Aspects of Pairing Inversion

Steven Galbraith, Florian Hess \& Fré Vercauteren

ECC 2007 - Dublin

Applications of Pairing Inversion

The Pairing Zoo

Miller Inversion

Pairing Inversion

Pairings

- Let G_{1}, G_{2}, G_{T} be groups of prime order r. A pairing is a non-degenerate bilinear map e : $G_{1} \times G_{2} \rightarrow G_{T}$.
- Bilinearity:
- $e\left(P_{1}+P_{2}, Q\right)=e\left(P_{1}, Q\right) e\left(P_{2}, Q\right)$,
- $e\left(P, Q_{1}+Q_{2}\right)=e(P, Q) e\left(P, Q_{2}\right)$.
- Non-degenerate:
- for all $P \neq 0: \exists x \in G_{2}$ such that $e(P, x) \neq 1$
- for all $Q \neq 0: \exists x \in G_{1}$ such that $e(x, Q) \neq 1$
- Examples:
- Scalar product on euclidean space $\langle\cdot, \cdot\rangle: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Weil- and Tate pairings on elliptic curves and abelian varieties.

Isomorphisms via pairings

- Since G_{1}, G_{2}, G_{T} have prime order r, they're isomorphic.
- Pairing with first argument fixed, gives isomorphism between G_{2} and G_{T} :

$$
\phi_{2}: G_{2} \rightarrow G_{T}: Q \mapsto \phi_{2}(Q)=e(P, Q)
$$

- Pairing with second argument fixed, gives isomorphism between G_{1} and G_{T} :

$$
\phi_{1}: G_{1} \rightarrow G_{T}: P \mapsto \phi_{1}(P)=e(P, Q)
$$

- Generates all isomorphisms between G_{i} and G_{T}, without need to compute DLOGs.

DLP, CDH \& DDH

Let $G,+$ be a group of prime order r.

- DLP: Given a tuple $(P, a P)$ compute a.
- CDH: Given a triple ($P, a P, b P$) compute $a b P$.
- DDH: Given a quadruple ($P, a P, b P, c P$) decide if $a b P=c P$.

Pairings in cryptography

- Exploit bilinearity!
- MOV: DLP reduction from G_{1} to G_{T} : DLP in $G_{1}:(P, x P)$

$$
\Rightarrow \operatorname{DLP} \text { in } G_{T}:\left(\phi_{1}(P), \phi_{1}(x P)\right)=(e(P, Q), e(x P, Q))
$$

- Decision DH in $G_{1}:$ DDH : $(P, a P, b P, c P)$

$$
\text { test if } e(c P, Q)=e(a P, b Q)
$$

but how get $b Q$? Possible if computable isomorphism $\psi_{1}: G_{1} \rightarrow G_{2}$ with $\psi_{1}(P)=Q$.

- Identity based crypto, short signatures, ...

Pairing inversion problems

- Fixed Argument Pairing Inversion 1 (FAPI-1) problem: Given $P \in G_{1}$ and $z \in G_{T}$, compute $Q \in G_{2}$ such that $e(P, Q)=z$.
- Fixed Argument Pairing Inversion 2 (FAPI-2) problem: Given $Q \in G_{2}$ and $z \in G_{T}$, compute $P \in G_{1}$ such that $e(P, Q)=z$.
- Generalised Pairing Inversion (GPI): Given $z \in G_{T}$, find $P \in G_{1}$ and $Q \in G_{2}$ with $e(P, Q)=z$.

FAPI's and CDH

Generalisation of Verheul's result:

- e: $G_{1} \times G_{2} \rightarrow G_{T}$ is non-degenerate bilinear pairing on cyclic groups of prime order r.
- Suppose one can solve FAPI-1 and FAPI-2 in polynomial time.
- Then one can solve CDH in G_{1}, G_{2} and G_{T} in polynomial time.

FAPI's and CDH

Proof for G_{1} : O_{i} is FAPI- i oracle.

- Let $(P, a P, b P)$ be a CDH input in G_{1}.
- Choose random $Q \in G_{2}$ and compute $z=e(a P, Q)$.
- Call $O_{1}(P, z)$ to get $a Q$.
- Now compute $z^{\prime}=e(b P, a Q)$ and call $O_{2}\left(Q, z^{\prime}\right)$ to get $a b P$.

FAPI's and isomorphisms

- If one can solve FAPI-1 in polynomial time
- then one can compute all group isomorphisms $\psi_{1}: G_{1} \rightarrow G_{2}$ in polynomial time.
- Let $P \in G_{1}$ and $Q \in G_{2}$ be generators, then can compute ψ_{1} such that $\psi_{1}(P)=Q$.
- Similar result holds for FAPI-2.

FAPI's and DDH

- If one can solve FAPI-1 in polynomial time
- then one can solve DDH in G_{1} in polynomial time.
- Proof: Let $(P, a P, b P, c P)$ be DDH quadruple. Want to test if $e(c P, Q)=e(b P, a Q)$? How to get $a Q$?
- Choose $Q \in G_{2}$ and let $\psi_{1}: G_{1} \rightarrow G_{2}$ be such that $\psi_{1}(P)=Q$. Compute $a Q=\psi_{1}(a P)$.

Pairing inversion and BDH

- Bilinear-Diffie-Hellman problem (BDH-1) is: given $P, a P, b P \in G_{1}$ and $Q \in G_{2}$ to compute $e(P, Q)^{a b}$.
- If one can solve FAPI-1 in polynomial time
- then one can solve BDH -1 in polynomial time.
- Proof: Let $(P, a P, b P, Q)$ be $B D H-1$ quadruple.
- Let $\psi_{1}: G_{1} \rightarrow \boldsymbol{G}_{2}$ be such that $\psi_{1}(P)=Q$. Compute $a Q=\psi_{1}(a P)$ and obtain $z=e(b P, a Q)=e(P, Q)^{a b}$.
- No implications for finite field crypto?

Notation

- Let E be an elliptic curve over a finite field \mathbb{F}_{q}, i.e.

$$
E: y^{2}=x^{3}+a x+b \quad \text { for } p>5
$$

- Point sets $E\left(\mathbb{F}_{q^{k}}\right)$ define an abelian group for all $k \geq 1$.
- Hasse-Weil: number of points in $E\left(\mathbb{F}_{q}\right)$ is $q+1-t$ with

$$
|t| \leq 2 \sqrt{q}
$$

- t is called trace of Frobenius.

Torsion subgroups

- $E[r]$ subgroup of points of order dividing r, i.e.

$$
E[r]=\left\{P \in E\left(\overline{\mathbb{F}}_{q}\right) \mid r P=\infty\right\}
$$

- Structure of $E[r]$ for $\operatorname{gcd}(r, q)=1$ is $\mathbb{Z} / r \mathbb{Z} \times \mathbb{Z} / r \mathbb{Z}$.
- Let $r \mid \# E\left(\mathbb{F}_{q}\right)$, then $E\left(\mathbb{F}_{q}\right)[r]$ gives at least one component.
- Embedding degree: k minimal with $r \mid\left(q^{k}-1\right)$.
- Note r-roots of unity $\mu_{r} \subseteq \mathbb{F}_{q^{k}}^{\times}$.
- If $k>1$ then $E\left(\mathbb{F}_{q^{k}}\right)[r]=E[r]$.

Trace and embedding degree

- Recall $r \mid \# E\left(\mathbb{F}_{q}\right)$ and $\# E\left(\mathbb{F}_{q}\right)=q+1-t$
- So $q \equiv t-1 \bmod r$.
- Since $x^{k}-1=\prod_{d \mid k} \Phi_{d}(x)$, have $r \mid \Phi_{k}(q)$.
- Conclusion: $r \mid \Phi_{k}(t-1)$, so $\left|\Phi_{k}(t-1)\right| \geq r$.
- $|t|$ can be as small as $r^{1 / \varphi(k)}$, but not smaller.

Frobenius endomorphism

- Frobenius: $\varphi: E \rightarrow E:(x, y) \mapsto\left(x^{q}, y^{q}\right)$
- Characteristic polynomial: $\varphi^{2}-[t] \circ \varphi+[q]=0$
- Eigenvalues on $E[r]: 1$ and q since $r \mid \# E\left(\mathbb{F}_{q}\right)$
- For $k>1$ have $q \neq 1 \bmod r$, thus decomposition of $E[r]$ into Frobenius eigenspaces:

$$
E[r]=E\left(\mathbb{F}_{q^{k}}\right)[r]=\langle P\rangle \times\langle Q\rangle
$$

with $\varphi(P)=P$ and $\varphi(Q)=q Q$

- Notation used before: $G_{1}=\langle P\rangle$ and $G_{2}=\langle Q\rangle$

Miller functions

- Let $P \in E\left(\mathbb{F}_{q}\right)$ and $n \in \mathbb{N}$.
- A Miller function $f_{n, P}$ is any function in $\mathbb{F}_{q}(E)$ with divisor

$$
\left(f_{n, P}\right)=n(P)-([n] P)-(n-1)(\infty)
$$

- $f_{n, P}$ is determined up to a constant $c \in \mathbb{F}_{q}^{\times}$.
- $f_{n, P}$ has a zero at P of order n.
- $f_{n, P}$ has a pole at $[n] P$ of order 1 .
- $f_{n, P}$ has a pole at ∞ of order $(n-1)$.
- For every point $Q \neq P,[n] P, \infty$, we have $f_{n, P}(Q) \in \mathbb{F}_{q}^{\times}$.

Miller's algorithm

- Use double-add algorithm to compute $f_{n, P}$ for any $n \in \mathbb{N}$.
- Exploit relation:

$$
f_{m+n, P}=f_{m, P} \cdot f_{n, P} \cdot \frac{l_{[n] P,[m] P}}{v_{[n+m] P}}
$$

- $v_{[n+m]} P$: the vertical line through $[n+m] P$
- Evaluate at Q in every step

Tate pairing

- Let $P \in E\left(\mathbb{F}_{q^{k}}\right)[r]$ and $f_{r, P} \in \mathbb{F}_{q^{k}}(E)$ with

$$
\left(f_{r, P}\right)=r(P)-r(\infty)
$$

- Note: $f_{r, P}$ has zero of order r at P and pole of order r at ∞.
- Tate pairing is defined as (assuming normalisation)

$$
\langle P, Q\rangle_{r}=f_{r, P}(Q)
$$

- Domain and image are:

$$
\langle\cdot, \cdot\rangle_{r}: E\left(\mathbb{F}_{q^{k}}\right)[r] \times E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right) \rightarrow \mathbb{F}_{q^{k}}^{\times} /\left(\mathbb{F}_{q^{k}}^{\times}\right)^{r}
$$

- Reduced Tate pairing: $e(P, Q)=\langle P, Q\rangle_{r}^{\left(q^{k}-1\right) / r}$

Ate pairing

- Non-degenerate pairing defined on $G_{2} \times G_{1}$ only.
- Let S be integer with $S \equiv q \bmod r$ and
$N=\operatorname{gcd}\left(S^{k}-1, q^{k}-1\right)$
- Let $c_{S}=\sum_{i=0}^{k-1} S^{k-1-i} q^{i} \bmod N$. Then

$$
a_{S}: G_{2} \times G_{1} \rightarrow \mu_{r}, \quad(Q, P) \mapsto f_{S, Q}^{\text {norm }}(P)^{c_{S}\left(q^{k}-1\right) / N}
$$

defines a bilinear pairing,

- Typical choices for S are:
- $S=t-1$ with t trace of Frobenius.
- $S=q$, then no final exponentiation necessary.
- In general $t-1 \simeq \sqrt{q}$, but could be as small as $r^{1 / \varphi(k)}$.

Pairing Zoo

Pairing	Domain	Where	Who	s	Red
Tate	$E[r] \times E / r E$	All HECs	Miller	r	No
eta	$G_{1} \times G_{2}$	SuSi	BGOS	$t-1$	No
ate EC	$G_{2} \times G_{1}$	All ECs	HSV	$t-1$	No
ate EC	$G_{1} \times G_{2}$	SuSi	HSV	$t-1$	No
ate HEC	$G_{2} \times G_{1}$	All HECs	GHOTV	q	Yes
ate HEC	$G_{1} \times G_{2}$	SuSp	GHOTV	q	Yes

Extreme elliptic ate

- Curves with $t=-1$ give shortest loop in Miller's algorithm.
- Let $E: y^{2}=x^{3}+4$ over \mathbb{F}_{p} with $p=41761713112311845269$, then $t=-1, r=715827883, k=31$ and $D=-3$.
- Let $y-\lambda(Q) x-\nu(Q)$ with $\lambda=3 x_{Q}^{2} /\left(2 y_{Q}\right)$ and $\nu=\left(-x_{Q}^{3}+8\right) /\left(2 y_{Q}\right)$ be the tangent at Q.
- The function

$$
(Q, P) \mapsto\left(y_{P}-\lambda(Q) x_{P}-\nu(Q)\right)^{\left(q^{k}-1\right) /(3 r)}
$$

defines a non-degenerate pairing on $G_{2} \times G_{1}$.

Extreme elliptic ate: corollary

- Since

$$
(Q, P) \mapsto\left(y_{P}-\lambda(Q) x_{P}-\nu(Q)\right)^{\left(q^{k}-1\right) /(3 r)}
$$

defines a non-degenerate pairing on $G_{2} \times G_{1}$

- we have corollary that for all $P \in G_{1}$ and $Q \in G_{2}$ the expressions

$$
\frac{\left(y_{P}-\lambda(Q) x_{P}-\nu(Q)\right)^{2}}{\left(y_{[2] P}-\lambda(Q) x_{[2]}-\nu(Q)\right)} \quad \text { and } \quad \frac{\left(y_{P}-\lambda(Q) x_{P}-\nu(Q)\right)^{2}}{\left(y_{P}-\lambda([2] Q) x_{P}-\nu([2] Q)\right)}
$$

are $3 r$-th powers.

Miller inversion

- Most pairings can be expressed as

$$
e(P, Q):=f_{s, P}(Q)^{d}
$$

for integers s and d and $f_{s, P}$ a Miller function.

- Possible approach: find correct d-th root first and then solve for Q in $f_{s, P}(Q)$
- Miller inversion: Let P be fixed, let S be a set of points and take $z \in \mathbb{F}_{q^{k}}^{*}$. Compute a point $Q \in S$ such that $z=f_{s, P}(Q)$ or if no such point exists then output 'no solution'.

Miller inversion in polytime

- Setting: Ate pairing on $G_{2} \times G_{1}$.
- Let $S \geq 2$ and Q have order >2. Then $f_{s, Q}(x, y)$ can be written as

$$
f_{s, Q}(x, y)=\frac{f_{1}(x)+y f_{2}(x)}{\left(x-x_{[s] Q}\right)}
$$

with $\operatorname{deg} f_{1}(x) \leq(S+1) / 2$ and $\operatorname{deg} f_{2}(x) \leq S / 2-1$.

- Miller inversion is equivalent with finding root of

$$
P(x):=\left(f_{1}(x)-z\left(x-x_{[s] Q}\right)\right)^{2}-f_{2}(x)^{2}\left(x^{3}+a x+b\right)
$$

of degree at most $S+1$.

- Note: polynomial defined over $\mathbb{F}_{q^{k}}$, but root over \mathbb{F}_{q}.

Miller inversion in polytime

- Finding root of $P(x) \in \mathbb{F}_{q^{k}}[x]$ in \mathbb{F}_{q} is computing $\operatorname{gcd}\left(x^{q}-x, P(x)\right)$.
- Takes $O\left(|t|^{2} \log q\right)$ operations in $\mathbb{F}_{q^{k}}$ or $O\left(|t|^{2} k^{2}(\log q)^{3}\right)$ bit-operations.
- If $|t|$ and k grow as a polynomial function of $\log r$, one can solve MI in polynomial time.
- Lemma: There exist families of parameters of pairing friendly curves for which the Miller inversion problem can be solved in polynomial time.

FAPI-1 for ate pairing on small trace curves

- Recall extreme elliptic ate pairing

$$
a_{2}(Q, P) \mapsto\left(y_{P}-\lambda(Q) x_{P}-\nu(Q)\right)^{\left(q^{k}-1\right) /(3 r)}
$$

- Problem: given $Q=\left(x_{Q}, y_{Q}\right)$ and a target $z \in \mu_{r} \subseteq \mathbb{F}_{q^{k}}^{*}$, need to solve

$$
(y-\lambda(Q) x-\nu(Q))^{\left(q^{k}-1\right) /(3 r)}=z
$$

for some $(x, y) \in E\left(\mathbb{F}_{q}\right)$.

FAPI-1 for ate pairing on small trace curves

- But: there are $d=\left(q^{k}-1\right) /(3 r)$ possible roots of z.
- Only one of them of form $y-\lambda x-\nu$ for some $(x, y) \in E\left(\mathbb{F}_{q}\right)$.
- Easy to compute random d-th roots of z, but hard to select the correct root.
- Can generate many more equations by $a_{2}(u Q, P)=z^{u}$.
- Simpler problem: given many pairs $(a, z) \in \mathbb{F}_{q^{k}}^{2}$, with $z=(a+x)^{d}$ for some $x \in \mathbb{F}_{q}$, find x.
- Easy when $d \nmid\left(q^{k}-1\right)$, but how hard for $d \mid\left(q^{k}-1\right)$?

FAPI- $1 \leq_{P} \mathrm{MI}$

- Is solving MI sufficient to solve FAPI-1?
- Most people: no, since given $z_{0}=f_{s, P}(Q)^{d}$, still need to try out all d possible roots.
- Idea: what if you take a random d-th root?
- Tate-Lichtenbaum pairing:

$$
t(\cdot, \cdot): E\left(\mathbb{F}_{q}\right)[r] \times E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right) \rightarrow \mathbb{F}_{q^{k}}^{*} /\left(\mathbb{F}_{q^{k}}^{*}\right)^{r}
$$

- Reduced TL pairing into $\mu_{r}: e(\cdot, \cdot)=t(\cdot, \cdot)^{\left(q^{k}-1\right) / r}$

FAPI- $1 \leq_{P} \mathrm{MI}$

- For $P \in E\left(\mathbb{F}_{q}\right)[r]$ let $S_{2}(P)$ denote set $\left\{Q \in E\left(\mathbb{F}_{q^{k}}\right)\right\}$ with

$$
e(P, Q)=1
$$

- Suppose $e\left(P, Q_{1}\right)=e\left(P, Q_{2}\right)$, then clearly

$$
Q_{3}:=Q_{1}-Q_{2} \in S_{2}(P)
$$

- If $\# S_{2}(P)$ is big enough, then likely that there exists $Q^{\prime} \in E\left(\mathbb{F}_{q^{k}}\right)$ with $Q^{\prime}:=Q+R$ with $R \in S_{2}(P)$ and

$$
f_{s, P}\left(Q^{\prime}\right)=z
$$

for a random root z of z_{0}.

FAPI- $1 \leq_{P} \mathrm{MI}$

- TL pairing: already have $r E\left(\mathbb{F}_{q^{k}}\right) \subset S_{2}(P)$, but this only gives q^{k} / r^{2} points.
- For $k>1$, also have $E\left(\mathbb{F}_{q^{e}}\right) \subset S_{2}(P)$ for all $e \mid k$.
- At least have that $E\left(\mathbb{F}_{q}\right)[r] \subset S_{2}(P)$.
- Since $r \| E\left(\mathbb{F}_{q}\right), E\left(\mathbb{F}_{q}\right)[r] \cap r E\left(\mathbb{F}_{q^{k}}\right)=\{O\}$ and thus

$$
\left|S_{2}(P)\right| \geq\left|E\left(\mathbb{F}_{q}\right)[r]\right|\left|r E\left(\mathbb{F}_{q^{k}}\right)\right| \approx r q^{k} / r^{2} \approx d
$$

- Suggests that for the TL pairing with $k>1$, FAPI- $1 \leq_{P}$ MI.
- Above fails for ate pairing since only defined on $G_{2} \times G_{1}$.

A degree bound

- Ate pairing gave isomorphism of G_{1} with μ_{r} of the form

$$
f_{s, Q}(\cdot)^{d}
$$

with $f_{s, Q}$ function of low degree.

- However: total degree of $f_{s, Q}(\cdot)^{d}$ still very high.
- Lemma: Let E be an elliptic curve and $f \in \mathbb{F}_{q^{k}}(E)$.

Assume that $Q \mapsto f(Q)^{d}$ defines a non-constant homomorphism $G_{2} \rightarrow \mu_{r}$ for some positive exponent d. Then $d \operatorname{deg}(f) \geq(1 / 6) \# G_{2}$.

Conclusions

- FAPI's and implications for crypto.
- MI can be easy.
- Extreme elliptic ate leads to new supposedly hard problem?
- For TL pairing have FAPI- $1 \leq_{p} \mathrm{MI}$.
- No homomorphisms of low degree into μ_{r}.
- Inverting pairings still hard ...

