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Outline

• Hardware & Measuring Hardware Complexity

• Comparing Elliptic Curve Implementations to Other

Cryptographic Systems

• Comparing Complexity of Different Elliptic Curve

Implementations
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Why Hardware?

• Hardware allows exploitation of Parallelism in Algorithm.

• Hardware Implementation for Increase in Processing Speed:

– Increased Throughput:-

Number of bits processed per second.

– Reduce Time Taken:-

How long it takes to perform the calculation.

• Other Benefits:

– Reduce Power

– Increased Security
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Hardware Complexity?

• Cost Benefit Analysis

– How do we measure the Benefit of the implementa-

tion?

– How do we measure the Cost of the implementation?

• Use Metrics

– Clock Speed, Throughput, Time taken

– Area

– Power, Energy
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Cost:- Area

• No such thing as

Free Silicon

ci

ci+1

ai

bi

si

• Number of Transistors

– Number of Boolean Gates or

Combinational Logic

– Number of Flip Flops or

Synchronous Logic

(Registers, Memory)

• Wiring or Interconnect

– Can Dominate Area in Large

Designs
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Benefit:- Processing Speed

• Clock Speed of Design (MHz GHz)

• Clock Speed determined by the time the hardware takes

to carry out an operation.

– Addition:- Very fast Circuit

– Multiplication:- Slower Circuit

• Critical Path of Circuit

– Change Input

– ⇒ Time through each gate and wire

– ⇒ Output available
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Ripple Carry Adder
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Throughput vs Time Taken

• Throughput

– Bits per Second (Hopefully MBits/S or GBits/S).

– How long it takes to encrypt a Book using AES.

– How many public key signatures per second can be

calculated using RSA on an e-commerce server.

• Time Taken

– Seconds (Hopefully mS and µS)

– How long it takes to carry out a single key exchange

using ECC on a PDA
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Low Power

• Cost or Benefit

• Mobility or Heat Dissipation

• Energy or Power

• Energy :- Current flowing throughout calculation

– Battery Lifetime

• Power:- Maximum Current flowing at particular time

– Battery Type

• Trade off in Battery design Power vs Energy
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Hardware Complexity of ECC

Implementations

• Compare FPGA Implementation of ECC to:

– Private Key Algorithm AES

– Hash Algorithm SHA

– RSA

• Use:- Area, Clock Speed, Throughput and

Throughput per unit area.

ECC
UCD, 6th September 2007. 10

Liam Marnane
Claude Shannon Institute



(Comparing) Hardware Complexity of Cryptographic Algorithms

Field Programmable Gate Arrays

• Excellent for Rapid Prototyping of Hardware Implemen-

tations of Signal Processing Algorithms.

• Industry:- time to market.

• University Research:- Cost and Reuse.

• Very large FPGAs available.

• Are Suitable for Implementations of Cryptographic Al-

gorithms.

• Complete Security protocol on a single FPGA
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Underlying FPGA Architecture

• Typically, Field Programmable Logic Devices consist of:

– 4-input Lookup Tables:- Boolean Logic

– Simple D-type Latches:- FSM & Memory

– Control Logic

• The device is arranged in an array of Configurable Blocks,
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Xilinx Virtex Configurable Logic Block (CLB)
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Underlying FPGA Architecture

• Typically, Field Programmable Logic Devices consist of:

– 4-input Lookup Tables

– Simple D-type Latches

– Control Logic

• The device is arranged in an array of Configurable Blocks

with communication between them:

– local interconnect between adjacent CLBs:- Fast

– Global interconnect for Buses and communication

between functional blocks on FPGA:- Slow

ECC
UCD, 6th September 2007. 14

Liam Marnane
Claude Shannon Institute



(Comparing) Hardware Complexity of Cryptographic Algorithms

Local and Global Interconnect between CLB’s

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB
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Underlying FPGA Architecture

• Typically, Field Programmable Logic Devices consist of:

– 4-input Lookup Tables

– Simple D-type Latches

– Control Logic

• The device is arranged in an array of Configurable Blocks,

with local and global interconnect between

• Dedicated High-Speed Carry-Chain Propagation

accelerates Arithmetic operations.

• Parallel multipliers, dedicated memory, RISC Processor.
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Advanced Encryption Standard

• AES on 128 bits of data.

• Depending on the key size

AES repeats 10, 12 or

14 times the basic round

function.

• SubBytes Look Up table:-

– Dominate Area

– Number used dictates

area and throughput.

ByteSub

ShiftRow

MixColumn

AddKey

Input

Output

Round Key
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Architecture Types

(c) Pipelined

Round Round 1 Round N

(b) Unrolled(a) Iterative

Round 1 Round N

• Exploit Parallelism by Loop Unrolling.

• Increase Throughput through Pipelining:- Reduction in

the length of critical path at cost of increased Latency.
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Feedback Modes of Operation

Cipher Block Chaining Encrypt

Encrypt Encrypt

IV

Encrypt Encrypt

Time = 1 Time = 2 Time = n − 1 Time = n

P1 P2 PN−1 PN

KK K K

C1 C2 CN−1 CN

AESAES AES AES

• Pipeline Cannot be kept filled as C1 required before pro-

ceeding with P2
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Secure Hash Standard

• SHA-512 operates on a

message in 1024 bit blocks

and produces a 512 bit

hash value.

• Processing block operates

on 64 bit word through 80

iterations of a compres-

sion function.

• Critical path is Five 64 bit

additions.

HMt (N)Wt

Padding
Block

Message
Scheduler

Processing
Block

Message 

Start Hash Hash ReadyControl
Block

• Architecture choices:

Loop unrolling and

pipelining.
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Modular Multiplication

• Montgomery proposed

modular multiplication

through a series of ad-

ditions & right-shifts ⇒

Suitable for hardware

implementation.

• Bit lengths dictate bit se-

rial or digital serial ap-

proach

m

+

+

B bi
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M
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RSA Architectures

• Number of Multipliers:- Exponentiation Algorithm Used

– R-L Exponentiation:- 2 modular multipliers in par-

allel

– L-R Exponentiation:- Single Modular Multiplier.

• Addition of Large Numbers:- Carry Save versus Carry

Propagate, (Area versus time).

• Suitable for Extensive Pipelining to reduce the critical

path.
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EC Design Choices

for Q=[k]P

m

GF(3  )m

GF(p  ), p>3m

Coordinates Affine

Projective Homogenous
Jacobian
Lopez−Dahab

GF(P)Base Field

Curve Choose a, b

Algorithm

.........

Addition/Subtraction − NAF

Binary Double and Add

Montgomery Method

GF(2  )

ECC
UCD, 6th September 2007. 23

Liam Marnane
Claude Shannon Institute



(Comparing) Hardware Complexity of Cryptographic Algorithms

EC Design Implemented

• Prime Field Fp of 256bits

(security equivalent to 3072bit RSA)

• Co-ordinates:

– Affine requiring Modular Multiplication and

Inversion

– Jacobian Projective

• Bit serial Montgomery Multiplier

• Extended Euclidean Algorithm requiring

512 clock cycles

ECC
UCD, 6th September 2007. 24

Liam Marnane
Claude Shannon Institute



(Comparing) Hardware Complexity of Cryptographic Algorithms

Design Complexity

Algorithm Area Clock Throughput Thpt/Area

(CLBs) (MHz) (Mbps) (bps/CLB)

AES 3,259 27.86 324 99417

SHA-512 2,468 40.02 506 205024

RSA - 1024 8,064 51.84 0.051 6.32

ECC-256A 2,718 19.19 0.00873 3.21

ECC-256J 1,353 20.45 0.00439 3.24

• Single Round of AES, with no Pipelining

• Single compression core for SHA

• R-L Algorithm for RSA, 2 Multipliers

• Affine Co-ordinates in Fp for ECC with

multiplier, inverter and adder.

• Jacobian in Fp without conversion.
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Design Complexity

Algorithm Area Clock Throughput Thpt/Area

(CLBs) (MHz) (Mbps) (bps/CLB)

AES 3,259 27.86 324 99417

SHA-512 2,468 40.02 506 205024

RSA - 1024 8,064 51.84 0.051 6.32

ECC-256A 2,718 19.19 0.00873 3.21

ECC-256J 1,353 20.45 0.00439 3.24

• Single Round of AES

• Key Expansion in hardware

• Encryption and Decryption

• No Pipelining

• 16 asynchronous ROMs used (60% of

CLBs)
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Design Complexity

Algorithm Area Clock Throughput Thpt/Area

(CLBs) (MHz) (Mbps) (bps/CLB)

AES 3,259 27.86 324 99417

SHA-512 2,468 40.02 506 205024

RSA - 1024 8,064 51.84 0.051 6.32

ECC-256A 2,718 19.19 0.00873 3.21

ECC-256J 1,353 20.45 0.00439 3.24

• Single Iterative Compression Block Used

• Carry Propagate Adders Used

• 4 Unrolled Architecture:- 3,650 CLBs

• Throughput:- 610 Mbs

• Clock:- 12.51 MHz

• Throughput per CLB of 167000
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Design Complexity

Algorithm Area Clock Throughput Thpt/Area

(CLBs) (MHz) (Mbps) (bps/CLB)

AES 3,259 27.86 324 99417

SHA-512 2,468 40.02 506 205024

RSA - 1024 8,064 51.84 0.051 6.32

ECC-256A 2,718 19.19 0.00873 3.21

ECC-256J 1,353 20.45 0.00439 3.24

• R-L Algorithm for RSA

• Requires 2 Montgomery Multipliers

• Bit Length of 1026 required

• Carry Propagate Adders Used

• Extensive Pipelining

• Maximum Carry Chain of 130 bit.
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Design Complexity

Algorithm Area Clock Throughput Thpt/Area

(CLBs) (MHz) (Mbps) (bps/CLB)

AES 3,259 27.86 324 99417

SHA-512 2,468 40.02 506 205024

RSA - 1024 8,064 51.84 0.051 6.32

ECC-256A 2,718 19.19 0.00873 3.21

ECC-256J 1,353 20.45 0.00439 3.24

• Affine Co-ordinates in Fp

• 256 bit, Bit Serial Montgomery Multiplier

• Extended Euclidean Algorithm

• Point Addition:- Inversion, 3 Multiplica-

tions, 6 Additions

• Point Doubling:- Inversion, 4 Multiplica-

tions, 4 Additions
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Design Complexity

Algorithm Area Clock Throughput Thpt/Area

(CLBs) (MHz) (Mbps) (bps/CLB)

AES 3,259 27.86 324 99417

SHA-512 2,468 40.02 506 205024

RSA - 1024 8,064 51.84 0.051 6.32

ECC-256A 2,718 19.19 0.00873 3.21

ECC-256J 1,353 20.45 0.00439 3.24

• Jacobian co-ordinates in Fp without con-

version.

• Does not include cost of conversion to

Affine.

• Point Addition:- 16 Multiplications, 7

Additions

• Point Doubling:- 10 Multiplications, 4

Additions
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Design Complexity

Algorithm Area Clock Throughput Thpt/Area

(CLBs) (MHz) (Mbps) (bps/CLB)

AES 3,259 27.86 324 99417

SHA-512 2,468 40.02 506 205024

RSA - 1024 8,064 51.84 0.051 6.32

ECC-256A 2,718 19.19 0.00873 3.21

ECC-256J 1,353 20.45 0.00439 3.24

Tate-256 8,438 34.74 0.01868 2.21

• Millers Algorithm

• Jacobian Co-ordinates for Point Addition

and Doubling

• Security Multiplier k = 4

• Karatsuba’s Method for Multiplication in

F
p4

• Includes final Modular Exponentiation
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Summary

• Most Area demanding is the RSA algorithm, due to the

large 1024 bit key size. (Note Security Level)

• Most Efficient in terms of throughput per CLB is Hash

algorithm.

• Mathematical complexity of ECC results in least effi-

cient designs. (Note similar throughput per clb figure

for Jacobian and Affine).

• Virtex-E 2000 has 19,200 CLBs and is suitable for im-

plementing all of these algorithms.
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Power Consumption & EC Design

Choices

• What is the effect of the EC design choices on the Power

and Energy consumption of Hardware implementation?

• FPGA platform used

• (FPGAs are not suitable for Low Power implementa-

tions)

• Difference between implementations not Absolute value
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EC Design Choices

for Q=[k]P

m

GF(p  ), p>3m

Coordinates Affine

Projective Homogenous
Jacobian
Lopez−Dahab

GF(2  )m GF(2    )163 m = 163
=> security equivalent to 1024−bit RSA

NIST Recommended GF(2   ) Curve163

GF(P)Base Field

Curve Choose a, b

Algorithm

.........

Addition/Subtraction − NAF

Binary Double and Add

Montgomery Method

GF(3  )
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EC Design Choices

for Q=[k]P

m

GF(3  )m

GF(p  ), p>3m

GF(P)Base Field

Curve Choose a, b

Algorithm

.........

Addition/Subtraction − NAF

Binary Double and Add

Coordinates Affine

Projective Homogenous
Jacobian
Lopez−Dahab

Montgomery Method

GF(2  )
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EC Coordinate Systems

• Affine: P = (x, y)

• Projective: P = (X,Y, Z)

– Advantage: Point addition and doubling can be per-

formed without any GF (2m) division

– Affine to projective conversion: (x, y) → (x, y, 1)

– Generally converted back to affine for transmission

• Two types of projective coordinates used in this work:

– Jacobian: (X,Y, Z) → ( X
Z2 ,

Y
Z3 )

– Lopez-Dahab: (X,Y, Z) → (X
Z

, Y
Z2 )
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Cost of Point Operations

Affine
Addition: 1M + 1D + 1S

Doubling: 1M + 1D + 1S

Jacobian

Addition: 10M + 4S

Doubling: 5M + 5S

Conversion: 3M + 1D + 1S

Conversion*: 12M + 163S

Lopez-Dahab

Addition: 8M + 5S

Doubling: 4M + 5S

Conversion: 2M + 1D + 1S

Conversion*: 11M + 163S

• * = Conversion with no divider
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EC Design Choices

for Q=[k]P

m

GF(3  )m

GF(p  ), p>3m

Coordinates Affine

Projective Homogenous
Jacobian
Lopez−Dahab

GF(P)Base Field

Curve Choose a, b

Algorithm

.........

Addition/Subtraction − NAF

Binary Double and Add

Montgomery Method

GF(2  )
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EC Point Scalar Multiplication

Algorithm Cost

• Binary Double and Add:

– NBinary = (m − 1)Ndouble + (m
2
− 1)Nadd

• Addition/Subtraction – NAF

– NNAF = (m − 1)Ndouble + (m
3
− 1)Nadd

• Montgomery Method:

– NMontgomery = Ndouble + (m − 1)Nloop + Ncomputey
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GF (2m) Hardware Architectures

Operation Architecture Clock Cycles

Addition m XOR Gates Combinational

Multiplication
Digit-Serial,

n = ⌈m
d
⌉

Digit size d

Squaring
Bit-Parallel

Combinational
AND-XOR network

Division
Extended Euclidean

2m
Algorithm
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Power Comparision

• This work studies the effect of coordinate and algorithm

choice on the power and energy consumption of an el-

liptic curve processor

• Coordinates investigated:

– Affine, Jacobian, Lopez-Dahab

• Algorithms investigated:

– Binary Double and Add

– Addition/Subtraction – NAF

– Montgomery Method
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GF (2m) Elliptic Curve Processor
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GF (2m) Elliptic Curve Processor
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GF (2m) Elliptic Curve Processor
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GF (2m) Elliptic Curve Processor
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GF (2m) Elliptic Curve Processor
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GF (2m) Elliptic Curve Processor
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GF (2m) Elliptic Curve Processor
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GF (2m) Elliptic Curve Processor
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Implementation Results

• Target technology: Xilinx Spartan 3L – xc3s1000l

– Low Power FPGA

– Hibernate mode

• Two digit sizes of GF (2m) multiplier used:

– d = 1: area ≈ 3000 LUTs

– d = 16: area ≈ 5100 LUTs

– Divider area ≈ 1100 LUTs

• Minimum PPR Clock Frequency Reported = 80MHz

• Quiescent Power = 92mW
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Power Dissipation
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(Comparing) Hardware Complexity of Cryptographic Algorithms

Point Multiplication Time
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(Comparing) Hardware Complexity of Cryptographic Algorithms

Energy Per Point Multiplication
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(Comparing) Hardware Complexity of Cryptographic Algorithms

Summary

• Minimum Power: 150.97mW

– Binary Lopez-Dahab no divider, d = 1

– fCLK = 80MHz, Calculation time = 2.87ms

– Energy = 0.43mJ

• Minimum Energy: 0.036mJ

– Montgomery Lopez-Dahab 3 mults, d = 16

– fCLK = 80MHz, Calculation time = 0.18ms

– Power = 203.95mW
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(Comparing) Hardware Complexity of Cryptographic Algorithms

What is the “best” set of choices?

• What is most important, power or energy?

• Need a metric to compare designs...

• Power and energy requirements will determine battery

size, therefore try to minimise both

• Look at Energy vs. Power
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(Comparing) Hardware Complexity of Cryptographic Algorithms

Energy vs. Power
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(Comparing) Hardware Complexity of Cryptographic Algorithms

Energy–Power Product
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(Comparing) Hardware Complexity of Cryptographic Algorithms

EP Optimised Choices

Montgomery LD Montgomery LD

three mults d = 16 two mults, d = 16

EP Product: 7.4mJ.mW 7.5mJ.mW

Power: 203.95mW 192.7mW

Energy: 0.036mJ 0.039mJ

Time: 177µs 201µs

Area: 9393LUTs 6711LUTs

AT Product: 1.66 1.35
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(Comparing) Hardware Complexity of Cryptographic Algorithms
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(Comparing) Hardware Complexity of Cryptographic Algorithms

Conclusion

• EC Implementation choices Do have an effect on the

Complexity of Final Design

• Many Metrics Available to Determine Best Design

• Designer/Vendor will always choose Metric that put their

design in the best light

• and their competitors in a bad light
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