Applications of Pairing Inversion The Pairing Zoo Miller Inversion Pairing Inversion

Aspects of Pairing Inversion

Steven Galbraith, Florian Hess & Fré Vercauteren

ECC 2007 - Dublin

ヘロン 人間 とくほ とくほ とう

3

Steven Galbraith, Florian Hess & Fré Vercauteren Aspects of Pairing Inversion

Applications of Pairing Inversion The Pairing Zoo Miller Inversion Pairing Inversion

Applications of Pairing Inversion

The Pairing Zoo

Miller Inversion

Pairing Inversion

Steven Galbraith, Florian Hess & Fré Vercauteren Aspects of Pairing Inversion

ヘロト 人間 とくほとくほとう

3

Pairings

- Let G₁, G₂, G_T be groups of prime order r. A pairing is a non-degenerate bilinear map e : G₁ × G₂ → G_T.
- Bilinearity:
 - $e(P_1 + P_2, Q) = e(P_1, Q)e(P_2, Q),$
 - $e(P, Q_1 + Q_2) = e(P, Q)e(P, Q_2).$
- Non-degenerate:
 - for all $P \neq 0$: $\exists x \in G_2$ such that $e(P, x) \neq 1$
 - ▶ for all $Q \neq 0$: $\exists x \in G_1$ such that $e(x, Q) \neq 1$
- Examples:
 - Scalar product on euclidean space $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$.

イロト イポト イヨト イヨト 三日

 Weil- and Tate pairings on elliptic curves and abelian varieties.

Isomorphisms via pairings

- Since G_1 , G_2 , G_7 have prime order *r*, they're isomorphic.
- ► Pairing with first argument fixed, gives isomorphism between G₂ and G_T:

$$\phi_2: \mathbf{G}_2 \to \mathbf{G}_T: \mathbf{Q} \mapsto \phi_2(\mathbf{Q}) = \mathbf{e}(\mathbf{P}, \mathbf{Q})$$

► Pairing with second argument fixed, gives isomorphism between G₁ and G_T:

$$\phi_1: G_1 \to G_T: P \mapsto \phi_1(P) = e(P, Q)$$

ヘロン 人間 とくほ とくほ とう

► Generates all isomorphisms between G_i and G_T, without need to compute DLOGs.

Applications of Pairing Inversion The Pairing Zoo Miller Inversion Pairing Inversion

DLP, CDH & DDH

Let G, + be a group of prime order r.

- ▶ DLP: Given a tuple (*P*, *aP*) compute *a*.
- CDH: Given a triple (P, aP, bP) compute abP.
- DDH: Given a quadruple (P, aP, bP, cP) decide if abP = cP.

ヘロン 人間 とくほ とくほ とう

3

Pairings in cryptography

Exploit bilinearity!

• MOV: DLP reduction from G_1 to G_7 : DLP in $G_1 : (P, xP)$

 \Rightarrow DLP in G_T : $(\phi_1(P), \phi_1(xP)) = (e(P, Q), e(xP, Q))$

• Decision DH in G_1 : DDH : (P, aP, bP, cP)

test if
$$e(cP, Q) = e(aP, bQ)$$

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

but how get *b*Q? Possible if computable isomorphism $\psi_1 : G_1 \to G_2$ with $\psi_1(P) = Q$.

Identity based crypto, short signatures, ...

Pairing inversion problems

- ▶ Fixed Argument Pairing Inversion 1 (FAPI-1) problem: Given $P \in G_1$ and $z \in G_T$, compute $Q \in G_2$ such that e(P, Q) = z.
- ▶ Fixed Argument Pairing Inversion 2 (FAPI-2) problem: Given $Q \in G_2$ and $z \in G_T$, compute $P \in G_1$ such that e(P, Q) = z.
- ▶ Generalised Pairing Inversion (GPI): Given $z \in G_T$, find $P \in G_1$ and $Q \in G_2$ with e(P, Q) = z.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

FAPI's and CDH

Generalisation of Verheul's result:

- $e: G_1 \times G_2 \rightarrow G_T$ is non-degenerate bilinear pairing on cyclic groups of prime order *r*.
- Suppose one can solve FAPI-1 and FAPI-2 in polynomial time.
- ► Then one can solve CDH in G₁, G₂ and G₇ in polynomial time.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

FAPI's and CDH

Proof for G_1 : O_i is FAPI-*i* oracle.

- Let (P, aP, bP) be a CDH input in G_1 .
- Choose random $Q \in G_2$ and compute z = e(aP, Q).
- Call $O_1(P, z)$ to get aQ.
- Now compute z' = e(bP, aQ) and call O₂(Q, z') to get abP.

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

FAPI's and isomorphisms

- If one can solve FAPI-1 in polynomial time
- ▶ then one can compute all group isomorphisms $\psi_1 : G_1 \rightarrow G_2$ in polynomial time.
- Let $P \in G_1$ and $Q \in G_2$ be generators, then can compute ψ_1 such that $\psi_1(P) = Q$.

イロト イポト イヨト イヨト 三日

Similar result holds for FAPI-2.

FAPI's and DDH

- If one can solve FAPI-1 in polynomial time
- then one can solve DDH in G_1 in polynomial time.
- Proof: Let (P, aP, bP, cP) be DDH quadruple. Want to test if e(cP, Q) = e(bP, aQ)? How to get aQ?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

• Choose $Q \in G_2$ and let $\psi_1 : G_1 \rightarrow G_2$ be such that $\psi_1(P) = Q$. Compute $aQ = \psi_1(aP)$.

Pairing inversion and BDH

- ▶ Bilinear-Diffie-Hellman problem (BDH-1) is: given $P, aP, bP \in G_1$ and $Q \in G_2$ to compute $e(P, Q)^{ab}$.
- If one can solve FAPI-1 in polynomial time
- then one can solve BDH-1 in polynomial time.
- Proof: Let (P, aP, bP, Q) be BDH-1 quadruple.
- ▶ Let $\psi_1 : G_1 \to G_2$ be such that $\psi_1(P) = Q$. Compute $aQ = \psi_1(aP)$ and obtain $z = e(bP, aQ) = e(P, Q)^{ab}$.

ヘロン 人間 とくほ とくほ とう

э.

No implications for finite field crypto?

Notation

▶ Let *E* be an elliptic curve over a finite field \mathbb{F}_q , i.e.

$$E: y^2 = x^3 + ax + b$$
 for $p > 5$

- ▶ Point sets $E(\mathbb{F}_{q^k})$ define an abelian group for all $k \ge 1$.
- ▶ Hasse-Weil: number of points in $E(\mathbb{F}_q)$ is q + 1 t with

$$|t| \leq 2\sqrt{q}$$

ヘロト 人間 とくほとくほとう

1

t is called trace of Frobenius.

Torsion subgroups

• E[r] subgroup of points of order dividing r, i.e.

$$E[r] = \{P \in E(\overline{\mathbb{F}}_q) \mid rP = \infty\}$$

- Structure of E[r] for gcd(r, q) = 1 is $\mathbb{Z}/r\mathbb{Z} \times \mathbb{Z}/r\mathbb{Z}$.
- ▶ Let $r|#E(\mathbb{F}_q)$, then $E(\mathbb{F}_q)[r]$ gives at least one component.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

- Embedding degree: k minimal with $r | (q^k 1)$.
- Note *r*-roots of unity $\mu_r \subseteq \mathbb{F}_{a^k}^{\times}$.
- If k > 1 then $E(\mathbb{F}_{q^k})[r] = E[r]$.

Trace and embedding degree

• Recall $r \mid \#E(\mathbb{F}_q)$ and $\#E(\mathbb{F}_q) = q + 1 - t$

So
$$q \equiv t - 1 \mod r$$
.

- Since $x^k 1 = \prod_{d|k} \Phi_d(x)$, have $r|\Phi_k(q)$.
- Conclusion: $r|\Phi_k(t-1)$, so $|\Phi_k(t-1)| \ge r$.
- ► |t| can be as small as $r^{1/\varphi(k)}$, but not smaller.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Frobenius endomorphism

- Frobenius: $\varphi : E \to E : (x, y) \mapsto (x^q, y^q)$
- Characteristic polynomial: $\varphi^2 [t] \circ \varphi + [q] = 0$
- Eigenvalues on E[r]: 1 and q since $r \mid \#E(\mathbb{F}_q)$
- For k > 1 have q ≠ 1 mod r, thus decomposition of E[r] into Frobenius eigenspaces:

$$E[r] = E(\mathbb{F}_{q^k})[r] = \langle P \rangle \times \langle Q \rangle$$

<ロ> (四) (四) (三) (三) (三)

with $\varphi(P) = P$ and $\varphi(Q) = qQ$

• Notation used before: $G_1 = \langle P \rangle$ and $G_2 = \langle Q \rangle$

Miller functions

• Let $P \in E(\mathbb{F}_q)$ and $n \in \mathbb{N}$.

A Miller function $f_{n,P}$ is any function in $\mathbb{F}_q(E)$ with divisor

$$(f_{n,P}) = n(P) - ([n]P) - (n-1)(\infty)$$

ヘロト 人間 とくほとく ほとう

1

- $f_{n,P}$ is determined up to a constant $c \in \mathbb{F}_q^{\times}$.
- $f_{n,P}$ has a zero at P of order n.
- $f_{n,P}$ has a pole at [n]P of order 1.
- $f_{n,P}$ has a pole at ∞ of order (n-1).
- ▶ For every point $Q \neq P$, [n]P, ∞, we have $f_{n,P}(Q) \in \mathbb{F}_q^{\times}$.

Miller's algorithm

- ▶ Use double-add algorithm to compute $f_{n,P}$ for any $n \in \mathbb{N}$.
- Exploit relation:

$$f_{m+n,P} = f_{m,P} \cdot f_{n,P} \cdot \frac{I_{[n]P,[m]P}}{V_{[n+m]P}}$$

イロト 不得 とくほ とくほ とう

э.

- ► $I_{[n]P,[m]P}$: the line through [n]P and [m]P
- ► $v_{[n+m]P}$: the vertical line through [n+m]P
- Evaluate at Q in every step

Tate pairing

▶ Let $P \in E(\mathbb{F}_{q^k})[r]$ and $f_{r,P} \in \mathbb{F}_{q^k}(E)$ with

$$(f_{r,P})=r(P)-r(\infty)$$

- ▶ Note: $f_{r,P}$ has zero of order *r* at *P* and pole of order *r* at ∞.
- Tate pairing is defined as (assuming normalisation)

$$\langle P, Q \rangle_r = f_{r,P}(Q)$$

Domain and image are:

$$\langle \cdot, \cdot \rangle_r : \mathcal{E}(\mathbb{F}_{q^k})[r] imes \mathcal{E}(\mathbb{F}_{q^k}) / r \mathcal{E}(\mathbb{F}_{q^k}) o \mathbb{F}_{q^k}^{ imes} / (\mathbb{F}_{q^k}^{ imes})^r$$

・ 同 ト ・ ヨ ト ・ ヨ ト

• Reduced Tate pairing: $e(P, Q) = \langle P, Q \rangle_r^{(q^k-1)/r}$

Ate pairing

- ► Non-degenerate pairing defined on $G_2 \times G_1$ only.
- ► Let S be integer with $S \equiv q \mod r$ and $N = \gcd(S^k 1, q^k 1)$

• Let
$$c_{S} = \sum_{i=0}^{k-1} S^{k-1-i} q^{i} \mod N$$
. Then

$$a_{\mathsf{S}}: \mathbf{G}_2 \times \mathbf{G}_1 \to \mu_r, \quad (\mathbf{Q}, \mathbf{P}) \mapsto f_{\mathsf{S}, \mathsf{Q}}^{\operatorname{norm}}(\mathbf{P})^{c_{\mathsf{S}}(q^k-1)/N}$$

ヘロン 人間 とくほ とくほ とう

defines a bilinear pairing,

- Typical choices for S are:
 - S = t 1 with *t* trace of Frobenius.
 - S = q, then no final exponentiation necessary.
- ▶ In general $t 1 \simeq \sqrt{q}$, but could be as small as $r^{1/\varphi(k)}$.

Applications of Pairing Inversion The Pairing Zoo Miller Inversion Pairing Inversion

Pairing Zoo

Pairing	Domain	Where	Who	S	Red
Tate	$E[r] \times E/rE$	All HECs	Miller	r	No
eta	$G_1 imes G_2$	SuSi	BGOS	<i>t</i> – 1	No
ate EC	$G_2 imes G_1$	All ECs	HSV	<i>t</i> – 1	No
ate EC	$G_1 imes G_2$	SuSi	HSV	<i>t</i> – 1	No
ate HEC	$G_2 imes G_1$	All HECs	GHOTV	q	Yes
ate HEC	$G_1 imes G_2$	SuSp	GHOTV	q	Yes

ヘロト 人間 とくほとくほとう

Extreme elliptic ate

- Curves with t = -1 give shortest loop in Miller's algorithm.
- ► Let $E: y^2 = x^3 + 4$ over \mathbb{F}_p with $_{p=41761713112311845269}$, then t = -1, r = 715827883, k = 31 and D = -3.
- ► Let $y \lambda(Q)x \nu(Q)$ with $\lambda = 3x_Q^2/(2y_Q)$ and $\nu = (-x_Q^3 + 8)/(2y_Q)$ be the tangent at Q.
- The function

$$(\mathsf{Q},\mathsf{P})\mapsto (\mathsf{y}_{\mathsf{P}}-\lambda(\mathsf{Q})\mathsf{x}_{\mathsf{P}}-\nu(\mathsf{Q}))^{(q^k-1)/(3r)}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

defines a non-degenerate pairing on $G_2 \times G_1$.

Extreme elliptic ate: corollary

Since

$$(\mathbf{Q}, \mathbf{P}) \mapsto (\mathbf{y}_{\mathbf{P}} - \lambda(\mathbf{Q})\mathbf{x}_{\mathbf{P}} - \nu(\mathbf{Q}))^{(q^{k}-1)/(3r)}$$

defines a non-degenerate pairing on $G_2 \times G_1$

▶ we have corollary that for all P ∈ G₁ and Q ∈ G₂ the expressions

$$\frac{(y_P - \lambda(Q)x_P - \nu(Q))^2}{(y_{[2]P} - \lambda(Q)x_{[2]P} - \nu(Q))} \quad \text{and} \quad \frac{(y_P - \lambda(Q)x_P - \nu(Q))^2}{(y_P - \lambda([2]Q)x_P - \nu([2]Q))}$$

ヘロン 人間 とくほ とくほ とう

3

are 3*r*-th powers.

Miller inversion

Most pairings can be expressed as

$$e(P, Q) := f_{s,P}(Q)^d$$

for integers s and d and $f_{s,P}$ a Miller function.

- Possible approach: find correct *d*-th root first and then solve for Q in f_{s,P}(Q)
- ► Miller inversion: Let *P* be fixed, let *S* be a set of points and take *z* ∈ ℝ^{*}_{q^k}. Compute a point *Q* ∈ *S* such that *z* = *f*_{s,P}(*Q*) or if no such point exists then output 'no solution'.

ヘロン 人間 とくほ とくほとう

3

Miller inversion in polytime

- Setting: Ate pairing on $G_2 \times G_1$.
- Let S ≥ 2 and Q have order > 2. Then f_{s,Q}(x, y) can be written as

$$f_{s,Q}(x,y) = rac{f_1(x) + yf_2(x)}{(x - x_{[s]Q})}$$

with deg $f_1(x) \leq (S+1)/2$ and deg $f_2(x) \leq S/2 - 1$.

Miller inversion is equivalent with finding root of

$$P(x) := (f_1(x) - z(x - x_{[s]Q}))^2 - f_2(x)^2(x^3 + ax + b)$$

ヘロト 人間 ト ヘヨト ヘヨト

of degree at most S + 1.

▶ Note: polynomial defined over \mathbb{F}_{q^k} , but root over \mathbb{F}_q .

Miller inversion in polytime

- Finding root of P(x) ∈ 𝔽_{q^k}[x] in 𝔽_q is computing gcd(x^q − x, P(x)).
- ► Takes O(|t|² log q) operations in F_{q^k} or O(|t|²k²(log q)³) bit-operations.
- If |t| and k grow as a polynomial function of log r, one can solve MI in polynomial time.
- Lemma: There exist families of parameters of pairing friendly curves for which the Miller inversion problem can be solved in polynomial time.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Applications of Pairing Inversion The Pairing Zoo Miller Inversion Pairing Inversion

FAPI-1 for ate pairing on small trace curves

Recall extreme elliptic ate pairing

$$a_2(Q, P) \mapsto (y_P - \lambda(Q)x_P - \nu(Q))^{(q^k-1)/(3r)}$$

Problem: given Q = (x_Q, y_Q) and a target z ∈ µ_r ⊆ 𝔽^{*}_{q^k}, need to solve

$$(\mathbf{y} - \lambda(\mathbf{Q})\mathbf{x} - \nu(\mathbf{Q}))^{(q^k - 1)/(3r)} = \mathbf{z}$$

イロト イポト イヨト イヨト 三日

for some $(x, y) \in E(\mathbb{F}_q)$.

FAPI-1 for ate pairing on small trace curves

- ▶ But: there are $d = (q^k 1)/(3r)$ possible roots of *z*.
- Only one of them of form $y \lambda x \nu$ for some $(x, y) \in E(\mathbb{F}_q)$.
- Easy to compute random *d*-th roots of *z*, but hard to select the correct root.
- Can generate many more equations by $a_2(uQ, P) = z^u$.
- ▶ Simpler problem: given many pairs $(a, z) \in \mathbb{F}_{q^k}^2$, with $z = (a + x)^d$ for some $x \in \mathbb{F}_q$, find x.
- ► Easy when $d \nmid (q^k 1)$, but how hard for $d \mid (q^k 1)$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

$FAPI-1 \leq_P MI$

- Is solving MI sufficient to solve FAPI-1?
- Most people: no, since given z₀ = f_{s,P}(Q)^d, still need to try out all d possible roots.
- Idea: what if you take a random d-th root?
- Tate-Lichtenbaum pairing:

$$t(\cdot,\cdot): E(\mathbb{F}_q)[r] imes E(\mathbb{F}_{q^k})/rE(\mathbb{F}_{q^k}) o \mathbb{F}_{q^k}^*/(\mathbb{F}_{q^k}^*)^r$$

ヘロト 人間 とくほとく ほとう

3

• Reduced TL pairing into μ_r : $e(\cdot, \cdot) = t(\cdot, \cdot)^{(q^k-1)/r}$

$FAPI-1 \leq_P MI$

▶ For $P \in E(\mathbb{F}_q)[r]$ let $S_2(P)$ denote set $\{Q \in E(\mathbb{F}_{q^k})\}$ with

e(P, Q) = 1

Suppose $e(P, Q_1) = e(P, Q_2)$, then clearly

$$\mathsf{Q}_3:=\mathsf{Q}_1-\mathsf{Q}_2\in\mathsf{S}_2(P)$$

▶ If $\#S_2(P)$ is big enough, then likely that there exists $Q' \in E(\mathbb{F}_{q^k})$ with Q' := Q + R with $R \in S_2(P)$ and

$$f_{s,P}(Q') = z$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

for a random root z of z_0 .

$FAPI-1 \leq_P MI$

- TL pairing: already have rE(𝔽_{q^k}) ⊂ S₂(P), but this only gives q^k/r² points.
- For k > 1, also have $E(\mathbb{F}_{q^e}) \subset S_2(P)$ for all e|k.
- At least have that $E(\mathbb{F}_q)[r] \subset S_2(P)$.
- Since $r \| E(\mathbb{F}_q), E(\mathbb{F}_q)[r] \cap rE(\mathbb{F}_{q^k}) = \{ O \}$ and thus

$$|\mathcal{S}_2(\mathcal{P})| \geq |\mathcal{E}(\mathbb{F}_q)[r]| |r\mathcal{E}(\mathbb{F}_{q^k})| pprox rq^k/r^2 pprox d.$$

<ロ> (四) (四) (三) (三) (三)

- Suggests that for the TL pairing with k > 1, FAPI-1 \leq_P MI.
- Above fails for ate pairing since only defined on $G_2 \times G_1$.

A degree bound

• Ate pairing gave isomorphism of G_1 with μ_r of the form

 $f_{s,Q}(\cdot)^d$

with $f_{s,Q}$ function of low degree.

- ► However: total degree of $f_{s,Q}(\cdot)^d$ still very high.
- Lemma: Let *E* be an elliptic curve and *f* ∈ 𝔽_{*q^k*}(*E*). Assume that *Q* → *f*(*Q*)^{*d*} defines a non-constant homomorphism *G*₂ → μ_{*r*} for some positive exponent *d*. Then *d* deg(*f*) ≥ (1/6)#*G*₂.

イロト 不得 とくほ とくほ とうほ

Applications of Pairing Inversion The Pairing Zoo Miller Inversion Pairing Inversion

Conclusions

- FAPI's and implications for crypto.
- MI can be easy.
- Extreme elliptic ate leads to new supposedly hard problem?
- For TL pairing have FAPI-1 \leq_P MI.
- No homomorphisms of low degree into μ_r .
- Inverting pairings still hard ...

ヘロン 人間 とくほ とくほ とう

ъ