Elliptic Nets in Cryptography

Katherine Stange

Department of Mathematics
Brown University
Mathematics
Applications
Elliptic Nets
Upping the Dimension
Definitions
Properties
Pairings
Pairings in ECC
Computation of Pairings
Using Elliptic Nets
Summary
http://www.math.brown.edu/~stange/
ECC 2007,
Dublin, Ireland

Outline

Elliptic Divisibility Sequences

Mathematics

Elliptic Divisibility
Sequences
Mathematics
Applications
Applications

Elliptic Nets
Upping the Dimension
Definitions
Properties

Pairings
Pairings in ECC
Computation of Pairings
Using Elliptic Nets

Elliptic Nets
Upping the Dimension
Definitions
Properties
Pairings
Pairings in ECC
Computation of Pairings
Using Elliptic Nets
Summary

Elliptic Divisibility Sequences

Definition

A integer sequence W is an elliptic divisibility sequence if for all positive integers $m>n$,

$$
W_{m+n} W_{m-n} W_{1}^{2}=W_{m+1} W_{m-1} W_{n}^{2}-W_{n+1} W_{n-1} W_{m}^{2} .
$$

- Generated by W_{1}, \ldots, W_{4} via the recurrence.
- Example: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
- Example: 1, 3, 8, 21, 55, 144,377, 987, 2584, 6765,...
- Example: 1, 1, $-3,11,38,249,-2357,8767,496036$, -3769372, -299154043, -12064147359, ...

Elliptic Divisibility
Sequences
Mathematics
Applications
Elliptic Nets
Upping the Dimension
Definitions
Properties
Pairings
Parings in ECC
Computation of Pairings
Using Elliptic Nets
Summary

Example: $y^{2}+y=x^{3}+x^{2}-2 x, P=(0,0)$

Elliptic Nets in Cryptography

Katherine Stange

Elliptic Divisibility
Sequences
Mathematics
Applications
Elliptic Nets
Upping the Dimension
Definitions
Properties
Pairings
Pairings in ECC
Computation of Pairings
Using Elliptic Nets
Summary

Sequences from Division Polynomials

Consider a point $P=(x, y)$ and its multiples on an elliptic curve $E: y^{2}=x^{3}+A x+B$. Then

$$
[n] P=\left(\frac{\phi_{n}(P)}{\Psi_{n}(P)^{2}}, \frac{\omega_{n}(P)}{\Psi_{n}(P)^{3}}\right)
$$

where

Elliptic Divisibility
Sequences
Mathematics
Applications
Elliptic Nets
Upping the Dimension
Definitions
Properties
Pairings
Pairings in ECC
Computation of Pairings

$$
\begin{aligned}
& \Psi_{1}=1, \quad \Psi_{2}=2 y \\
& \Psi_{3}=3 x^{4}+6 A x^{2}+12 B x-A^{2} \\
& \Psi_{4}=4 y\left(x^{6}+5 A x^{4}+20 B x^{3}-5 A^{2} x^{2}-4 A B x-8 B^{2}-A^{3}\right) \\
& \quad \Psi_{m+n} \Psi_{m-n} \Psi_{1}^{2}=\Psi_{m+1} \Psi_{m-1} \Psi_{n}^{2}-\Psi_{n+1} \Psi_{n-1} \Psi_{m}^{2}
\end{aligned}
$$

It gives an elliptic divisibility sequence!

Division Polynomials and Torsion Points

- When n is odd, Ψ_{n} is a polynomial in x.
- When n is even, $\Psi_{n} / 2 y$ is a polynomial in x.
- The roots of these polynomials are exactly the x-coordinates of the n-torsion points of E.

Division Polynomials and Sequences over Finite Fields

- Using the formulae, we can consider divison polynomials over finite fields (where "denominator" has no meaning).
- Here, the point P will always have finite order, say n. The associated sequence will have $W_{n}=0$.

Example
$E: y^{2}+y=x^{3}+x^{2}-2 x$ over \mathbb{F}_{5}.
$P=(0,0)$ has order 9 .
The associated sequence is
$0,1,1,2,1,3,4,3,2,0,3,2,1,2,4,3,4,4,0,1,1,2,1,3,4, \ldots$

Counting Points on an Elliptic Curve over a Finite Field

- The Schoof-Elkies-Atkin algorithm and the Satoh algorithm both depend on calculating certain (different) factors of the p-th division polynomial for certain primes p.

Shipsey's Attacks on the Elliptic Curve Discrete Log

- The elliptic curve discrete logarithm problem is known to be weak in certain cases, where the Menezes-Okamoto-Vanstone/Frey-Ruck attack can be used.
- Shipsey uses the computation of elliptic divisibility sequences to give simple attacks in these cryptographically weak cases.
- We will see later in this talk that there's an underlying explanation for the existence of Shipsey's attack which can be understood through the Tate pairing.

Elliptic Nets

The Question - Upping the Dimension

The elliptic divisibility sequence is associated to the sequence of points $[n] P$ on the curve.

$$
[n] P \leftrightarrow W_{n}
$$

We might dream of ...

$$
[n] P+[m] Q \leftrightarrow W_{n, m}
$$

Elliptic Divisibility
Sequences
Mathematics
Applications
Elliptic Nets
Upping the Dimension
Definitions
Properties
Pairings
Pairings in ECC
Computation of Pairings
Using Elliptic Nets
Summary

Or even...

$$
[n] P+[m] Q+[t] R \leftrightarrow W_{n, m, t}
$$

etc.

Definition of an elliptic net

Let R be an integral domain, and A a finite-rank free abelian group. An elliptic net is a map $W: A \rightarrow R$ such that the following recurrence holds for all $p, q, r, s \in A$.

$$
\begin{aligned}
W(p+q & +s) W(p-q) W(r+s) W(r) \\
& +W(q+r+s) W(q-r) W(p+s) W(p) \\
& +W(r+p+s) W(r-p) W(q+s) W(q)=0
\end{aligned}
$$

Elliptic Divisibility
Sequences
Mathematics
Applications
Elliptic Nets
Upping the Dimension
Definitions
Properties
Pairings
Pairings in ECC
Computation of Pairings
Using Elliptic Nets
Summary

- Elliptic divisibility sequences are a special case ($A=\mathbb{Z}$)
- In this talk, we will mostly discuss rank 2: $A=\mathbb{Z}^{2}$.
- The recurrence generates the net from finitely many initial values.

Elliptic Nets in their Natural Habitat

Elliptic Nets in
Cryptography
Katherine Stange

$$
\begin{aligned}
& E: y^{2}+y=x^{3}+x^{2}-2 x ; P=(0,0), Q=(1,0) \\
& 0\left(\frac{56}{25}, \frac{371}{125}\right) \quad \circ\left(-\frac{95}{64}, \frac{495}{512}\right) \quad \circ\left(\frac{328}{361},-\frac{2800}{6859}\right) \\
& 0\left(\frac{6}{1},-\frac{16}{1}\right) \\
& 0\left(\frac{1}{1}, \frac{0}{1}\right) \\
& 0
\end{aligned}
$$

Elliptic Divisibility
Sequences
Mathematics
Applications
Elliptic Nets
Upping the Dimension
Definitions
Properties
Pairings
Parings in ECC
Computation of Pairings
Using Elliptic Nets
Summary

Elliptic Nets in their Natural Habitat

Elliptic Nets in
Cryptography
Katherine Stange
$E: y^{2}+y=x^{3}+x^{2}-2 x ; P=(0,0), Q=(1,0)$

${ }^{+}+8$
${ }^{-19}$
${ }^{+1}$
${ }^{+3}$
0^{-1}
${ }^{+1}$
${ }^{+1}$
${ }^{+2}$

- 0

$$
0^{+1}
$$

$$
\circ^{+1}
$$

An elliptic net!

Curve + Points give Net

Elliptic Nets in Cryptography

Katherine Stange

Theorem (KS)
Let E be an elliptic curve defined over a field K. For all $\mathbf{v} \in \mathbb{Z}^{n}$, there exist rational functions

$$
\Psi_{\mathbf{v}}: E^{n} \rightarrow K
$$

such that for any fixed $\mathbf{P} \in E^{n}$, the function $W: \mathbb{Z}^{n} \rightarrow K$ defined by

$$
W(\mathbf{v})=\Psi_{\mathbf{v}}(\mathbf{P})
$$

is an elliptic net.

Functions $\Psi_{\mathbf{v}}$

The functions Ψ_{v} satisfy

1. $\Psi_{\mathbf{v}}(\mathbf{P})$ vanishes exactly when $\mathbf{v} \cdot \mathbf{P}=0$ on E and has poles supported on a certain simple set. Example:

$$
\Psi_{m, n}(P, Q)=0 \text { whenever }[m] P+[n] Q=0
$$

2. $\Psi_{\mathbf{v}}=1$ whenever \mathbf{v} is \mathbf{e}_{i} or $\mathbf{e}_{i}+\mathbf{e}_{j}$ for some standard basis vectors $\mathbf{e}_{i} \neq \mathbf{e}_{j}$.

- We call W the elliptic net associated to E, P_{1}, \ldots, P_{n}, and write $W_{E, P}$.
- We call P_{1}, \ldots, P_{n} the basis of $W_{E, \mathrm{P}}$.

Net Polynomial Examples

In higher rank case, we also have such polynomial representations.

$$
\begin{aligned}
\Psi_{-1,1} & =x_{1}-x_{2} \\
\Psi_{2,1} & =2 x_{1}+x_{2}-\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)^{2} \\
\Psi_{2,-1} & =\left(y_{1}+y_{2}\right)^{2}-\left(2 x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right)^{2} \\
\Psi_{1,1,1} & =\frac{y_{1}\left(x_{2}-x_{3}\right)+y_{2}\left(x_{3}-x_{1}\right)+y_{3}\left(x_{1}-x_{2}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)}
\end{aligned}
$$

Elliptic Divisibility
Sequences
Mathematics
Applications
Elliptic Nets
Upping the Dimension
Definitions
Properties
Pairings
Parings in ECC
Computation of Pairings

Can calculate more via the recurrence...

$$
\begin{aligned}
\Psi_{3,1} & =\left(x_{2}-x_{1}\right)^{-3}\left(4 x_{1}^{6}-12 x_{2} x_{1}^{5}+9 x_{2}^{2} x_{1}^{4}+4 x_{2}^{3} x_{1}^{3}\right. \\
& -4 y_{2}^{2} x_{1}^{3}+8 y_{1}^{2} x_{1}^{3}-6 x_{2}^{4} x_{1}^{2}+6 y_{2}^{2} x_{2} x_{1}^{2}-18 y_{1}^{2} x_{2} x_{1}^{2} \\
& +12 y_{1}^{2} x_{2}^{2} x_{1}+x_{2}^{6}-2 y_{2}^{2} x_{2}^{3}-2 y_{1}^{2} x_{2}^{3}+y_{2}^{4}-6 y_{1}^{2} y_{2}^{2} \\
& \left.+8 y_{1}^{3} y_{2}-3 y_{1}^{4}\right) .
\end{aligned}
$$

Example over \mathbb{Q}

Elliptic Nets in Cryptography

$$
E: y^{2}+y=x^{3}+x^{2}-2 x ; P=(0,0), Q=(1,0)
$$

4335	5959	12016	-55287	23921	1587077						
94	479	919	-2591	13751	68428						
-31	53	-33	-350	493	6627						
-5	8	-19	-41	-151	989						
1	3	-1	-13	-36	181		1	1	2	-5	7
:---	:---	:---	:---	:---							
0	1	1	-3	11							
$P \rightarrow$											

Example over \mathbb{F}_{5}

Elliptic Nets in
Cryptography

$$
E: y^{2}+y=x^{3}+x^{2}-2 x ; P=(0,0), Q=(1,0)
$$

0	4	4	3	1	2	4
4	4	4	4	1	3	0
4	3	2	0	3	2	1
0	3	1	4	4	4	4
1	3	4	2	4	1	0
1	1	2	0	2	4	1
0	1	1	2	1	3	4
$P \rightarrow$						
P						

- The polynomial $\Psi_{\mathbf{v}}(\mathbf{P})=0$ if and only if $\mathbf{v} \cdot \mathbf{P}=0$.
- These zeroes lie in a lattice: the lattice of apparition associated to prime (here, 5).

Periodicity Property with Respect to Lattice of Apparition

0	4	4	3	1	2	4
4	4	4	4	1	3	0
4	3	2	0	3	2	1
0	3	1	4	4	4	4
1	3	4	2	4	1	0
1	1	2	0	2	4	1
0	1	1	2	1	3	4
$P \rightarrow$						

- The elliptic net is not periodic modulo the lattice of apparition.
- The appropriate translation property
- There are such translation properties, and it is within these that the Tate pairing information lies.

Elliptic Nets and Linear Combinations of Points

Elliptic Nets in

- If W_{i} is the elliptic net associated to E, P_{i}, Q_{i} for $i=1,2$, and

$$
\left[a_{1}\right] P_{1}+\left[b_{1}\right] Q_{1}=\left[a_{2}\right] P_{2}+\left[b_{2}\right] Q_{2}
$$

then
Applications
Elliptic Nets
Upping the Dimension
Definitions
Properties
Pairings
Pairings in ECC
Computation of Pairings
Using Elliptic Nets
Summary
$W_{1}\left(a_{1}, b_{1}\right)$ is not necessarily equal to $W_{2}\left(a_{2}, b_{2}\right)$.

- So how do we propose to compare two elliptic nets supposedly associated to the same linear combinations, but using different bases?

Defining a Net on a Free Abelian Cover

- Assume $E(K)$ is finitely generated. Let \hat{E} be any finite rank free abelian group surjecting onto $E(K)$.

$$
\pi: \hat{E} \rightarrow E(K)
$$

- For a basis P_{1}, P_{2}, choose $p_{i} \in \hat{E}$ such that $\pi\left(p_{i}\right)=P_{i}$.
- We specify an identification

$$
\mathbb{Z}^{2} \cong\left\langle p_{1}, p_{2}\right\rangle
$$

via $\mathbf{e}_{i} \mapsto p_{i}$.

- The elliptic net W associated to E, P_{1}, P_{2} and defined on \mathbb{Z}^{2} is now identified with an elliptic net W^{\prime} defined on \hat{E}.
- This allows us to compare elliptic nets associated to different bases.

Defining a Special Equivalence Class

Definition
Let $W_{1}, W_{2}: A \rightarrow K$. Suppose $f: A \rightarrow K^{*}$ is a quadratic function. If

$$
W_{1}(\mathbf{v})=f(\mathbf{v}) W_{2}(\mathbf{v})
$$

for all \mathbf{v}, then we say W_{1} is equivalent to W_{2}.

- Elliptic nets associated to different bases are equivalent, when the elliptic nets are viewed as maps on \hat{E} as explained in the previous slide.
- In this way, we can associate an equivalence class to a subgroup of $E(K)$.

Bilinear Pairings

Elliptic Nets in

A bilinear pairing is a map

$$
e: G_{1} \times G_{2} \rightarrow G_{3}
$$

where G_{i} are abelian groups and G_{3} is cyclic, and for all $p_{1}, p_{2} \in \mathbb{G}_{1}, q_{1}, q_{2} \in \mathbb{G}_{2}$, we have

$$
\begin{aligned}
& e\left(p_{1}+p_{2}, q_{1}\right)=e\left(p_{1}, q_{1}\right) e\left(p_{2}, q_{1}\right) \\
& e\left(p_{1}, q_{1}+q_{2}\right)=e\left(p_{1}, q_{1}\right) e\left(p_{1}, q_{2}\right)
\end{aligned}
$$

Elliptic Nets
Upping the Dimension

Pairing-Based Cryptographic Protocols

- tripartite Diffie-Hellman key exchange [Joux]
- identity-based encryption [Boneh-Franklin]
- many others...

Properties

Pairings

Pairings in ECC
Computation of Pairings
Using Elliptic Nets
Summary

Tate Pairing

$$
\begin{array}{ll}
m \geq 1 & P \in E(K)[m] \\
E / K \text { an elliptic curve } & Q \in E(K) / m E(K)
\end{array}
$$

f_{P} with divisor $m(P)-m(\mathcal{O})$
$D_{Q} \sim(Q)-(\mathcal{O})$ with support disjoint from $\operatorname{div}\left(f_{P}\right)$
Define

$$
\tau_{m}: E(K)[m] \times E(K) / m E(K) \rightarrow K^{*} /\left(K^{*}\right)^{m}
$$

by

$$
\tau_{m}(P, Q)=f_{P}\left(D_{Q}\right)
$$

It is well-defined, bilinear and Galois invariant.

Weil Pairing

Elliptic Nets in

For $P, Q \in E(K)[m]$, the more well-known Weil pairing can be computed via two Tate pairings:

$$
e_{m}(P, Q)=\tau_{m}(P, Q) \tau_{m}(Q, P)^{-1} .
$$

It is bilinear, alternating, and non-degenerate.

Computing the Tate Pairing

- We must calculate $f_{P}\left(D_{Q}\right)$, where $\operatorname{div}\left(f_{P}\right)=m(P)-m(\mathcal{O})$.
- There are functions f_{i} for each $i=1,2, \ldots$ such that

$$
f_{i+j}=f_{i} f_{j} \frac{L}{V}
$$

where L and V are the lines used in the computation of the sum of points $[i] P$ and $[j] P$ on the elliptic curve.

- (The f_{i} have divisors $i(P)-([i] P)-(i-1)(\mathcal{O})$.)
- Calculate $f_{m}=f_{P}$ by applying this step repeatedly, calculating the multiples of P as you go.
- Most efficient is double-and-add: at each step, go from i to either $2 i$ or $2 i+1$ (one or two steps respectively).
- Miller's algorithm: calculate $f_{m}=f_{p}$ via double-and-add, and evaluate at D_{Q}.

Computing the Tate Pairing

- Of course, this has since been optimised extensively.
- To obtain a unique value as the result of a Tate pairing (instead of an equivalence class), one usually performs a final exponentiation.

Definitions
Properties
Pairings
Pairings in ECC
Computation of Pairings
Using Elliptic Nets
Summary

Statement of Theorem

$$
\begin{array}{ll}
m \geq 1 & P \in E(K)[m] \\
E / K \text { an elliptic curve } & Q \in E(K) / m E(K)
\end{array}
$$

Theorem (KS)

Choose $S \in E(K)$ such that $S \notin\{\mathcal{O},-Q\}$. Choose p, q, $s \in \hat{E}$ such that $\pi(p)=P, \pi(q)=Q$ and $\pi(s)=S$. Let W be an elliptic net in the equivalence class associated to a subgroup of $E(K)$ containing P, Q, and S. Then the quantity

$$
\tau_{m}(P, Q)=\frac{W(s+m p+q) W(s)}{W(s+m p) W(s+q)}
$$

is the Tate pairing.

Choosing an Elliptic Net

Elliptic Nets in
Cryptography

Katherine Stange

Elliptic Divisibility
Sequences
Mathematics
Corollary
In particular,

$$
\tau_{m}(P, P)=\frac{W_{E, P}(m+2) W_{E, P}(1)}{W_{E, P}(m+1) W_{E, P}(2)},
$$

Applications

Elliptic Nets

Upping the Dimension
Definitions
Properties

Pairings

Pairings in ECC
Computation of Pairings
Using Elliptic Nets
Summary

$$
\tau_{m}(P, Q)=\frac{W_{E, P, Q}(m+1,1) W_{E, P, Q}(1,0)}{W_{E, P, Q}(m+1,0) W_{E, P, Q}(1,1)} .
$$

Tate Pairing and Periodicity Properties

Example

$E: y^{2}+y=x^{3}+x^{2}-2 x$ over \mathbb{F}_{73}.
$P=(0,0)$ has order $m=9$.
The associated sequence is $0,1,1,70,11,38,30,52,7,0,56,30,30,61,47,3,8,9,0, \ldots$
W(1),W(2)
$\mathrm{W}(\mathrm{m}+1), \mathrm{W}(\mathrm{m}+2)$

$$
\tau_{m}(P, P)=\left(\frac{W(m+2)}{W(m+1)}\right)\left(\frac{W(1)}{W(2)}\right)=\left(\frac{30}{56}\right)\left(\frac{1}{1}\right)=24
$$

Elliptic Divisibility
Sequences
Mathematics
Applications
Elliptic Nets
Upping the Dimension

Note: Result is in $\mathbb{F}_{73}^{*} /\left(\mathbb{F}_{73}^{*}\right)^{9}$ which is not trivial, since $9 \mid(73-1)$. For a field of q elements, the smallest integer k such that $m \mid q^{k}-1$ is called the embedding degree.

Elliptic Net Algorithm

Algorithm Outline

1. Given E, P, Q with $[m] P=0$, calculate the initial terms of $W_{E, P, Q}$.
2. Using the recurrence relation, calculate the terms $W(m+1,0), W(m+1,1)$.
3. Calculate $\tau_{m}(P, Q)=W(m+1,1) / W(m+1,0)$.
4. Perform final exponentiation as in Miller's.

Elliptic Divisibility
Sequences
Mathematics
Applications
Elliptic Nets
Upping the Dimension

- There are polynomial formulae for the initial terms of Step 1.
- Step 4 is also performed in Miller's algorithm and the same efficient methods apply here.
- The challenge lies in efficient computation of large terms of the net $W_{E, P, Q}$.

Computing Terms of $W_{E, P, Q}$

Elliptic Nets in
Cryptography

Katherine Stange

Elliptic Divisibility
Sequences
Mathematics
Applications
Elliptic Nets

Upping the Dimension
Definitions
Properties
Pairings
Pairings in ECC
Computation of Pairings
Using Elliptic Nets
Summary

Figure: A block centred at k

Computing Terms of $W_{E, P, Q}$

Elliptic Nets in

Double and add algorithm:

Block centred
 at k

Block centred at $2 k$

Each term of the new block requires one instance of the recurrence relation, i.e. several multiplications and an addition.

Complexity

Let k be the embedding degree. Let $P \in E\left(\mathbb{F}_{q}\right)$ and
Elliptic Nets in

Algorithm: Elliptic Net

Double: $\quad 6 S+(6 k+26) M+S_{k}+\frac{3}{2} M_{k}$
DoubleAdd: $\quad 6 S+(6 k+26) M+S_{k}+2 M_{k}$
Algorithm: Optimised Miller's ${ }^{1}$
Double: $\quad 4 S+(k+7) M+S_{k}+M_{k}$
DoubleAdd: $\quad 7 S+(2 k+19) M+S_{k}+2 M_{k}$
${ }^{1}$ Koblitz N., Menezes A., Pairing-based cryptography at high security levels, 2005

In Practice

Thank you to Michael Scott, Augusto Jun Devigili and Ben

Algorithm:	Miller's	Elliptic Net
type a	19.8439 ms	40.6252 ms
type f	238.4378 ms	239.5314 ms

average time of a test suite of 100 randomly generated pairings in each of the two cases

Potential Advantages

- Naturally inversion-free.
- Naturally deterministic.
- Since Double and DoubleAdd steps are similar or the same, is independent of hamming weight.
- Lends itself to time-saving precomputation for

Elliptic Nets
Upping the Dimension
Definitions
Properties
Pairings
Pairings in ECC
Computation of Pairings
Using Elliptic Nets
Summary repeated pairings $e_{m}(P, Q)$, e.g. where E, m, and P are fixed.

- Code is simple.

Improving the Algorithm

To compute a given pairing, we have many choices:

- Choice of a point S.
- Choice of lifts of P, Q, S.
- Choice of a subgroup of $E(K)$ containing P and Q, and S.
- Choice of an elliptic net in the given equivalence class.

Elliptic Divisibility
Sequences
Mathematics
Applications
Elliptic Nets
Upping the Dimension

- Choice of scaling of the chosen net.
- Choice of recurrences used to compute the terms of the net.
- Choice of order of operations for the computations. In the algorithm I have given, I have made apparently convenient choices for these things. It is very probable significant improvement is possible.

Summary

- Elliptic nets provide an alternative computational model for elliptic curves.
- The terms of an elliptic net compute the Tate and Weil pairings.
- Other cryptographic applications?

Slides, Article, and Pari/GP scripts available at http://www.math.brown.edu/~stange/

