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Pairings

I Let G1, G2, GT be groups of prime order r . A pairing is a
non-degenerate bilinear map e : G1 ×G2 → GT .

I Bilinearity:
I e(P1 + P2,Q) = e(P1,Q)e(P2,Q),
I e(P,Q1 + Q2) = e(P,Q)e(P,Q2).

I Non-degenerate:
I for all P 6= 0: ∃x ∈ G2 such that e(P, x) 6= 1
I for all Q 6= 0: ∃x ∈ G1 such that e(x ,Q) 6= 1

I Examples:
I Scalar product on euclidean space 〈·, ·〉 : Rn × Rn → R.
I Weil- and Tate pairings on elliptic curves and abelian

varieties.
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Isomorphisms via pairings

I Since G1, G2, GT have prime order r , they’re isomorphic.
I Pairing with first argument fixed, gives isomorphism

between G2 and GT :

φ2 : G2 → GT : Q 7→ φ2(Q) = e(P,Q)

I Pairing with second argument fixed, gives isomorphism
between G1 and GT :

φ1 : G1 → GT : P 7→ φ1(P) = e(P,Q)

I Generates all isomorphisms between Gi and GT , without
need to compute DLOGs.
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DLP, CDH & DDH

Let G,+ be a group of prime order r .

I DLP: Given a tuple (P,aP) compute a.
I CDH: Given a triple (P,aP,bP) compute abP.
I DDH: Given a quadruple (P,aP,bP, cP) decide if

abP = cP.
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Pairings in cryptography

I Exploit bilinearity!
I MOV: DLP reduction from G1 to GT : DLP inG1 : (P, xP)

⇒ DLP in GT : (φ1(P), φ1(xP)) = (e(P,Q),e(xP,Q))

I Decision DH in G1: DDH : (P,aP,bP, cP)

test if e(cP,Q) = e(aP,bQ)

but how get bQ? Possible if computable isomorphism
ψ1 : G1 → G2 with ψ1(P) = Q.

I Identity based crypto, short signatures, . . .

Steven Galbraith, Florian Hess & Fré Vercauteren Aspects of Pairing Inversion



Applications of Pairing Inversion
The Pairing Zoo
Miller Inversion

Pairing Inversion

Pairing inversion problems

I Fixed Argument Pairing Inversion 1 (FAPI-1) problem:
Given P ∈ G1 and z ∈ GT , compute Q ∈ G2 such that
e(P,Q) = z.

I Fixed Argument Pairing Inversion 2 (FAPI-2) problem:
Given Q ∈ G2 and z ∈ GT , compute P ∈ G1 such that
e(P,Q) = z.

I Generalised Pairing Inversion (GPI) : Given z ∈ GT , find
P ∈ G1 and Q ∈ G2 with e(P,Q) = z.
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FAPI’s and CDH

Generalisation of Verheul’s result:
I e : G1 ×G2 → GT is non-degenerate bilinear pairing on

cyclic groups of prime order r .
I Suppose one can solve FAPI-1 and FAPI-2 in polynomial

time.
I Then one can solve CDH in G1,G2 and GT in polynomial

time.
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FAPI’s and CDH

Proof for G1: Oi is FAPI-i oracle.
I Let (P,aP,bP) be a CDH input in G1.
I Choose random Q ∈ G2 and compute z = e(aP,Q).
I Call O1(P, z) to get aQ.
I Now compute z ′ = e(bP,aQ) and call O2(Q, z ′) to get

abP.
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FAPI’s and isomorphisms

I If one can solve FAPI-1 in polynomial time
I then one can compute all group isomorphisms
ψ1 : G1 → G2 in polynomial time.

I Let P ∈ G1 and Q ∈ G2 be generators, then can compute
ψ1 such that ψ1(P) = Q.

I Similar result holds for FAPI-2.
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FAPI’s and DDH

I If one can solve FAPI-1 in polynomial time
I then one can solve DDH in G1 in polynomial time.
I Proof: Let (P,aP,bP, cP) be DDH quadruple. Want to test

if e(cP,Q) = e(bP,aQ)? How to get aQ?
I Choose Q ∈ G2 and let ψ1 : G1 → G2 be such that
ψ1(P) = Q. Compute aQ = ψ1(aP).
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Pairing inversion and BDH

I Bilinear-Diffie-Hellman problem (BDH-1) is: given
P,aP,bP ∈ G1 and Q ∈ G2 to compute e(P,Q)ab.

I If one can solve FAPI-1 in polynomial time
I then one can solve BDH-1 in polynomial time.
I Proof: Let (P,aP,bP,Q) be BDH-1 quadruple.
I Let ψ1 : G1 → G2 be such that ψ1(P) = Q. Compute

aQ = ψ1(aP) and obtain z = e(bP,aQ) = e(P,Q)ab.
I No implications for finite field crypto?
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Notation

I Let E be an elliptic curve over a finite field Fq, i.e.

E : y2 = x3 + ax + b for p > 5

I Point sets E(Fqk ) define an abelian group for all k ≥ 1.
I Hasse-Weil: number of points in E(Fq) is q + 1− t with

|t | ≤ 2
√

q

I t is called trace of Frobenius.
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Torsion subgroups

I E [r ] subgroup of points of order dividing r , i.e.

E [r ] = {P ∈ E(Fq) | rP = ∞}

I Structure of E [r ] for gcd(r ,q) = 1 is Z/rZ× Z/rZ.
I Let r |#E(Fq), then E(Fq)[r ] gives at least one component.
I Embedding degree: k minimal with r | (qk − 1).
I Note r -roots of unity µr ⊆ F×

qk .

I If k > 1 then E(Fqk )[r ] = E [r ].
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Trace and embedding degree

I Recall r | #E(Fq) and #E(Fq) = q + 1− t
I So q ≡ t − 1 mod r .
I Since xk − 1 =

∏
d |k Φd(x), have r |Φk (q).

I Conclusion: r |Φk (t − 1), so |Φk (t − 1)| ≥ r .
I |t | can be as small as r1/ϕ(k), but not smaller.

Steven Galbraith, Florian Hess & Fré Vercauteren Aspects of Pairing Inversion



Applications of Pairing Inversion
The Pairing Zoo
Miller Inversion

Pairing Inversion

Frobenius endomorphism

I Frobenius: ϕ : E → E : (x , y) 7→ (xq, yq)

I Characteristic polynomial: ϕ2 − [t ] ◦ ϕ+ [q] = 0
I Eigenvalues on E [r ]: 1 and q since r | #E(Fq)

I For k > 1 have q 6= 1 mod r , thus decomposition of E [r ]
into Frobenius eigenspaces:

E [r ] = E(Fqk )[r ] = 〈P〉 × 〈Q〉

with ϕ(P) = P and ϕ(Q) = qQ
I Notation used before: G1 = 〈P〉 and G2 = 〈Q〉
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Miller functions

I Let P ∈ E(Fq) and n ∈ N.
I A Miller function fn,P is any function in Fq(E) with divisor

(fn,P) = n(P)− ([n]P)− (n − 1)(∞)

I fn,P is determined up to a constant c ∈ F×
q .

I fn,P has a zero at P of order n.
I fn,P has a pole at [n]P of order 1.
I fn,P has a pole at ∞ of order (n − 1).
I For every point Q 6= P, [n]P,∞, we have fn,P(Q) ∈ F×

q .
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Miller’s algorithm

I Use double-add algorithm to compute fn,P for any n ∈ N.
I Exploit relation:

fm+n,P = fm,P · fn,P ·
l[n]P,[m]P

v[n+m]P

I l[n]P,[m]P : the line through [n]P and [m]P
I v[n+m]P : the vertical line through [n + m]P
I Evaluate at Q in every step
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Tate pairing

I Let P ∈ E(Fqk )[r ] and fr ,P ∈ Fqk (E) with

(fr ,P) = r(P)− r(∞)

I Note: fr ,P has zero of order r at P and pole of order r at ∞.
I Tate pairing is defined as (assuming normalisation)

〈P,Q〉r = fr ,P(Q)

I Domain and image are:

〈·, ·〉r : E(Fqk )[r ]× E(Fqk )/rE(Fqk ) → F×
qk/(F×

qk )
r

I Reduced Tate pairing: e(P,Q) = 〈P,Q〉(q
k−1)/r

r
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Ate pairing

I Non-degenerate pairing defined on G2 ×G1 only.
I Let S be integer with S ≡ q mod r and

N = gcd(Sk − 1,qk − 1)

I Let cS =
∑k−1

i=0 Sk−1−iqi mod N. Then

aS : G2 ×G1 → µr , (Q,P) 7→ f norm
S,Q (P)cS(qk−1)/N

defines a bilinear pairing,
I Typical choices for S are:

I S = t − 1 with t trace of Frobenius.
I S = q, then no final exponentiation necessary.

I In general t − 1 ' √
q, but could be as small as r1/ϕ(k).
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Pairing Zoo

Pairing Domain Where Who s Red
Tate E [r ]× E/rE All HECs Miller r No
eta G1 ×G2 SuSi BGOS t − 1 No

ate EC G2 ×G1 All ECs HSV t − 1 No
ate EC G1 ×G2 SuSi HSV t − 1 No

ate HEC G2 ×G1 All HECs GHOTV q Yes
ate HEC G1 ×G2 SuSp GHOTV q Yes
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Extreme elliptic ate

I Curves with t = −1 give shortest loop in Miller’s algorithm.
I Let E : y2 = x3 + 4 over Fp with p = 41761713112311845269, then

t = −1, r = 715827883, k = 31 and D = −3.
I Let y − λ(Q)x − ν(Q) with λ = 3x2

Q/(2yQ) and
ν = (−x3

Q + 8)/(2yQ) be the tangent at Q.
I The function

(Q,P) 7→
(
yP − λ(Q)xP − ν(Q)

)(qk−1)/(3r)

defines a non-degenerate pairing on G2 ×G1.
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Extreme elliptic ate: corollary

I Since

(Q,P) 7→
(
yP − λ(Q)xP − ν(Q)

)(qk−1)/(3r)

defines a non-degenerate pairing on G2 ×G1

I we have corollary that for all P ∈ G1 and Q ∈ G2 the
expressions

(yP − λ(Q)xP − ν(Q))2

(y[2]P − λ(Q)x[2]P − ν(Q))
and

(yP − λ(Q)xP − ν(Q))2

(yP − λ([2]Q)xP − ν([2]Q))

are 3r -th powers.
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Miller inversion

I Most pairings can be expressed as

e(P,Q) := fs,P(Q)d

for integers s and d and fs,P a Miller function.
I Possible approach: find correct d-th root first and then

solve for Q in fs,P(Q)

I Miller inversion : Let P be fixed, let S be a set of points
and take z ∈ F∗

qk . Compute a point Q ∈ S such that
z = fs,P(Q) or if no such point exists then output ‘no
solution’.

Steven Galbraith, Florian Hess & Fré Vercauteren Aspects of Pairing Inversion



Applications of Pairing Inversion
The Pairing Zoo
Miller Inversion

Pairing Inversion

Miller inversion in polytime

I Setting: Ate pairing on G2 ×G1.
I Let S ≥ 2 and Q have order > 2. Then fs,Q(x , y) can be

written as

fs,Q(x , y) =
f1(x) + yf2(x)

(x − x[s]Q)

with deg f1(x) ≤ (S + 1)/2 and deg f2(x) ≤ S/2− 1.
I Miller inversion is equivalent with finding root of

P(x) := (f1(x)− z(x − x[s]Q))2 − f2(x)2(x3 + ax + b)

of degree at most S + 1.
I Note: polynomial defined over Fqk , but root over Fq.
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Miller inversion in polytime

I Finding root of P(x) ∈ Fqk [x ] in Fq is computing
gcd(xq − x ,P(x)).

I Takes O(|t |2 log q) operations in Fqk or O(|t |2k2(log q)3)
bit-operations.

I If |t | and k grow as a polynomial function of log r , one can
solve MI in polynomial time.

I Lemma: There exist families of parameters of pairing
friendly curves for which the Miller inversion problem can
be solved in polynomial time.
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FAPI-1 for ate pairing on small trace curves

I Recall extreme elliptic ate pairing

a2(Q,P) 7→
(
yP − λ(Q)xP − ν(Q)

)(qk−1)/(3r)

I Problem: given Q = (xQ, yQ) and a target z ∈ µr ⊆ F∗
qk ,

need to solve

(y − λ(Q)x − ν(Q))(q
k−1)/(3r) = z

for some (x , y) ∈ E(Fq).
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FAPI-1 for ate pairing on small trace curves

I But: there are d = (qk − 1)/(3r) possible roots of z.
I Only one of them of form y − λx − ν for some

(x , y) ∈ E(Fq).
I Easy to compute random d-th roots of z, but hard to select

the correct root.
I Can generate many more equations by a2(uQ,P) = zu.
I Simpler problem: given many pairs (a, z) ∈ F2

qk , with

z = (a + x)d for some x ∈ Fq, find x .
I Easy when d - (qk − 1), but how hard for d | (qk − 1)?
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FAPI-1 ≤P MI

I Is solving MI sufficient to solve FAPI-1?
I Most people: no, since given z0 = fs,P(Q)d , still need to try

out all d possible roots.
I Idea: what if you take a random d-th root?
I Tate-Lichtenbaum pairing:

t(·, ·) : E(Fq)[r ]× E(Fqk )/rE(Fqk ) → F∗
qk/(F∗

qk )
r

I Reduced TL pairing into µr : e(·, ·) = t(·, ·)(qk−1)/r
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FAPI-1 ≤P MI

I For P ∈ E(Fq)[r ] let S2(P) denote set {Q ∈ E(Fqk )} with

e(P,Q) = 1

I Suppose e(P,Q1) = e(P,Q2), then clearly

Q3 := Q1 −Q2 ∈ S2(P)

I If #S2(P) is big enough, then likely that there exists
Q′ ∈ E(Fqk ) with Q′ := Q + R with R ∈ S2(P) and

fs,P(Q′) = z

for a random root z of z0.
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FAPI-1 ≤P MI

I TL pairing: already have rE(Fqk ) ⊂ S2(P), but this only
gives qk/r2 points.

I For k > 1, also have E(Fqe) ⊂ S2(P) for all e|k .
I At least have that E(Fq)[r ] ⊂ S2(P).
I Since r‖E(Fq), E(Fq)[r ] ∩ rE(Fqk ) = {O} and thus

|S2(P)| ≥ |E(Fq)[r ]||rE(Fqk )| ≈ rqk/r2 ≈ d .

I Suggests that for the TL pairing with k > 1, FAPI-1 ≤P MI.
I Above fails for ate pairing since only defined on G2 ×G1.
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A degree bound

I Ate pairing gave isomorphism of G1 with µr of the form

fs,Q(·)d

with fs,Q function of low degree.
I However: total degree of fs,Q(·)d still very high.
I Lemma: Let E be an elliptic curve and f ∈ Fqk (E).

Assume that Q 7→ f (Q)d defines a non-constant
homomorphism G2 → µr for some positive exponent d .
Then d deg(f ) ≥ (1/6)#G2.
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Conclusions

I FAPI’s and implications for crypto.
I MI can be easy.
I Extreme elliptic ate leads to new supposedly hard

problem?
I For TL pairing have FAPI-1 ≤P MI.
I No homomorphisms of low degree into µr .
I Inverting pairings still hard . . .
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