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2 > 1 ?

Remember last ECC conference... Dan and Tanja talked about:

c©Danja 2006

The most famous duo in cryptography is now playing for elliptic curves.

(see their talk of Friday).

Somebody has to defend hyperelliptic curves!
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Looking for formulae

Until recently, Montgomery form for ECC is the most appropriate for key

exchange implementation in genus 1.

Fast, good SCA properties.

Does not cover all curves; no plain addition.

Goal: find similar formulae for genus 2. (prev work by Smart-Siksek,

Duquesne, Lange).

Following Chudnovsky and Chudnovsky: use Theta functions.

Rem. One should probably look for genus 2 formulae analogous to

Edwards form, now.
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Point counting becomes a question of speed

Most of the formulae involves multiplications by coeffs of the equation.

=⇒ If these are small integers, the formulae get faster.

Rem. Particularly true for genus 2 formulae based on Theta (DJB’s last

year talk).

Problem: �easy-to-count� curves (CM) usually don’t have such a small

coefficient equation.

Point counting of random curves is not only a question of non-trusting CM

curves, but a question of SPEED.

Current record for genus 2 over Fp gives a 162 bit group (GaSc04).
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Genus 2 RM curves

Def. A genus 2 RM curve C is such that EndQJac(C) is isomorphic to a

real quadratic field.

CM curves + easy pt counting: no choice in p / size of coeffs. Dim 0.

Random curves + hard pt counting: choose p / small coeffs. Dim 3.

RM curves + medium pt counting: choose p / small coeffs. Dim 2.

Rem. The additional endomorphism can be used to speed-up scalar

multiplication. (Takashima, Kohel-Smith).
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Background on Theta
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Siegel upper-half-space

In the following few slides, we work over C.

Let Ω be a matrix in the g-dimensional Siegel upper-half-space H2, i.e. Ω is

a symmetric g × g matrix with Im(Ω) > 0.

Rem. In dim 1, Ω is in the upper-half plane (and Ω is denoted by τ ...)

Then Cg/(Zg + ΩZg) is an abelian variety A.

If A is the Jacobian of a curve C, then Ω is called the period matrix of C.

Rem. The action of the symplectic group on Ω does not change the

isomorphism class of A.

In dim 1, this is SL2(Z) acting on τ .
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Definition of ϑ

Def. The Riemann Theta function is, for z ∈ Cg ,

ϑ(z, Ω) =
∑

n∈Zg

exp
(

πi tnΩn + 2πi tn · z
)

.

If z is set to 0, we obtain a Theta constant.

ϑ is “almost” periodic:

ϑ(z + Ωm + n, Ω) = exp(−iπtmΩm − 2iπtm · z) · ϑ(z, Ω).

=⇒ “almost defined” on the abelian variety Cg/(Zg + ΩZg).
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Theta functions with characteristics

For a and b, two vectors in {0, 1

2
}g , we define

ϑ[a; b](z, Ω) = exp
(

πi taΩa + 2πi ta · (z + b)
)

·ϑ(z+Ωa+ b, Ω).

There are 22g of them, yielding 22g Theta functions with characteristic and

22g Theta constants.

Among them, 2g−1(2g + 1) are even and 2g−1(2g − 1) are odd.

Obviously, the odd Theta functions with characteristics give trivial Theta

constants.
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Theta functions with characteristics

even odd

g = 1 : 4 = 3 + 1

g = 2 : 16 = 10 + 6

g = 3 : 64 = 36 + 28

ECC 2007, September 2007, Dublin – p. 12/39



A projective embedding

For a fixed Ω, let ϕ be the map from Cg to P2
g−1(C) defined by

ϕ(z) =
(

ϑ[0; b](2z, Ω)
)

b∈{0, 1
2
}g

.

By periodicity, one checks that up to a multiplicative constant,

ϕ(z + Ωm + n) = ϕ(z), for (m, n) ∈ Zg × Zg,

so that ϕ is well-defined from Cg/(Zg + ΩZg) to P2
g−1(C).

Rem. Since all the ϑ[0; b] are even, ϕ is even: −z and z are sent to the

same point. [ and this is essentially the only injectivity defect ]
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The Kummer variety

Def. The image of ϕ is called the Kummer variety of the abelian variety

Cg/(Zg + ΩZg).

Rem. This is a complicated way to say that the Kummer variety of an

abelian variety A is A/{±1}.

Our main interest in using Theta functions is. . .
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The Kummer variety
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Formulae
Taken from Mumford’s Tata lectures on Theta (I), for genus 1:
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Formulae

Fact: For many of the usual curve-related algebraic objects one like to

manipulate explicitly, there exist corresponding formulae with Theta functions

(and often, already in the literature).

Algebraic parametrization of the abelian variety (Weierstraß ℘ function);

Modular equations (AGM as the most spectacular example);

Isogenies (well. . . )

Group law.

and for any genus!
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The case of genus 2
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Eight particular Theta functions
The functions used to map A to P3(C):

ϑ1(z) = ϑ[(0, 0); (0, 0)](z, Ω)

ϑ2(z) = ϑ[(0, 0); (1

2
, 1

2
)](z, Ω)

ϑ3(z) = ϑ[(0, 0); (1

2
, 0)](z, Ω)

ϑ4(z) = ϑ[(0, 0); (0, 1

2
)](z, Ω) .

Dual functions on the isogenous abelian variety:

Θ1(z) = ϑ[(0, 0); (0, 0)](z, 2Ω)

Θ2(z) = ϑ[(1

2
, 1

2
); (0, 0)](z, 2Ω)

Θ3(z) = ϑ[(0, 1

2
); (0, 0)](z, 2Ω)

Θ4(z) = ϑ[(1

2
, 0); (0, 0)](z, 2Ω) .
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Some constants

Let us give names to a few Theta constants:

a = ϑ1(0), b = ϑ2(0), c = ϑ3(0), d = ϑ4(0),

and

A = Θ1(0), B = Θ2(0), C = Θ3(0), D = Θ4(0).

Put also

y0 = a/b, z0 = a/c, t0 = a/d,

and

y′0 = (A/B)2, z′0 = (A/C)2, t′0 = (A/D)2,
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Some more equations
It can be shown that

4A2 = a2 + b2 + c2 + d2,

4B2 = a2 + b2 − c2 − d2,

4C2 = a2 − b2 + c2 − d2,

4D2 = a2 − b2 − c2 + d2.

Then, we define furthermore E, F , G, H by

E = abcdA2B2C2D2/(a2d2 − b2c2)(a2c2 − b2d2)(a2b2 − c2d2)

F = (a4 − b4 − c4 + d4)/(a2d2 − b2c2)

G = (a4 − b4 + c4 − d4)/(a2c2 − b2d2)

H = (a4 + b4 − c4 − d4)/(a2b2 − c2d2) .
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Equation for the Kummer surface

The abelian variety has dimension 2, so has its image by ϕ.

4 projective coordinates + dimension 2 =⇒ one equation.

It can be shown that this equation is (for a point (x, y, z, t) in the image K
of ϕ):

K : (x4 + y4 + z4 + t4) + 2Exyzt − F (x2t2 + y2z2)

− G(x2z2 + y2t2) − H(x2y2 + z2t2) = 0.

Rem. Only a pseudo-group law available on K, similar to Montgomery

form.
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Doubling formula
Input: A point P = (x, y, z, t) on K;

1. x′ = (x2 + y2 + z2 + t2)2;

2. y′ = y′
0
(x2 + y2 − z2 − t2)2;

3. z′ = z′
0
(x2 − y2 + z2 − t2)2;

4. t′ = t′
0
(x2 − y2 − z2 + t2)2;

5. X = (x′ + y′ + z′ + t′);

6. Y = y0(x
′ + y′ − z′ − t′);

7. Z = z0(x
′ − y′ + z′ − t′);

8. T = t0(x
′ − y′ − z′ + t′);

9. Return 2P = (X, Y, Z, T ).
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Interpretation in terms of isogeny

The first 4 steps of the doubling comes from:

4Θ1(2z)Θ1(0) = ϑ1(z)2 + ϑ2(z)2 + ϑ3(z)2 + ϑ4(z)2

4Θ2(2z)Θ2(0) = ϑ1(z)2 + ϑ2(z)2 − ϑ3(z)2 − ϑ4(z)2

4Θ3(2z)Θ3(0) = ϑ1(z)2 − ϑ2(z)2 + ϑ3(z)2 − ϑ4(z)2

4Θ4(2z)Θ4(0) = ϑ1(z)2 − ϑ2(z)2 − ϑ3(z)2 + ϑ4(z)2 .

(Θ1(2z), Θ2(2z), Θ3(2z), Θ4(2z)) is a point on the Kummer surface

associated to C2/(Z2 + 2ΩZ2), isogenous to A.

Doubling is the composition of this isogeny and its dual.
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Pseudo-add formula

Input: P = (x, y, z, t) and Q = (x, y, z, t) on K and R = (x̄, ȳ, z̄, t̄) one of

P + Q and P − Q.

1. x′ = (x2 + y2 + z2 + t2)(x2 + y2 + z2 + t2);

2. y′ = y′

0(x
2 + y2

− z2
− t2)(x2 + y2

− z2
− t2);

3. z′ = z′

0(x
2
− y2 + z2

− t2)(x2
− y2 + z2

− t2);

4. t′ = t′0(x
2
− y2

− z2 + t2)(x2
− y2

− z2 + t2);

5. X = (x′ + y′ + z′ + t′)/x̄;

6. Y = (x′ + y′
− z′

− t′)/ȳ;

7. Z = (x′
− y′ + z′

− t′)/z̄;

8. T = (x′
− y′

− z′ + t′)/t̄;

9. Return (X, Y, Z, T ) = P + Q or P − Q.
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Operation count

Thm. Multiplying a point by a scalar n on the Kummer surface costs

9 log n squarings, 10 log n multiplications, and 6 log n multiplications by

constants. 9S + 10P + 6 sP.

Alternate choice of organizing the computation: 12S + 7P + 9sP.

Problem: having small constants (and cheap sP), require point counting

in genus 2, for which the current record is 162 bits.

Still: Can already beat ECC on a PC implementation (DJB’s ECC-06 talk).
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Implementation

(joint work with É. Thomé)

The Theta based formulae have been implemented using the mpFq library

and submitted to eBATS. Results in cycles:

curve25519 surf127eps curve2251 surf2113

Opteron K8 310,000 296,000 1,400,000 1,200,000

Core2 386,000 405,000 888,000 687,000

Pentium 4 3,570,000 3,300,000 3,085,000 2,815,000

Pentium M 1,708,000 2,000,000 2,480,000 2,020,000

E.g.: surf127eps does 10,000 scalar mult per sec. on a 3 GHz Opteron

(waiting for AMD’s K10...)

Rem. Optimized only for 64 bit architecture.
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Rosenhain invariants

Given a = ϑ1(0), b = ϑ2(0), c = ϑ3(0), d = ϑ4(0), four theta

constants corresponding to a matrix Ω, then define:

λ =
a2c2

b2d2
; µ =

c2e2

d2f2
; ν =

a2e2

b2f2
,

where

e2

f2
=

1 + CD
AB

1 − CD
AB

.

Then the curve C of equation

y2 = x(x − 1)(x − λ)(x − µ)(x − ν)

has a Jacobian isomorphic to C2/(Z2 + ΩZ2). [Thomae]

ECC 2007, September 2007, Dublin – p. 27/39



Mapping points from K to Jac(C)

(x, y, z, t) 7→ 〈u(x), v2(x)〉

The formula is a consequence of some formulae in Mumford’s book. More

details in van Wamelen’s work.

I won’t give the formulae here...

Some precomputation that depends only on K (a few hundreds of

multiplications and a few dozens of inversions);

Then, mapping a point of K to Jac(C) involves about 50 multiplications

and a few inversions.

Of course, the v-polynomial is computed up to sign.
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Validity of the formulae over a finite field

The formulae are valid on C, but one wants to use them over a finite field.

Two lines of proof:

Use the explicit map to Rosenhain form and check the algebra.

Lift/reduce approach.

The first approach is useful to use point-counting, and guarantee that the

DLP is equivalent on Kummer and on the curve.

The second is useful to avoid heavy computations, and to derive formulae in

characteristic 2.
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RM Kummer surfaces

Thanks: É. Schost, D. Kohel
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Characteristic polynomial considerations

Let C be the reduction modulo p of a genus 2 curve with RM by
√

d.

Assume Jac(C) is ordinary and absolutely simple.

The characteristic polynomial of Frobenius π is of the form

χ(t) = t4 − s1t
3 + s2t

2 − ps1 + p2,

with |s1| ≤ 4
√

p and |s2| ≤ 6p.

χ(t) is irreducible and defines a CM field K . Its real subfield is isomorphic

to Q(
√

d) and can be defined by the minimal polynomial of π + π̄:

P (t) = t2 − s1t + (s2 − 2p).

disc(P ) = s2

1 − 4s2 + 8p = n2d, for some integer n.
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RM baby-step giant-step algorithm
The classical genus 2 BSGS algorithm looks for s1 and s2.

Search space has size O(p3/2), so the complexity is O(p3/4).

Main idea: Look for s1 and n (and deduce s2).

Bounds on s1 and s2 give:

n ∈ {1, . . . ,
√

48p/d}.

Since P (π + π̄) = 0, one gets

(2(π + π̄) − s1)
2 = s1

2 − 4(s2 − p) = n2d.

Multiply by π2 and use ππ̄ = p:

(

2(π2 + p) − s1π
)2

= n2dπ2.
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RM baby-step giant-step algorithm (2)

Let D be a random divisor (defined over Fp), since π acts trivially on D,

one gets

(2(1 + p) − s1)
2 D = n2dD.

There are O(
√

p) possibilities for the LHS and the RHS.

=⇒ Complexity in O(
√

p) instead of O(p3/4).

Rem. dD, 4dD, 9dD, 16dD, . . . can be computed in linear time.
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Low memory version

Assumption: The
√

d endomorphism is explicit and efficient.

Rewrite equation as

(2(1 + p) − s1) D = ±n
√

dD.

This is then exactly the context of the Bidimensional collision search (aka

cockroach algorithm) of GaSc04 (inspired by Matsuo-Chao-Tsujii).

Furthermore: if s1 and n are known modulo m, the whole running time is

reduced by a factor of m.
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Adapting Schoof’s algorithm

If we call the general Schoof’s algorithm, one computes s1 and s2 modulo ℓ.

But, this gives only n modulo ℓ up to sign.

CRT after k primes ℓ: get 2k possibilities for n modulo product of ℓ’s.

Solution: Test the RM equality to find the sign of n mod ℓ:

(

2(π2 + p) − s1π
)

P = n
√

dπP,

for P an ℓ-torsion point.

=⇒ Don’t lose the 2k factor.
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Quick estimates ford = 2

Schoof’s part:

m = 210 × 34 × 52 × 7 × 11 × 13 × 17 × 19 × 23 × 29 =

447185196057600 ≈ 248, sounds feasible in a dozen of core-days.

Cost of collision search is about 32
√

p/m. Let us allow 10 core-days for

these, that is 1012 group operations.

This gives p ≈ 2165, hence a group of size ≈ 2330.

=⇒ In two months on 20 cores, one expects to find a suitable Kummer

surface, with more than enough security.
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A nice family with RM by
√

2

Choose (a, b, c, d) so that doubling in the Kummer surface is the

composition of an endomorphism with itself (it has to be
√

2).

Assume that (a, b, c, d) is such that (A, B, C, D) is proportionnal to

(a, b, c, d). Then Doubling is twice the following algorithm:

Input: A point P = (x, y, z, t) on K;

1. X = (x2 + y2 + z2 + t2);

2. Y = (a/b)(x2 + y2 − z2 − t2);

3. Z = (a/c)(x2 − y2 + z2 − t2);

4. T = (a/d)(x2 − y2 − z2 + t2);

5. Return
√

2P = (X, Y, Z, T ).
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A nice family with RM by
√

2

Let H be the matrix

H =

0

B

B

B

B

B

@

1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

1

C

C

C

C

C

A

,

so that (A2, B2, C2, D2) = 4H(a2, b2, c2, d2).

The eigenvalues of H are −2 (simple) and 2 (triple). The eigenspace for 2

is the dimension 3 space defined by

a2 = b2 + c2 + d2.

Since we are in a projective world, this gives a 2-parameter family of

Kummer surfaces with RM by
√

2.
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Conclusion

With efficient point counting, genus 2 would be very fast, thanks to

Theta based formulae;

RM curves / Kummer surfaces provide small coeffs and efficient point

counting;

Implementation is on the way (the point counting part, first).

Important speed-up expected – new eBAT to come!
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