Self-force loops

Ian Vega ${ }^{1,2}$ Barry Wardell ${ }^{3,4}$ Peter Diener ${ }^{5} \quad$ Samuel Cupp ${ }^{6}$
 Roland Haas ${ }^{7}$

${ }^{1}$ University of Guelph
${ }^{2}$ SISSA
${ }^{3}$ Albert-Einstein-Institute
${ }^{4}$ University College Dublin
${ }^{5}$ Louisiana State University
${ }^{6}$ Austin Peay State University
${ }^{7}$ Caltech

16 July 2013
16th Capra Meeting on Radiation Reaction in General Relativity
University College Dublin, Ireland

Outline

- The problem
- Effective source
- Evolution code
- $e-p$ parametrization of the motion
- Comparison with $(1+1)$ results
- Energy and angular momentum losses
- Self force loops
- Conclusions and future work
[arXiv:1307.3476]

The problem

We wish to determine the self-forced motion and field (e.g. energy and angular momentum fluxes) of a particle with scalar charge

$$
\square \psi^{\mathrm{ret}}=-4 \pi q \int \delta^{(4)}(x-z(\tau)) d \tau
$$

2 general approaches:

- Compute enough "geodesic"-based self-forces and then use this to drive the motion of the particle. (Post-processing, fast, accurate self-forces, relies on slow orbit evolution)
- Compute the "true" self-force while simultaneously driving the motion. (Slow and expensive, less accurate self-forces)

Effective source

... is a general approach to self-force and self-consistent orbital evolution that doesn't use any delta functions.

Key ideas

- Compute a regular field, ψ^{R}, such that the self-force is

$$
F_{\alpha}=\left.\nabla_{\alpha} \psi^{\mathrm{R}}\right|_{x=z}
$$

where $\psi^{\mathrm{R}}=\psi^{\text {ret }}-\psi^{\mathrm{S}}$, and ψ^{S} can be approximated via local expansions: $\psi^{\mathrm{S}}=\tilde{\psi}^{\mathrm{S}}+O\left(\epsilon^{n}\right)$.

- The effective source, S, for the field equation for ψ^{R} is regular at the particle location.

$$
\square \psi^{\mathrm{R}}=\square \psi^{\mathrm{ret}}-\square \psi^{\mathrm{S}}=S(x \mid z, u)
$$

where $\square \psi^{\mathrm{S}}=-4 \pi q \int \delta^{(4)}(x-z(\tau)) d \tau-S$.

Evolution code

- A 3D multi-block scalar wave equation code.
- Schwarzschild background spacetime in Kerr-Schild coordinates.
- Spherical inner boundary placed inside the black hole.
- We use 8th order summation by parts finite differencing and penalty boundary conditions at patch boundaries.
- We can evolve the orbit using the geodesic equations directly as well as using the osculating orbits framework.
- We use hyperboloidal slicings and place \mathcal{J}^{+}at a finite coordinate radius.
- We extract the self-force by interpolation of $\nabla_{\beta} \psi^{\mathrm{R}}$ to the particle location and calculate energy and angular momentum fluxes through the horizon and \mathcal{J}^{+}.

$e-p$ parametrization of the motion

- A bound orbit can be specified by its eccentricity (e) and semi-latus rectum (p):

$$
r_{1}=\frac{p M}{1+e}, \quad r_{2}=\frac{p M}{1-e}
$$

where r_{1} and r_{2} are the turning points of the radial motion.

- $e=0$, stable circular orbits
$p=6+2 e$, (separatrix), unstable circular orbits
$0 \leq e<1, p \geq 6+2 e$, bound orbit

Comparison with $(1+1)$ results

$$
e=0.1, p=9.9
$$

Comparison with $(1+1)$ results

$$
e=0.3, p=7.0
$$

Comparison with $(1+1)$ results

$$
e=0.5, p=7.2
$$

Energy and angular momentum losses

The dissipative pieces of the self force

$$
\begin{aligned}
F_{t}^{\mathrm{diss}}\left(r_{o}+\Delta r_{p}\right) & =\frac{1}{2}\left[F_{t}^{\mathrm{ret}}\left(r_{o}+\Delta r_{p}\right)+F_{t}^{\mathrm{ret}}\left(r_{o}-\Delta r_{p}\right)\right] \\
F_{\phi}^{\mathrm{diss}}\left(r_{o}+\Delta r_{p}\right) & =\frac{1}{2}\left[F_{\phi}^{\mathrm{ret}}\left(r_{o}+\Delta r_{p}\right)+F_{\phi}^{\mathrm{ret}}\left(r_{o}-\Delta r_{p}\right)\right]
\end{aligned}
$$

In terms of which the energy and angular momentum losses are

$$
\begin{aligned}
-\Delta \mathcal{E} & =\Delta u_{t}
\end{aligned}=2 \int_{r_{\min }}^{r_{\max }} \frac{F_{t}^{\mathrm{diss}}}{u^{r}} d r .
$$

Energy and angular momentum losses

Energy and angular momentum fluxes through the horizon and \mathcal{J}^{+}.

$$
\begin{array}{rlrl}
\left.\frac{d E}{d t}\right|_{\mathcal{H}} & =-\frac{M^{2}}{\pi} \oint_{r=2 M}\left(\frac{\partial \phi}{\partial t}\right)^{2} d \Omega, & \left.\frac{d L}{d t}\right|_{\mathcal{H}} & =-\frac{M^{2}}{\pi} \oint_{r=2 M} \frac{\partial \phi}{\partial t}\left(x \partial_{y} \phi-y \partial_{x} \phi\right) d \Omega . \\
\left.\frac{d E}{d \tau}\right|_{\mathcal{J}^{+}}=-\frac{\rho_{\mathcal{J}+}^{2}}{4 \pi} \oint_{\rho=\rho_{\mathcal{J}^{+}}}\left(\frac{\partial \hat{\phi}}{\partial \tau}\right)^{2} d \Omega, & \left.\frac{d L}{d \tau}\right|_{\mathcal{J}^{+}}=-\frac{\rho_{\mathcal{J}}^{2}}{4 \pi} \oint_{\rho=\rho_{\mathcal{J}}+} \frac{\partial \hat{\phi}}{\partial \tau}\left(\hat{x} \partial_{\hat{y} \hat{y}} \hat{\boldsymbol{y}} \hat{\partial} \hat{\hat{x}}\right) d \Omega .
\end{array}
$$

Results:

p	e	$10^{4}\langle\dot{\mathcal{E}}\rangle$		$10^{3}\langle\dot{\mathcal{L}}\rangle$	
		Self-force	Flux	Self-force	Flux
9.9	0.1	-0.32880	-0.32887	-1.01025	-1.01020
7.0	0.3	-1.6716	-1.6715	-2.6256	-2.6252
7.2	0.5	-1.9682	-1.9678	-2.5867	-2.5863

Self-force loops $\left(F_{t}\right)$

$$
F_{t}^{\mathrm{diss}}\left(r_{o}+\Delta r_{p}\right)=\frac{1}{2}\left[F_{t}^{\mathrm{ret}}\left(r_{o}+\Delta r_{p}\right)+F_{t}^{\mathrm{ret}}\left(r_{o}-\Delta r_{p}\right)\right]
$$

Self-force loops $\left(F_{\phi}\right)$

$$
F_{\phi}^{\mathrm{diss}}\left(r_{o}+\Delta r_{p}\right)=\frac{1}{2}\left[F_{\phi}^{\mathrm{ret}}\left(r_{o}+\Delta r_{p}\right)+F_{\phi}^{\mathrm{ret}}\left(r_{o}-\Delta r_{p}\right)\right]
$$

Self-force loops $\left(F_{r}\right)$

$$
F_{r}^{\mathrm{cons}}\left(r_{o}+\Delta r_{p}\right)=\frac{1}{2}\left[F_{r}^{\mathrm{ret}}\left(r_{o}+\Delta r_{p}\right)+F_{r}^{\mathrm{ret}}\left(r_{o}-\Delta r_{p}\right)\right]
$$

Self-force loops (movies)

Conclusions and future work

Conclusions

- We get agreement to better than $1 \%\left(F_{t}\right.$ and $\left.F_{r}\right)$ and 0.1% $\left(F_{\phi}\right)$ for the extracted self-force for eccentric orbits.
- The internal consistency checks for energy and angular momentum losses are good (0.02% for E and 0.015% for L).
- The self-force loops is a new way of plotting self-force data for eccentric orbits, that may help provide physical insights.
Future work.
- In order to compare with the "geodesic evolutions" we need to increase the accuracy by using a smoother effective source (this seems feasible now after recent optimizations to the effective source routine).
- We would probably also have to add the acceleration dependence to the effective source (see Heffernan's talk).
- Generalization to a scalar charge around a Kerr black hole.
- Generalization to the gravitational case.

