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Motivation
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2>17

Remember last ECC conference... Dan and Tanja talked about:

3

) Elliptic
Gy vs.
Y Hyper-
elliptic

(©) Danja 2006

The most famous duo in cryptography is now playing for elliptic curves.

(see their talk of Friday).

Somebody has to defend hyperelliptic curves!
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Looking for formulae

B Until recently, Montgomery form for ECC is the most appropriate for key

exchange implementation in genus 1.

°

Fast, good SCA properties.

°

Does not cover all curves; no plain addition.

°

Goal: find similar formulae for genus 2. (prev work by Smart-Siksek,

Duquesne, Lange).

P Following Chudnovsky and Chudnovsky: use Theta functions.

Rem. One should probably look for genus 2 formulae analogous to
Edwards form, now.
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Point counting becomes a guestion of spee

Most of the formulae involves multiplications by coeffs of the equation.
—> If these are small integers, the formulae get faster.

Rem. Particularly true for genus 2 formulae based on Theta (DJB’s last

year talk).

Problem: «easy-to-count» curves (CM) usually don’t have such a small

coefficient equation.

Point counting of random curves is not only a question of non-trusting CM

curves, but a question of SPEED.

Current record for genus 2 over [}, gives a 162 bit group (GaSc04).
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Genus 2 RM curves

Def. Agenus2RM curve C is such that EndgJac(C) is isomorphic to a

real quadratic field.

P CM curves + easy pt counting: no choice in p / size of coeffs. Dim 0.
® Random curves + hard pt counting: choose p / small coeffs. Dim 3.

® RM curves + medium pt counting: choose p / small coeffs. Dim 2.

Rem. The additional endomorphism can be used to speed-up scalar

multiplication. (Takashima, Kohel-Smith).
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Background on Theta
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Siegel upper-half-space

In the following few slides, we work over C.

Let {2 be a matrix in the g-dimensional Siegel upper-half-space Hs, i.e. {2 is

a symmetric g X g matrix with Im(€2) > 0.

Rem. Indim 1, €2 is in the upper-half plane (and 2 is denoted by 7...)
Then C9/(Z9 + Q7Z.9) is an abelian variety A.

If A is the Jacobian of a curve C, then (2 is called the period matrix of C.

Rem. The action of the symplectic group on {2 does not change the

isomorphism class of A.

In dim 1, this is S Lo (Z) acting on 7.
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Definition of ¥

Def. The Riemann Theta function is, for z € C9Y.

W (z, ) = Z exp (mi'nQn + 271i'n - z) .

ne/9

If Z is set to O, we obtain a Theta constant.

¥ is “almost” periodic:
Iz + Qm + n, Q) = exp(—it'mOQm — 2ir'm - z) - ¥(z, Q).

—> “almost defined” on the abelian variety C9 /(Z9 + QZ9).
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Theta functions with characteristics

For a and b, two vectors in {0, %}, we define

Ia; b](z, Q) = exp (mi'aQa + 2mita - (z+ b)) -I(z+Qa+b,0Q).

There are 229 of them, yielding 229 Theta functions with characteristic and

229 Theta constants.

Among them, 2971(29 + 1) are even and 29 1(29 — 1) are odd.

Obviously, the odd Theta functions with characteristics give trivial Theta
constants.
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Theta functions with characteristics

even odd
g=1 4 = 3 4+ 1
g=2: 16 = 10 4+ ©
g=3: 64 = 36 + 28
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A projective embedding

For a fixed 2, let ¢ be the map from C9 to P>’ 1 (C) defined by
z) = (9]0;b](22, Q ) .
plz) = (00022 2)

By periodicity, one checks that up to a multiplicative constant,
o(z+ Om+n) =p(z), for(m,n) ez x 79,

so that ¢ is well-defined from C9 /(Z9 + QZ9) to P?°~1(C).

Rem. Since all the ¥/|0; b] are even, ¢ is even: —z and z are sent to the
same point. [ and this is essentially the only injectivity defect ]
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The Kummer variety

Def. The image of ¢ is called the Kummer variety of the abelian variety

C9/(29 + QZI).

Rem. Thisis a complicated way to say that the Kummer variety of an
abelian variety Ais A/{+£1}.

Our main interest in using Theta functions is. . .
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Formulae

Taken from Mumford’s Tata lectures on Theta (l), for genus 1:
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Formulae

Fact: For many of the usual curve-related algebraic objects one like to
manipulate explicitly, there exist corresponding formulae with Theta functions

(and often, already in the literature).

9 Algebraic parametrization of the abelian variety (Weierstral? ¢ function);
B Modular equations (AGM as the most spectacular example);
P [sogenies (well. . .)

D Group law.

and for any genus!
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The case of genus 2
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Eight particular Theta functions

The functions used to map A to P?(C):

91(z) = ¥[(0,0);(0,0))(z, )
92(z) = 9](0,0); (3, 3)](z, Q)
93(z) = 0[(0,0);(3,0)](z,Q)
9a(z) = 9[(0,0);(0,3)](2,9) .

©(z) = 9[(0,0);(0,0)|(z,29)
O2(z) = 9(3,3):(0,0)](z,29)
O3(z) = (0, 35);(0,0))(z,29)
O4(z) = 9(5,0);(0,0)](z,20)
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Some constants

Let us give names to a few Theta constants:

a — 191(0), b= 192(0), C — 193(0), d = 194(0),

and
A=061(0), B=065(0), C=03(0), D= 04(0).
Put also
Yo = a/b, zo = a/c, tg = a/d,
and

yo = (A/B)*, 2 = (A/C)?, t5 = (A/D)?,
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Some more equations

It can be shown that
1A% = a® +b* + 2 + d°,
AB* =a® +b° — & — &,
40% = a? — b* + & — d2,
AD? =a® —b* — & + d°.
Then, we define furthermore E, I, G, H by
E = abcdA*B*C?D?/(a*d* — b*c?)(a*c® — b*d*)(a*b* — ¢*d?)
F=(a*—b*—c*+d")/(a*d* — b*c?)
G = (a* —b*+c* —dY)/(a*c® — b*d?)
H = (a* 4+ b* = ¢* — d") /(a*V* — *d?) .
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Equation for the Kummer surface

The abelian variety has dimension 2, so has its image by .
4 projective coordinates + dimension 2 —> one equation.
It can be shown that this equation is (for a point (x, Y, 2, t) in the image /C
of ):
Koo (2 +y* + 2+ 1Y) + 2Ezyzt — F(2%t? + y%2?)
— G(x%2* + y°t?) — H(2%y? + 2%t%) = 0.

Rem. Only a pseudo-group law available on /C, similar to Montgomery
form.
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Doubling formula
Input: A point P = (x,y, 2,t) on K,

5. X =" +y +2+1)
6. Y =y’ +9 — 2 —1t)
7. 72 =z0(x' —y' + 2 =t
8. T =to(x — ¢ — 2/ + 1
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The first 4 steps of the doubling comes from:
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(©1(2z),02(22z),035(2z), ©4(2z)) is a point on the Kummer surface

associated to C? /(Z? 4 2Q27Z?), isogenous to A.

Doubling is the composition of this isogeny and its dual.
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Pseudo-add formula

Input: P = (z,y,2,t)and Q = (2, ¥, 2,t) on K and R = (Z, ¥, 2, 1) one of
P+ Qand P — Q.
L x':(:132—I—yQ—I—ZQ—I—tQ)(gQ—I—gQ—I—gQ—I—f

23 y’=y6($2+y2—22—t2)(£2—|—g2—§2—

|~ ~~

2);
3. 2 = zp(2® —y? + 2% — %) (2® —y® + 2% — t?);
4.t =th(2? —y® — 22+ 1A (z® —y* - 22+ 12);
5. X = (' +y' +2' +t)/z;

6. Y=("+y —2 —t")/y;

7. Z=(2' —y +2 —1t)/z

8. T = (2" —y — 2" +1t)/t;

9. Return (X, Y, Z,T) =P+ Qor P — Q.
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Operation count

Thm. Multiplying a point by a scalar  on the Kummer surface costs
9 log n squarings, 10 log n multiplications, and 6 log n multiplications by
constants. 9S + 10P + 6 sP.

Alternate choice of organizing the computation: 12S + 7P + 9sP.

Problem: having small constants (and cheap sP), require point counting

in genus 2, for which the current record is 162 bits.

Still: Can already beat ECC on a PC implementation (DJB’s ECC-06 talk).
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Implementation

(joint work with E. Thomé)

The Theta based formulae have been implemented using the mpIFq library

and submitted to eBATS. Results in cycles:

curve25519 | surfl27eps curve22bl | surf2113

Opteron K8 310,000 296,000 1,400,000 1,200,000
Core2 386,000 405,000 888,000 687,000
Pentium 4 3,570,000 3,300,000 3,085,000 2,815,000
Pentium M 1,708,000 2,000,000 2,480,000 2,020,000

E.g.: surfl127eps does 10,000 scalar mult per sec. on a 3 GHz Opteron
(waiting for AMD’s K10...)

Rem. Optimized only for 64 bit architecture.
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Rosenhain invariants

Given a = 91(0), b = 92(0), c = 93(0), d = 94(0), four theta

constants corresponding to a matrix 2, then define:

a’c? c?e? a’e?

g2 M d2f2; Vo= b2 f2

A

where
2 ¢D
€ _ ]- _|_ AD

r2 CD
;5 1-%%

Then the curve C of equation

y' =a(r—1)(z - Az — p)(z —v)

has a Jacobian isomorphic to C? /(Z? + QZ?). [Thomae]
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Mapping points from /C to Jac(C)

(2,9, 2,t) = (u(z),v*(2))

The formula is a consequence of some formulae in Mumford’s book. More

details in van Wamelen’s work.

P | won't give the formulae here...

P Some precomputation that depends only on /C (a few hundreds of

multiplications and a few dozens of inversions);

® Then, mapping a point of /C to Jac(C) involves about 50 multiplications

and a few inversions.

P Of course, the v-polynomial is computed up to sign.
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Validity of the formulae over a finite field

The formulae are valid on C, but one wants to use them over a finite field.

Two lines of proof:

B Use the explicit map to Rosenhain form and check the algebra.

P Lift/reduce approach.

The first approach is useful to use point-counting, and guarantee that the

DLP is equivalent on Kummer and on the curve.

The second is useful to avoid heavy computations, and to derive formulae in
characteristic 2.
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RM Kummer surfaces

Thanks: E. Schost, D. Kohel
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Characteristic polynomial considerations

Let C be the reduction modulo p of a genus 2 curve with RM by \/&
Assume Jac(C) is ordinary and absolutely simple.

The characteristic polynomial of Frobenius 7 is of the form
x(t) = t* — 51t + sot? — ps1 + p?,

with |s1| < 4,/p and |s2| < 6p.

X (1) is irreducible and defines a CM field K . Its real subfield is isomorphic
to Q(v/d) and can be defined by the minimal polynomial of 7 + 7

P(t) = t* — s1t + (59 — 2p).
disc(P) = s§ — 459 + 8p = n*d, for some integer 7.
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RM baby-step giant-step algorithm

The classical genus 2 BSGS algorithm looks for s1 and s».

Search space has size O(p®/?), so the complexity is O (p>/4).
Main idea: Look for s1 and n (and deduce s9).

Bounds on s1 and s9 give:

ne{l,..., \/48p/d}.

Since P(m 4 ) = 0, one gets

(2(m 4+ 7) — 51)% = 512 — 4(s9 — p) = n’d.

2

Multiply by = and use mm = p:

(2(7* + p) — 817T)2 — n dr?.
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RM baby-step giant-step algorithm (2)

Let [ be a random divisor (defined over Fp), since 7 acts trivially on D,

one gets

(2(1 4 p) — s1)* D = n2dD.

There are O( /D) possibilities for the LHS and the RHS.

— Complexity in O(/p) instead of O (p>/*4).

Rem. dD, 4dD, 9dD, 16dD, ...can be computed in linear time.
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Low memory version

Assumption: The \/E endomorphism is explicit and efficient.

Rewrite equation as

(2(1+p) — s1) D = £nVdD.

This Is then exactly the context of the Bidimensional collision search (aka

cockroach algorithm) of GaSc04 (inspired by Matsuo-Chao-Tsuijii).

Furthermore: if s and n are known modulo m, the whole running time is
reduced by a factor of m.
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Adapting Schoof’s algorithm

If we call the general Schoof’s algorithm, one computes s1 and S9 modulo .

But, this gives only 2 modulo £ up to sign.
CRT after k primes /: get 2% possibilities for 7 modulo product of £s.

Solution: Test the RM equality to find the sign of n mod £
(2(m* +p) — sym) P = nVdrP,

for P an /-torsion point.

— Don't lose the 2% factor.
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Quick estimates ford = 2

Schoof’s part:

m=210x3"x52x7Tx11x13x17x19 x 23 x29 =
447185196057600 == 248, sounds feasible in a dozen of core-days.

Cost of collision search is about 32\/ﬁ/m. Let us allow 10 core-days for
these, that is 1012 group operations.

This gives p ~ 2165, hence a group of size ~ 2330,

—> In two months on 20 cores, one expects to find a suitable Kummer

surface, with more than enough security.
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A nice family with RM by /2

Choose (a, b, ¢, d) so that doubling in the Kummer surface is the

composition of an endomorphism with itself (it has to be \/5).

Assume that (a, b, ¢, d) is such that (A, B, C, D) is proportionnal to

(a, b, c, d). Then Doubling is twice the following algorithm:
Input: A point P = (x,y, 2,t) on K;

1. X = (22492 + 22417,

2. Y = (a/b)(x° + y* — 2% — t2);

3. Z = (a/c)(x?® —y* + 2° — t?);

4. T = (a/d)(x* — y? — 2% + t2);

5. Return 2P = (X,Y, Z,T).
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A nice family with RM by /2

Let H be the matrix
(1 1 1 1 )
1 1 -1 -1
1 -1 1 -1

\ 1 -1 -1 1 )

sothat (A2, B?,C?, D?) = 4H (a?, V%, c?, d?).

The eigenvalues of H are —2 (simple) and 2 (triple). The eigenspace for 2

Is the dimension 3 space defined by
a? = b+ & + d°.
Since we are in a projective world, this gives a 2-parameter family of

Kummer surfaces with RM by \/5
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Conclusion

P With efficient point counting, genus 2 would be very fast, thanks to

Theta based formulae;

P RM curves / Kummer surfaces provide small coeffs and efficient point

counting;
P Implementation is on the way (the point counting part, first).

P Important speed-up expected — new eBAT to come!
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