}}}{u^r} dr$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Energy and angular momentum losses

Energy and angular momentum fluxes through the horizon and $\mathcal{J}^+.$

$$\frac{dE}{dt}\Big|_{\mathcal{H}} = -\frac{M^2}{\pi} \oint_{r=2M} \left(\frac{\partial \phi}{\partial t}\right)^2 d\Omega, \qquad \qquad \frac{dL}{dt}\Big|_{\mathcal{H}} = -\frac{M^2}{\pi} \oint_{r=2M} \frac{\partial \phi}{\partial t} \left(x \partial_y \phi - y \partial_x \phi\right) d\Omega. \\ \frac{dE}{d\tau}\Big|_{\mathcal{J}^+} = -\frac{\rho_{\mathcal{J}^+}^2}{4\pi} \oint_{\rho=\rho_{\mathcal{J}^+}} \left(\frac{\partial \hat{\phi}}{\partial \tau}\right)^2 d\Omega, \qquad \qquad \frac{dL}{d\tau}\Big|_{\mathcal{J}^+} = -\frac{\rho_{\mathcal{J}^+}^2}{4\pi} \oint_{\rho=\rho_{\mathcal{J}^+}} \frac{\partial \hat{\phi}}{\partial \tau} \left(\hat{x} \partial_{\hat{y}} \hat{\phi} - \hat{y} \partial_{\hat{x}} \hat{\phi}\right) d\Omega.$$

Results:

p	e	$10^4 \langle \dot{\mathcal{E}} \rangle$		$10^3 \langle \dot{\mathcal{L}} \rangle$	
		Self-force	Flux	Self-force	Flux
9.9	0.1	-0.32880	-0.32887	-1.01025	-1.01020
7.0	0.3	-1.6716	-1.6715	-2.6256	-2.6252
7.2	0.5	-1.9682	-1.9678	-2.5867	-2.5863

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Self-force loops (F_t)

Self-force loops (F_{ϕ})

Self-force loops (F_r)

 $\mathcal{O}\mathcal{Q}$

Self-force loops (movies)

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

Conclusions and future work

Conclusions

- We get agreement to better than 1% (F_t and F_r) and 0.1% (F_φ) for the extracted self-force for eccentric orbits.
- ► The internal consistency checks for energy and angular momentum losses are good (0.02% for *E* and 0.015% for *L*).
- The self-force loops is a new way of plotting self-force data for eccentric orbits, that may help provide physical insights.

Future work.

- In order to compare with the "geodesic evolutions" we need to increase the accuracy by using a smoother effective source (this seems feasible now after recent optimizations to the effective source routine).
- We would probably also have to add the acceleration dependence to the effective source (see Heffernan's talk).
- Generalization to a scalar charge around a Kerr black hole.

ロト・日本・日本・日本・日本・シュー

• Generalization to the gravitational case.