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Abstract. Ascent sequences were introduced by the author (in conjunction

with others) to encode a class of permutations that avoid a single length-
three bivincular pattern, and were the central object through which other

combinatorial correspondences were discovered. In this note we prove the

non-trivial fact that generalized ballot sequences are ascent sequences.

Ascent sequences were introduced in [1] to encode a collection of permutations
that avoid the single length-three bivincular pattern 2|31. These sequences were
also shown to uniquely encode interval orders, Stoimenow matchings, and the set
of upper triangular matrices whose entries are non-negative integers and which
contain no all-zero rows or columns [2].

Generalized ballot sequences (also known as Yamanouchi words) are sequences
of non-negative integers that encode election scenarios in which a prescribed set of
candidates maintain their success-positions throughout the counting of the votes
(i.e., reading of the ballot sequences from left to right). It is not immediately clear
that generalized ballot sequences satisfy the defining property of ascent sequences
and this is the purpose of this note.

Given a sequence of integers x = (x1, . . . , xn) we say there is an ascent at position
i if xi < xi+1, and denote by asc(x) the number of ascents in x. We say that a
sequence of positive integers x = (x1, . . . , xn) is an ascent sequence if x1 = 1 and
for all 1 ≤ i < n we have

xi+1 ∈ {1, 2, . . . , 2 + asc(x1, . . . , xi)}.
This definition is equivalent to the definition given in [2] – the only difference being
that unity has been added to every sequence entry. Let Ascn be the set of ascent
sequences of length n. For example

Asc3 = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (1, 2, 3)}.
Let w = w1w2 . . . wn be a word over the alphabet {1, 2, . . . , n}. Let us write

asc(w) for asc(w1, . . . , wn). The word w is said to be a generalized ballot sequence
or a Yamanouchi word (see e.g. Stanley [4, Prop. 7.10.3]) if for every left factor
w(k) = w1 . . . wk of w and for every i, the number of occurrences of i in w(k) is
greater than or equal to the number of occurrences of i + 1 in w(k). Let Ballotn
be the set of generalized ballot sequences of length n. For example, Ballot3 =
{111, 112, 121, 123}.
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2 GENERALIZED BALLOT SEQUENCES ARE ASCENT SEQUENCES

Theorem 1. If x1x2 . . . xn is a generalized ballot sequence, then (x1, . . . , xn) is an
ascent sequence.

Proof. Given x = x1 . . . xn ∈ Ballotn, let max(x) = max{x1, . . . , xn},

c
(i)
j = |{k : xk = j and k ≤ i}|, and

Valid(x) = {1} ∪ {j : c
(n)
j−1 > c

(n)
j and 1 < j ≤ max(x)} ∪ {max(x) + 1}.

The set Valid(x) is the set of values that may be appended to x in order to yield a
generalized ballot sequence of length n + 1. We give a proof by induction.

The theorem is true for n = 1 since Ballot1 = {1} and Asc1 = {(1)}. Suppose the
claim to be true for n = m. Let x = x1 . . . xm ∈ Ballotm. Since x is a generalized
ballot sequence, all of the letters from {1, . . . ,max(x)} appear at least once in x.
Furthermore, the leftmost (i.e., first) occurrence of k in x means that the letter
immediately to its left must be less than it (for otherwise the generalized ballot
sequence property would be broken for the left factor of x that ends at the entry
immediately preceding k). Let ak be the smallest index j such that xj = k. The
above reasoning means we must have xak−1 < xak

for all k = 2, . . . ,max(x), in
other words (x1, . . . , xm) has ascents at positions a2 − 1, . . . , amax(x) − 1. This
implies there are at least max(x)− 1 different ascents in x, i.e.,

max(x1, . . . , xm)− 1 ≤ asc(x1, . . . , xm). (1)

Every x′ = x1 . . . xmxm+1 ∈ Ballotm+1 is uniquely formed from x = x1 . . . xm ∈
Ballotm and xm+1 ∈ Valid(x). From the induction hypothesis, (x1, . . . , xm) ∈ Ascm.
Since xm+1 ∈ Valid(x), we have xm+1 ∈ {1, . . . ,max(x) + 1}. Using the inequality
in (1), since max(x) ≤ 1 + asc(x) we have

xm+1 ∈ {1, . . . ,max(x) + 1} ⊆ {1, . . . , 2 + asc(x)}.
This condition implies x′ = (x1, . . . , xm+1) ∈ Ascm+1. Therefore, by the principle
of induction, the claim is true for all positive integers n. �

Ballot sequences are word-encodings of standard Young tableaux. We posit that
emulating operations on standard Young tableaux, such as evacuation and flipping
about the diagonal, will have some part to play in answering unsolved questions
regarding ascent sequences. One such open problem is describing the ‘dual’ or ‘flip’
of an ascent sequence (see [2, Question 20]).

An intriguing problem is to classify the subsets of the four classes of combinatorial
objects (pattern-avoiding permutations, Stoimenow matchings, restricted integer
matrices, interval orders) that correspond to ballot sequences via the bijections
given in the papers [1, 2, 3].
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