
A NOTE ON A BIJECTION OF ALDRED, ATKINSON, AND
MCCAUGHAN

JEAN-CHRISTOPHE AVAL, MARK DUKES, AND YVAN LE BORGNE

Abstract. We present a recursive description of a bijection due to Aldred, Atkinson, and
McCaughan. The calculation of this bijection by hand is shown to correspond to traversing the
permutation diagram in a particular zig-zag manner. A recursive description of the inverse is
also given.

1. Introduction

Let Sn be the set of all permutations of the set {1, . . . , n}. Given two permutations ⇡ =
(⇡1, . . . ,⇡n) 2 Sn and � = (�1, . . . ,�k) 2 Sk, we say that ⇡ contains the consecutive pattern
� if there exists a number 1  a  n such that the sequence (⇡a,⇡a+1, . . . ,⇡a+k�1) is order
isomorphic to �. If no such subsequence exists then we say that ⇡ avoids the consecutive pattern
�.

For example, the permutation (4, 2, 6, 8, 1, 3, 5, 7) contains the consecutive pattern (3, 1, 2) (in
the form of (8, 1, 3)) but does not contain either of the consecutive patterns (1, 3, 2) or (3, 2, 1).
Throughout this paper we will mostly write a permutation ⇡ = (⇡1, . . . ,⇡n) 2 Sn as the word
⇡1 · · ·⇡n so that (1, 3, 2) will be written as 132.

Let Cycn be the set of permutations in Sn that have 1 as a fixed point and avoid each of
the three consecutive patterns {123, 231, 312}, and let Cyc = [n�1Cycn. Let Altern be the set
of alternating permutations in Sn that have 1 as a fixed point and define Alter = [n�1Altern.
Equivalently Altern is the set of permutations in Sn that have 1 as a fixed point and avoid both
of the consecutive patterns {123, 321}.

Aldred, Atkinson, and McCaughan [1] presented and proved a bijection between the sets Cycn
and Altern. Their bijection involved embedding the elements of Cyc and Alter into an infinite
tree T which has the following property: the sequence of child-degree sequence of nodes at level
n of T contains no two equal sequences. Here the child-degree sequence of a node v at level n
is the weakly increasing of the down degrees of v’s children, denoted childseq(v).

For example, in Figure 1, childseq(1423) = (3, 4) and childseq(1324) = (2, 3, 4). Therefore the
sequence of child-degree sequences for level 3 is ((3, 4), (2, 3, 4)). See Figures 1 and 2 for the
embeddings into the top five levels of the tree and Figures 4 and 5 for one further level.

While theirs is a perfectly valid and correct bijection, it remains somewhat di�cult to compute
the image of a permutation under this correspondence without constructing the tree. This paper
solves this construction issue by giving a recursive bijection from Cycn to Altern and also for
its inverse. The calculation of this bijection by hand is shown to correspond to traversing the
permutation diagram in a particular zig-zag manner.

2. The bijection f

If x  y then let [x, y] = {x, x + 1, . . . , y}. Given a permutation ⇡ 2 Sn and a value
x 2 [1, n+ 1], let ⇡ � x be the permutation ⇡

0 2 Sn+1 where ⇡

0
n+1 = x and for all 1  i  n;

⇡

0
i =

⇢
⇡i + 1 if ⇡i � x

⇡i if ⇡i < x.

For example, 2431 � 1 = 35421, 2431 � 2 = 35412, 2431 � 3 = 25413, and so on. Given ⇡ =
⇡1 . . .⇡n 2 Sn, let us write ⇡ = hx1, . . . , xni where xi is one plus the number of entries to the left

J.-C. Aval is supported by ANR - PSYCO project (ANR-11-JS02-001).
1



1

12

132

1423

15243 15342

1324

13254 14253 14352

Figure 1. The tree showing Alteri for i 2 {1, . . . , 5}.
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Figure 2. The tree showing Cyci for i 2 {1, . . . , 5}.

of ⇡i in ⇡ which are less than ⇡i. For example, 12345 = h1, 2, 3, 4, 5i and 54321 = h1, 1, 1, 1, 1i.
Using this notation we have

Sn = {⇡ = hx1, . . . , xni : (x1, . . . , xn) 2 [1, 1]⇥ [1, 2]⇥ · · ·⇥ [1, n]}.
The notation ⇡ = hx1, . . . , xni is equivalent to ⇡ = (· · · ((x1 � x2)� x3) · · · )� xn.

The sets Altern and Cycn have the following characterizations in terms of the angle bracket
notation.

Characterization 1. A permutation ⇡ = hx1, . . . , xni 2 Altern i↵ x1 = 1, x2 = 2, and for all

2  i < n:

xi+1 2
⇢

[2, xi] for all odd i+ 1
[1 + xi, i+ 1] for all even i+ 1.

Characterization 2. A permutation ⇡ = hx1, . . . , xni 2 Cycn i↵ x1 = 1, x2 = 2, and for all

2  i < n:

xi+1 2
⇢

[1 + xi�1, xi] if xi�1 < xi

[2, xi] [ [2 + xi�1, i+ 1] if xi�1 � xi.

We will make use of the following simple property of permutations in Cycn in our proofs.

Lemma 3. The permutation ⇡ = hx1, . . . , xni 2 Cycn is such that

⇡ ends in the consecutive pattern

8
<

:

321 i↵ xn�2 � xn�1 � xn

132 i↵ xn�2 < xn  xn�1

213 i↵ xn�1 < 1 + xn�2 < xn.

Proof. It is straightforward to see that the permutation ⇡ = hx1, . . . , xni ends in the consecutive
pattern 12 i↵ xn > xn�1, and ⇡ ends in the consecutive pattern 21 i↵ xn  xn�1. Iterating this
observation for the penultimate pair of elements in x, (xn�2, xn�1) and comparing where xn lies
with respect to xn�2 yields the result. ⇤
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Now we are in a position to state the bijection.

Definition 4. Given ⇡ = hx1, . . . , xni 2 Cycn, let f(⇡) = hz1, . . . , zni where z1 = 1 and for all
i 2 [2, n],

zi =

8
>><

>>:

1 + xi � xi�1 if i is even and xi > xi�1

i+ xi � xi�1 if i is even and xi  xi�1

i+ 1 + xi�1 � xi if i is odd and xi > xi�1

2 + xi�1 � xi if i is odd and xi  xi�1.

Theorem 5. f : Cycn ! Altern is a bijection.

Proof. The statement of the theorem is true for n = 2 and n = 3. Let us suppose the claim is
true for n 2 [2,m] where m � 3. We will show it to be true for n = m + 1. This will be done
in three steps. First we will show that f(Cycn) ✓ Altern. Then we will show that f is injective.
Finally we will show that f is surjective.

Step 1: Suppose ⇡ = hx1, . . . , xm+1i 2 Cycm+1. To show f(⇡) 2 Alterm+1 we will have to
condition on the parity of m and also on whether (⇡m�1,⇡m,⇡m+1) is order isomorphic to the
patterns 132, 321 or 213.

Let ⇡0 = hx1, . . . , xmi. It is clear from Characterization 2 that ⇡0 2 Cycm. By the induction
hypothesis we also have that f : Cycm ! Alterm is a bijection.

m+ 1 even and ⇡ ends in pattern 321: In this case we have xm�1 � xm � xm+1 by
Lemma 3. Using Definition 4 with i = m+ 1 and i = m we find that

zm+1 = m+ 1 + xm+1 � xm and zm = 2 + xm�1 � xm.

Characterization 1 tells us that f(⇡) 2 Alterm+1 i↵ zm+1 2 [1 + zm,m + 1]. Using the
expressions for zm and zm+1 just derived, this is equivalent to xm�1  m�2+xm+1 and
xm+1  xm. The first inequality is valid because xm�1  (m� 2)+1  (m� 2)+xm+1.
The second inequality holds since xm�1 � xm � xm+1.

m+ 1 even and ⇡ ends in pattern 132: Using Lemma 3 we have xm�1 < xm+1  xm.
Definition 4 with i = m+1 and i = m gives zm+1 = m+1+ xm+1 � xm and zm = m+
1+xm�1�xm. Characterization 1 tell us that f(⇡) 2 Alterm+1 i↵ zm+1 2 [1+zm,m+1].
By using the new expressions for zm+1 and zm, and simplifying, this previous condition
holds true i↵ xm�1 < xm+1  xm, which is stated at the beginning of this case.

m+ 1 even and ⇡ ends in pattern 213: Using Lemma 3 we have xm�1 < 1 + xm+1 <

xm. Definition 4 with i = m + 1 and i = m gives zm+1 = 1 + xm+1 � xm and zm =
2 + xm�1 � xm. Again f(⇡) 2 Alterm+1 i↵ zm+1 2 [1 + zm,m + 1]. By using the new
expressions for zm+1 and zm, and simplifying, this previous condition holds true i↵ (a)
xm�1 < xm+1 � 1 and (b) xm+1  m + xm. Since xm�1 < 1 + xm+1 < xm, inequality
(a) holds. Also, since xm+1  m+ 1 and m+ 1  m+ xm, inequality (b) also holds.

m+ 1 odd and ⇡ ends in pattern 321: Using Lemma 3 we have xm�1 � xm � xm+1.
Definition 4 with i = m + 1 and i = m gives zm+1 = 2 + xm � xm+1 and zm =
m+xm�xm�1. Characterization 1 tells us that f(⇡) 2 Alterm+1 i↵ zm+1 2 [2, zm] (since
m+1 is now odd). By using the new expressions for zm+1 and zm, and simplifying, this
previous condition holds true i↵ (a) xm � xm+1 and (b) 2+xm�1  xm+1+m. Inequality
(a) holds since xm�1 � xm � xm+1. Since xm�1  (m � 2) + 1  (m � 2) + xm+1,
inequality (b) also holds.

m+ 1 odd and ⇡ ends in pattern 132: Using Lemma 3 we have xm�1 < xm+1  xm.
Definition 4 with i = m + 1 and i = m gives zm+1 = 2 + xm � xm+1 and zm =
1+xm�xm�1. Again, f(⇡) 2 Alterm+1 i↵ zm+1 2 [2, zm]. By using the new expressions
for zm+1 and zm, and simplifying, this previous condition holds true i↵ xm � xm+1 and
xm�1 < xm+1 which are stated at the beginning of this case.

m+ 1 odd and ⇡ ends in pattern 213: Using Lemma 3 we have xm < 1 + xm�1 
xm+1. Definition 4 with i = m+1 and i = m gives zm+1 = m+2+xm�xm+1 and zm =
m+xm�xm�1. Again f(⇡) 2 Alterm+1 i↵ zm+1 2 [2, zm]. By using the new expressions
for zm+1 and zm, and simplifying, this previous condition holds true i↵ xm+1  m+ xm
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and 1 + xm�1 < xm+1. The first inequality holds since xm+1  m + 1  m + xm, and
the second inequality holds from the inequality at the start of this case.

In all cases f(⇡) 2 Alterm+1.

Step 2: We will now show that f : Cycm+1 ! Alterm+1 is injective.
Let ↵ = h↵1, . . . ,↵m+1i and � = h�1, . . . ,�m+1i be in Cycm+1. Let ↵

0 = h↵1, . . . ,↵mi and
�

0 = h�1, . . . ,�mi. Both ↵

0 and �

0 are in Cycm by Characterization 2.
Suppose that f(↵) = f(�) = hz1, . . . , zm+1i. Since f(↵) = f(↵0)� zm+1 and f(�) = f(�0)�

zm+1 we have f(↵0)� zm+1 = f(�0)� zm+1. This implies that f(↵0) = f(�0). Both of these are
in Cycm and therefore f(↵0) = f(�0), according to the induction hypothesis, is true i↵ ↵

0 = �

0

At this point we have ↵ = ↵

0 � ↵m+1, � = ↵

0 � �m+1, and f(↵0) = hz1, . . . , zmi. We now
condition on the parity ofm. In several cases we will come upon the conditionm+↵m+1 = �m+1.
This cannot hold because ↵m+1,�m+1 2 [2,m + 1] which gives m + 2  m + ↵m+1 = �m+1, a
contradiction. The same is true of m+ �m+1 = ↵m+1.

m+ 1 even and ↵ ends in pattern 321: Using Lemma 3 we have ↵m�1 � ↵m � ↵m+1.
Definition 4 with i = m + 1 gives zm+1 = m + 1 + ↵m+1 � ↵m (⇤1). Since � =
h↵1, . . . ,↵m,�m+1i 2 Cycm+1 and ↵m�1 � ↵m, by Characterization 2 we must have
�m+1 2 [2,↵m] [ [2 + ↵m�1,m + 1]. If �m+1  ↵m then Definition 4 gives zm+1 =
m+1+�m+1�↵m. This is compatible with (⇤1) i↵ �m+1 = ↵m+1. Otherwise �m+1 > ↵m

which gives zm+1 = 1+ �m+1 �↵m. This is compatible with (⇤1) i↵ m+↵m+1 = �m+1,
which cannot happen.

m+ 1 even and ↵ ends in pattern 132: Using Lemma 3 we have ↵m�1 < ↵m+1 
↵m. Definition 4 with i = m + 1 gives zm+1 = m + 1 + ↵m+1 � ↵m (⇤2). Since
� = h↵1, . . . ,↵m,�m+1i 2 Cycm+1 and ↵m�1 < ↵m, by Characterization 2 we must have
�m+1 2 [1 + ↵m�1,↵m]. Since �m+1 < ↵m we have zm+1 = m + 1 + �m+1 � ↵m by
Definition 4. Comparing this to (⇤2) gives �m+1 = ↵m+1.

m+ 1 even and ↵ ends in pattern 213: Using Lemma 3 we have ↵m < 1 + ↵m�1 <

↵m+1. Definition 4 with i = m + 1 gives zm+1 = 1 + ↵m+1 � ↵m (⇤3). Since � =
h↵1, . . . ,↵m,�m+1i 2 Cycm+1 and ↵m�1 � ↵m, by Characterization 2 we must have
�m+1 2 [2,↵m] [ [2 + ↵m�1,m + 1]. If �m+1  ↵m then Definition 4 gives zm+1 =
m+1+�m+1�↵m. This implies �m+1+m = ↵m+1 which is impossible. If �m+1 > ↵m

then Definition 4 gives zm+1 = 1 + �m+1 � ↵m which implies �m+1 = ↵m+1 by (⇤3).
m+ 1 odd and ↵ ends in pattern 321: Using Lemma 3 we have ↵m�1 � ↵m � ↵m+1.

Definition 4 with i = m+1 gives zm+1 = 2+↵m�↵m+1 (⇤4). Since � = h↵1, . . . ,↵m,�m+1i 2
Cycm+1 and ↵m�1 � ↵m, by Characterization 2 we must have �m+1 2 [2,↵m] [ [2 +
↵m�1,m + 1]. If �m+1  ↵m then Definition 4 gives zm+1 = 2 + ↵m � �m+1. Com-
paring this to (⇤4) gives �m+1 = ↵m+1. Alternatively, if �m+1 > ↵m then zm+1 =
m + 2 + ↵m � �m+1. Combining this with (⇤4) gives �m+1 = m + ↵m+1, which is not
possible.

m+ 1 odd and ↵ ends in pattern 132: Using Lemma 3 we have ↵m�1 < ↵m+1 
↵m. Definition 4 with i = m + 1 gives zm+1 = 2 + ↵m � ↵m+1 (⇤5). Since � =
h↵1, . . . ,↵m,�m+1i 2 Cycm+1 and ↵m�1 < ↵m, by Characterization 2 we must have
�m+1 2 [1 + ↵m�1,↵m]. This forces �m+1  ↵m so that zm+1 = 2 + ↵m � �m+1.
Combining this with (⇤5) gives �m+1 = ↵m+1.

m+ 1 odd and ↵ ends in pattern 213: Using Lemma 3 we have ↵m < 1 + ↵m�1 <

↵m+1. Definition 4 with i = m + 1 gives zm+1 = 2 + ↵m � ↵m+1 (⇤6). Since � =
h↵1, . . . ,↵m,�m+1i 2 Cycm+1 and ↵m�1 � ↵m, by Characterization 2 we must have
�m+1 2 [2,↵m] [ [2 + ↵m�1,m + 1]. If �m+1  ↵m then Definition 4 gives zm+1 =
2+↵m��m+1. Comparing this to (⇤6) gives �m+1 = ↵m+1. Alternatively, if �m+1 > ↵m

then zm+1 = m+2+↵m��m+1. Compare this to (⇤6) to get m+↵m+1 = �m+1, which
is not possible.
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In each of these cases it was shown that ↵m+1 = �m+1. Therefore f : Cycm+1 ! Alterm+1 is
injective.

Step 3: We will now show that given z = hz1, . . . , zm+1i 2 Alterm+1 there exists x = hx1, . . . , xm+1i
such that f(x) = z. Let z0 = hz1, . . . , zmi 2 Alterm so that z = z

0� zm+1. Let x0 = hx1, . . . , xmi
be the unique x

0 2 Cycm such that f(x0) = z

0. By the induction hypothesis we need only show
that for any valid value of zm+1 such that z

0 � zm+1 2 Cycm+1 there exists a valid xm+1 such
that f(x0 � xm+1) = z. We do this by conditioning on the parity of m+ 1 and the value of xm
relative to xm�1.

m+ 1 even: We must show that there exists a value of xm+1 such that zm+1 can take all
values in [1 + zm,m+ 1]. Since m+ 1 is even we must have zm 2 [2, zm�1].

• Suppose that xm > xm�1. Using Definition 4 with i = m we have zm = m +
1 + xm�1 � xm. Characterization 2 tells us that xm+1 takes values in the set
[1+xm�1, xm]. As xm+1  xm Definition 4 tells us that zm+1 = m+1+xm+1�xm.
Since xm+1 2 [1 + xm�1, xm], we see that zm+1 2 [m + 2 + xm�1 � xm,m + 1] =
[1 + zm,m+ 1], as required.

• Suppose that xm  xm�1. Using Definition 4 with i = m we have zm = 2 +
xm�1 � xm. Characterization 2 tells us that xm+1 takes values in the set [2, xm] [
[2 + xm�1,m + 1]. If xm+1  xm then Definition 4 tells us that zm+1 = m +
1 + xm+1 � xm. Since xm+1 2 [2, xm] for this part, zm+1 takes values in the set
[m + 3 � xm,m + 1]. Alternatively, if xm+1 > xm then Definition 4 tells us that
zm+1 = 1 + xm+1 � xm. Since xm+1 2 [2 + xm�1,m + 1] for this part, zm+1 takes
values in the set [3+xm�1�xm,m+2�xm]. Combining both of these cases shows
us that zm+1 can take values in the set [3 + xm�1 � xm,m+ 1] = [1 + zm,m+ 1],
as required.

m+ 1 odd: We must show that there exists a value of xm+1 such that zm+1 can take all
values in [2, zm]. Since m+ 1 is odd we must have zm 2 [1 + zm�1,m].

• Suppose that xm > xm�1. Using Definition 4 with i = m we have zm = 1 + xm �
xm�1. We want to show that we can always find a valid xm+1 to produce every
zm+1 in [2, zm] = [2, 1 + xm � xm�1]. From Characterization 2 xm+1 takes values
in [1 + xm�1, xm]. Note that we have xm+1  xm for each of these, so zm+1 takes
values in [2 + xm � xm, 2 + xm � (1 + xm�1)] = [2, zm], as required.

• Suppose that xm  xm�1. Using Definition 4 with i = m we have zm = m+ xm �
xm�1. We want to show that we can always find a valid xm+1 to produce every
zm+1 in [2, zm] = [2,m+xm�xm�1]. From Characterization 2 xm+1 takes values in
[2, xm][ [2+xm�1,m+1]. Consider the relative values of xm and xm+1. If xm+1 
xm then zm+1 = 2+xm�xm+1. Since xm+1 takes values in [2, xm], zm+1 takes values
in the set [2, xm]. Alternatively, if xm+1 > xm then zm+1 = m + 2 + xm � xm+1.
Since xm+1 takes values in [2 + xm�1,m + 1] we find that zm+1 takes values in
[m+2+xm�(m+1),m+2+xm�2�xm�1] = [1+xm, zm]. Combining both these
subcases we find that zm+1 takes values in the set [2, xm] [ [1 + xm, zm] = [2, zm],
as required.

Therefore f : Cycm+1 ! Alterm+1 is surjective. By the principle of induction, we thus have that
f : Cycn ! Altern is a bijection for all n. ⇤

3. A graphical method for calculating f

The calculation of f(⇡) in Definition 4 involves the repeated use of four cases. The sequence of
numbers (z1, . . . , zn) can be quickly calculated by hand by traversing the permutation diagram
in a way that we will describe below.

Suppose that we are given ⇡ = (1, 8, 4, 10, 5, 2, 7, 3, 9, 6) 2 Cyc10 and wish to calculate f(⇡).
Draw the permutation diagram of ⇡ as illustrated in Figure 3. Insert down arrows on those
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vertical lines which have a column of odd index immediately to their left, and insert up arrows
on those vertical lines which have a column of even index immediately to their left.

Let us now define a sequence of numbers (a3, . . . , an) where the integer ai is defined as
follows: start at the point (i,⇡i) and move in the direction indicated by the arrows on the line
immediately to the left of the point. Count the number of points seen to the left up to and
including the point (i � 1,⇡i�1), and at this point we stop. We move cyclically so that if the
point (i � 1,⇡i�1) has not been encountered upon reaching position (i, 1) (respectively (i, n))
then move to (i, n) (respectively (i, 1)) and continue until it is encountered. From this sequence
of numbers we have the corresponding permutation f(⇡) = h1, 2, 1 + a3, 1 + a4, . . . , 1 + ani in
Altern.

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

Figure 3.

Suppose ⇡ = (1, 8, 4, 10, 5, 2, 7, 3, 9, 6). To calculate a9 we start at (i = 9,⇡i = 9), and move
upwards (because i is odd). First we see the point (4, 10) to the left, and we are now stuck at
the top of the column but have not yet seen to the left the ending point (8, 3) = (i � 1,⇡i�1).
We therefore move to the bottom of the column and continue moving upwards again. We
see the point (1, 1) to the left, next the point (6, 2), and the next point we see to the left is
(8, 3) = (i� 1,⇡i�1), which is our final point. We have encountered 4 points on our journey so
a9 = 4.

Doing the same for i = 3, 4, . . . , 8, 10 we get (a3, . . . , a10) = (1, 2, 2, 4, 4, 5, 4, 7). Finally,

f(⇡) = h1, 2, 1 + a3, 1 + a4, . . . , 1 + a10i
= h1, 2, 2, 3, 3, 5, 5, 6, 5, 8i
= ((((((((((1)� 2)� 2)� 3)� 3)� 5)� 5)� 6)� 5)� 8)

= (((((((((1, 2)� 2)� 3)� 3)� 5)� 5)� 6)� 5)� 8)

= ((((((((1, 3, 2)� 3)� 3)� 5)� 5)� 6)� 5)� 8)

= (((((((1, 4, 2, 3)� 3)� 5)� 5)� 6)� 5)� 8)

= ((((((1, 5, 2, 4, 3)� 5)� 5)� 6)� 5)� 8)

= (((((1, 6, 2, 4, 3, 5)� 5)� 6)� 5)� 8)

= ((((1, 7, 2, 4, 3, 6, 5)� 6)� 5)� 8)

= (((1, 8, 2, 4, 3, 7, 5, 6)� 5)� 8)

= ((1, 9, 2, 4, 3, 8, 6, 7, 5)� 8)

= (1, 10, 2, 4, 3, 9, 6, 7, 5, 8).
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4. Proof of equivalence with Aldred et al. and the inverse of f

It is not immediately obvious that f is in fact the same bijection that is described in Aldred
et al. [1]. To show that this is the case, let us make some observations followed by a theorem.

Given ⇡ = hx1, . . . , xni 2 Alter and ⇡

0 = hx1, . . . , xn, xn+1i 2 Altern+1, we say that ⇡0 is the
child of ⇡ in Alter since ⇡ may be recovered from ⇡

0 by removing its rightmost element and
renumbering the other elements with the first n natural numbers. We use the same terminology
for members of Cyc.

Aldred et al. proved two results [1, Lemmas 2 and 3] to show that their mapping was indeed
a bijection. They showed that in their trees for both Alter and Cyc, the children of a node at
level n with down degree d have down degrees n� d+ 1, n� d+ 2, . . . , n. This, along with the
fact that the tops of the trees were the same, shows that there is a one-to-one correspondence
between both embeddings.

The next theorem shows that f respects this correspondence.

Theorem 6. Let ⇡ = hx1, . . . , xni 2 Cycn and � = hz1, . . . , zni 2 Altern be such that � = f(⇡)
and both ⇡ and � have d children in the sets Cycn+1 and Altern, respectively. Suppose that xn+1

is chosen such that ⇡

0 = hx1, . . . , xn, xn+1i 2 Cycn+1 has j children (for some j 2 [n�d+1, n]).
Then f(⇡ � xn+1) also has j children.

Proof. Let ⇡,� and ⇡

0 be as stated in the theorem. There are 4 cases to consider: (a) n even
and xn > xn�1, (b) n odd and xn > xn�1, (c) n even and xn  xn�1, and (d) n odd and
xn  xn�1.

For case (a) we have that zn = 1+ xn � xn�1. Since ⇡ has d children |[1+ xn�1, xn]| = d and
since � has d children |[2, zn]| = d. This gives us the identity xn � xn�1 = d = zn � 1 so that
xn = d+xn=1. The value xn+1 is chosen so that ⇡0 has j children. Because xn�1 < xn we must
have xn+1 2 [1+xn�1, xn] which shows that xn+1  xn. This means |[2, xn+1][[2+xn, n+2]| = j

which gives the identity j = xn+1 � xn + n, or equivalently xn+1 = j + xn � n.
Now f(⇡0) = f(⇡�xn+1) = f(⇡)�zn+1 = ��zn+1 where zn+1 = 2+xn�xn+1. The number

of children of hz1, . . . , zn+1i is
|[1 + zn+1, n+ 2]| = n+ 2� zn+1

= n+ 2� (2 + xn � xn+1)

= n� d� xn�1 + j + d+ xn�1 � xn

= j.

The other three cases reach the same conclusion. ⇤
The inverse of f is the function g and is derived from the Definition of f . In order to derive

an expression for xi in terms of zi and xi�1, we must compare the relative values of xi�1 and
xi�2.

Definition 7 (Inverse of f). Given ⇡ = hz1, . . . , zni 2 Altern, let g(⇡) = hx1, . . . , xni where
x1 = 1, x2 = 2, and for all i 2 [3, n]:

xi =

8
>>>>>>>><

>>>>>>>>:

xi�1 + zi � 1 if i even, xi�1  xi�2 and zi 2 [3 + xi�2 � xi�1, 1 + i� xi�1]

xi�1 + zi � i if i even, xi�1  xi�2 and zi 2 [i+ 2� xi�1, i]

xi�1 + zi � i if i even, xi�1 > xi�2 and zi 2 [i+ 1 + xi�2 � xi�1, i]

xi�1 � zi + 2 if i odd, xi�1 > xi�2 and zi 2 [2, 1 + xi�1 � xi�2]

xi�1 � zi + 2 if i odd, xi�1  xi�2 and zi 2 [2, xi�1]

xi�1 � zi + i+ 1 if i odd, xi�1  xi�2 and zi 2 [1 + xi�1, i� 1 + xi�1 � xi�2].
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