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Applications of Pairing Inversion

Pairings

v

Let Gy, G, Gt be groups of prime order r. A pairing is a
non-degenerate bilinear map e : G; x G, — Gr.
Bilinearity:

> e(P1+P2,Q) =e(P1,Q)e(P2,Q),

» e(P,Q1+Q2) =e(P,Q)e(P,Qy).
Non-degenerate:

» forall P # 0: 3x € G, such thate(P,x) # 1

» forallQ # 0: 3x € Gy such thate(x,Q) #1
Examples:

» Scalar product on euclidean space (-,-) : R" x R" — R.

» Weil- and Tate pairings on elliptic curves and abelian
varieties.

v

v

v
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Applications of Pairing Inversion

Isomorphisms via pairings

» Since G1, Gy, Gt have prime order r, they’re isomorphic.

» Pairing with first argument fixed, gives isomorphism
between G, and Gr:

$2: Gy — Gy : Q= ¢2(Q) =e(P,Q)

» Pairing with second argument fixed, gives isomorphism
between G; and Gt:

¢$1:G1 — Gt :P+— ¢1(P)=¢e(P,Q)

» Generates all isomorphisms between G; and G+, without
need to compute DLOGs.
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Applications of Pairing Inversion

DLP, CDH & DDH

Let G, + be a group of prime orderr.
» DLP: Given a tuple (P,aP) compute a.
» CDH: Given a triple (P, aP,bP) compute abP.

» DDH: Given a quadruple (P,aP,bP,cP) decide if
abP = cP.
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Applications of Pairing Inversion

Pairings in cryptography

» Exploit bilinearity!
» MOV: DLP reduction from G; to Gt: DLP inG; : (P, xP)

= DLP in Gt : (¢1(P), ¢1(xP)) = (e(P,Q),e(xP,Q))
» Decision DH in G;: DDH : (P,aP,bP,cP)
test if e(cP, Q) = e(aP,bQ)

but how get bQ? Possible if computable isomorphism
Y1 Gy — Gz with ¢1(P) = Q.
» ldentity based crypto, short signatures, . ..
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Applications of Pairing Inversion

Pairing inversion problems

» Fixed Argument Pairing Inversion 1 (FAPI-1)  problem:
Given P € G, and z € G, compute Q € G, such that
e(P,Q) =z.

» Fixed Argument Pairing Inversion 2 (FAPI-2)  problem:
Given Q € G, and z € Gt, compute P € G; such that
e(P,Q) =z.

» Generalised Pairing Inversion (GPI) : Given z € G, find
P e€G;and Q € G, withe(P,Q) = z.
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Applications of Pairing Inversion

FAPI's and CDH

Generalisation of Verheul’s result:
» e:G1 x G, — Gy is non-degenerate bilinear pairing on
cyclic groups of prime order r.

» Suppose one can solve FAPI-1 and FAPI-2 in polynomial
time.

» Then one can solve CDH in G;, G, and Gy in polynomial
time.
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Applications of Pairing Inversion

FAPI's and CDH

Proof for G;: O; is FAPI-i oracle.
» Let (P,aP,bP) be a CDH inputin G;.
» Choose random Q € G, and compute z = e(aP, Q).
» Call O1(P,z) to get aQ.
» Now compute z’ = e(bP,aQ) and call O,(Q, z’) to get
abP.
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Applications of Pairing Inversion

FAPI's and isomorphisms

» If one can solve FAPI-1 in polynomial time

» then one can compute all group isomorphisms
1 : G — Gy in polynomial time.

» Let P € G; and Q € G, be generators, then can compute
11 such that ¢1(P) = Q.

» Similar result holds for FAPI-2.
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Applications of Pairing Inversion

FAPI's and DDH

» If one can solve FAPI-1 in polynomial time

» then one can solve DDH in G in polynomial time.

» Proof: Let (P,aP,bP,cP) be DDH quadruple. Want to test
if e(cP,Q) = e(bP,aQ)? How to get aQ?

» Choose Q € G, and let ¢, : G; — G, be such that
¥1(P) = Q. Compute aQ = ¢1(aP).
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Applications of Pairing Inversion

Pairing inversion and BDH

» Bilinear-Diffie-Hellman problem (BDH-1) is: given

P,aP,bP € G; and Q € G, to compute e(P, Q)2°.

If one can solve FAPI-1 in polynomial time

then one can solve BDH-1 in polynomial time.

Proof: Let (P,aP,bP,Q) be BDH-1 quadruple.

Let ¢1 : G1 — G be such that ¢, (P) = Q. Compute
aQ = 1 (aP) and obtain z = e(bP,aQ) = e(P, Q).
» No implications for finite field crypto?

vV v v Y
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The Pairing Zoo

Notation

» Let E be an elliptic curve over a finite field Iy, i.e.
E:y?=x3>+ax+b forp>5

» Point sets E(Fy«) define an abelian group for all k > 1.
» Hasse-Weil: number of points in E(Fg) is q + 1 —t with

tI<2vq

» t is called trace of Frobenius.
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The Pairing Zoo

Torsion subgroups

v

E[r] subgroup of points of order dividing r, i.e.
Elr] ={P € E(Fq) | rP = o0}

Structure of E[r] for gcd(r,q) =1is Z/rZ x Z/rZ.

Let r|#E(Fq), then E(Fq)[r] gives at least one component.
Embedding degree: k minimal with r | (g% — 1).

Note r-roots of unity u, C F;k.

> Ifk > 1 then E(Fq)[r] = E[r].
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The Pairing Zoo

Trace and embedding degree

Recall r | #E(Fq) and #E(Fq) =q+ 1 —t
Sogq=t—1modr.

Since x* — 1 = [[y ®a(x), have r|®(q).
Conclusion: r|®y(t — 1), so [®y(t —1)[ >r.
|t| can be as small as r'/#(K), but not smaller.

vV v.v v VY
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The Pairing Zoo

Frobenius endomorphism

Frobenius: ¢ : E — E : (X,y) — (x9,y9)
Characteristic polynomial: ¢ — [t oo +[q] =0
Eigenvalues on E[r]: 1 and q since r | #E(Fq)

For k > 1 have q # 1 mod r, thus decomposition of E[r]
into Frobenius eigenspaces:

vV v v Y

Elr] = E(Fq)lr] = (P) x (Q)

with o(P) = P and ¢(Q) = qQ
» Notation used before: G; = (P) and G, = (Q)
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The Pairing Zoo

Miller functions

v

LetP € E(Fq) and n € N.
A Miller function f,, p is any function in Fq(E) with divisor

(fap) = n(P) — ([n]P) — (n — 1)(0)

fn p is determined up to a constant ¢ € IE‘CT
fnp has a zero at P of order n.
fn,p has a pole at [n]P of order 1.

v

fn,p has a pole at oo of order (n — 1).
For every point Q # P, [n]P, oo, we have f, p(Q) € Fg.

vV v. v v Y
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The Pairing Zoo

Miller's algorithm

v

Use double-add algorithm to compute f, p for any n € N.
Exploit relation:

v

lrnip mip
fninp = fmp -fop - M
[n+m]P

v

linjp,(mjp: the line through [n]P and [m]P
Vin+mpp: the vertical line through [n + m]P
Evaluate at Q in every step

v

v
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The Pairing Zoo

Tate pairing
> Let P € E(Fy)[r] and f; p € Fox(E) with

(frp) =r1(P) —r(0)

» Note: f, p has zero of order r at P and pole of order r at cc.
» Tate pairing is defined as (assuming normalisation)
(P,Q)r =f p(Q)

» Domain and image are:

)+ EFQ)Ir] X E(Fq) /1 (Fqe) — B /()

» Reduced Tate pairing: e(P,Q) = <P7Q>§qk_1)/r
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The Pairing Zoo

Ate pairing

» Non-degenerate pairing defined on G, x G; only.
» Let S be integer with S =g mod r and

N = gcd(Sk — 1,9 — 1)
> Letcs = YK 4 sk~1-ig' mod N. Then

as: Gy x Gy — pir, (Q,P) > fITM(P)es(@ DN

defines a bilinear pairing,
» Typical choices for S are:

» S =t — 1 with t trace of Frobenius.
» S = q, then no final exponentiation necessary.

» In general t — 1 ~ /g, but could be as small as r1/¢().
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The Pairing Zoo

Pairing Zoo

Pairing Domain Where Who S Red
Tate E[r] x E/rE | AlHECs | Miller r No
eta G1 x Gy SusSi BGOS |t—1| No

ate EC Gy, x G; All ECs HSV t—1 No

ate EC G1 x G2 SusSi HSV |[t—1]| No
ate HEC Gy x G; All HECs | GHOTV q Yes
ate HEC G x Gy SuSp GHOTV q Yes
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The Pairing Zoo

Extreme elliptic ate

» Curves with t = —1 give shortest loop in Miller’s algorithm.

» LetE : y2 = x3 + 4 over Fp With p = s1761713112311845269, thEN
t=—-1,r =715827883,k =31 and D = —-3.

> Lety — A(Q)x — v(Q) with A = 3x3/(2yq) and
v = (—x3 +8)/(2yq) be the tangent at Q.
» The function

(Q,P) — (¥p — A(Q)xp — »(Q))F 1/

defines a non-degenerate pairing on G, x Gj.
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The Pairing Zoo

Extreme elliptic ate: corollary

» Since

(Q,P) — (¥p — A(Q)xp — »(Q))F 1/

defines a non-degenerate pairing on G, x G;

» we have corollary that for all P € G; and Q € G5 the
expressions

(yp — A(Q)xp — (Q))? and (yp — A(Q)xp — ¢(Q))?
(Yizp — AQ)Xpzip — ¥(Q)) (yr — A([21Q)xp — ([2]Q))

are 3r-th powers.
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Miller Inversion

Miller inversion

» Most pairings can be expressed as

e(P,Q) :=fsp(Q)*

for integers s and d and fs p a Miller function.

» Possible approach: find correct d-th root first and then
solve for Q infs p(Q)

» Miller inversion : Let P be fixed, let S be a set of points
and take z € F;k. Compute a point Q € S such that

z =f5p(Q) or if no such point exists then output ‘no
solution’.
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Miller Inversion

Miller inversion in polytime

» Setting: Ate pairing on G, x Gj.

» Let S > 2 and Q have order > 2. Then fs o(x,y) can be

written as f(x) (x)
X) + yfa(x

f X’y — 1—

S7Q( ) (X *X[S]Q)

with degfi(x) < (S +1)/2 and degfy(x) < S/2 — 1.
» Miller inversion is equivalent with finding root of

P(x) := (fo(x) — z(X — Xg1q))? — f2(x)?(x® + ax + b)

of degree at most S + 1.
» Note: polynomial defined over F«, but root over Fy.
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Miller Inversion

Miller inversion in polytime

» Finding root of P(x) € Fq[x] in Fq is computing
ged(x9 — x, P(x)).

> Takes O(|t|*log q) operations in Fqx or O([t|*k?(log q)®)
bit-operations.

» If |t| and k grow as a polynomial function of logr, one can
solve Ml in polynomial time.

» Lemma: There exist families of parameters of pairing
friendly curves for which the Miller inversion problem can
be solved in polynomial time.
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Pairing Inversion

FAPI-1 for ate pairing on small trace curves

» Recall extreme elliptic ate pairing

2,(Q,P) — (yp — A(Q)xp — »(Q))@ D/

» Problem: given Q = (Xq,Yq) and a target z € p C F(’;k,
need to solve

(y — A(Q)x — v(Q))@-D/G) =

for some (x,y) € E(Fy).
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Pairing Inversion

FAPI-1 for ate pairing on small trace curves

» But: there are d = (X — 1)/(3r) possible roots of z.

» Only one of them of formy — Ax — v for some
(x,y) € E(Fq).

» Easy to compute random d-th roots of z, but hard to select
the correct root.

» Can generate many more equations by a,(uQ,P) = z".
» Simpler problem: given many pairs (a,z) € }Fék, with

z = (a+x)? for some x € Fy, find x.
» Easy whend { (g¥ — 1), but how hard for d | (gk — 1)?
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Pairing Inversion

FAPI-1 <p MI

v

Is solving MI sufficient to solve FAPI-1?

Most people: no, since given zg = fs7p(Q)d, still need to try
out all d possible roots.

Idea: what if you take a random d-th root?
» Tate-Lichtenbaum pairing:

t(-) - E(Fq)[r] x E(Fqx)/rE (Fge) — Fou/ (Fai)'

v

v

Reduced TL pairing into y: e(-,-) = t(, )(qk—l

v
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Pairing Inversion

FAPI-1 <p MI
» For P € E(Fg)[r] let Sp(P) denote set {Q € E(Fy)} with
e(P,Q) =1
» Suppose e(P,Q1) = e(P, Qz), then clearly

Q3 :=Q1 — Q2 € S3(P)

» If #S,(P) is big enough, then likely that there exists
Q' € E(Fqc) with Q" := Q + R with R € S(P) and

fs,P (Ql) =1z

for a random root z of zg.
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Pairing Inversion

FAPI-1 <p MI

v

TL pairing: already have rE(Fq«) C Sz(P), but this only
gives g¥/r? points.

For k > 1, also have E(Fqe) C Sy(P) for all e|k.

At least have that E(FFg)[r] C S2(P).

Since r||E(Fq), E(Fq)[r] NrE(Fq) = {O} and thus

v

v

v

[S2(P)| = [E(Fq)[][IrE (Fqe)| ~ ra*/r? ~ d.

v

Suggests that for the TL pairing with k > 1, FAPI-1 <p MIL.
Above fails for ate pairing since only defined on G, x G;.

v
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Pairing Inversion

A degree bound

» Ate pairing gave isomorphism of G, with y, of the form

fs7Q(')d

with fs o function of low degree.
» However: total degree of fS7Q(-)OI still very high.
» Lemma: Let E be an elliptic curve and f € F« (E).

Assume that Q — f(Q)¢ defines a non-constant
homomorphism G, — u, for some positive exponent d.
Then d deg(f) > (1/6)#G..
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Pairing Inversion

Conclusions

» FAPI's and implications for crypto.
» Ml can be easy.

» Extreme elliptic ate leads to new supposedly hard
problem?

» For TL pairing have FAPI-1 <p MI.
» No homomorphisms of low degree into ;.
» Inverting pairings still hard . ..
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