# Isogenies and the Discrete Logarithm Problem in Genus Three

#### Benjamin Smith

Royal Holloway, University of London

September 6, 2007

# q is odd!

## Curves of genus three



Index calculus on hyperelliptic curves: Gaudry–Thomé–Theriault–Diem Index calculus on non-hyperelliptic curves: Diem

Hyperelliptic and non-hyperelliptic curves of genus three

#### Hyperelliptic curves $H/\mathbb{F}_q$ :

Defining equation:

$$H: y^2 = F(x, z),$$

where F is a squarefree homogeneous polynomial of degree 8  $(\longrightarrow \text{ projective model in } \mathbb{P}(1, 4, 1))$ . Canonical map:  $\pi : H \longrightarrow \mathbb{P}^1$ ,  $(x : y : z) \longmapsto (x : z)$ . Involution:  $\iota : (x : y : z) \mapsto (x : -y : z)$ . Hyperelliptic and non-hyperelliptic curves of genus three

#### Hyperelliptic curves $H/\mathbb{F}_q$ :

Defining equation:

$$H: y^2 = F(x,z),$$

where F is a squarefree homogeneous polynomial of degree 8  $(\longrightarrow \text{ projective model in } \mathbb{P}(1, 4, 1))$ . Canonical map:  $\pi : H \longrightarrow \mathbb{P}^1$ ,  $(x : y : z) \longmapsto (x : z)$ . Involution:  $\iota : (x : y : z) \mapsto (x : -y : z)$ .

#### Non-hyperelliptic curves $C/\mathbb{F}_q$ :

Defining equation:

$$C:F(x,y,z)=0,$$

where F is a homogeneous polynomial of degree 4 (Plane Quartic Model in  $\mathbb{P}^2$ ). Canonical map: embedding  $C \hookrightarrow \mathbb{P}^2$ .

## More on genus three curves

Throughout, we adopt these conventions:

- X always denotes a curve of genus three
- *H* always denotes a hyperelliptic curve of genus three
- C always denotes a non-hyperelliptic curve of genus three (with a plane quartic model).

## More on genus three curves

Throughout, we adopt these conventions:

- X always denotes a curve of genus three
- *H* always denotes a hyperelliptic curve of genus three
- C always denotes a non-hyperelliptic curve of genus three (with a plane quartic model).

The **Jacobian**  $J_X$  of X is a three-dimensional PPAV.

Points of  $J_X$  correspond to divisor classes on X (elements of  $\operatorname{Pic}^0(X)$ ); that is, equivalence classes of formal sums  $\sum_i P_i$  of points on X.

Nonsingular projective embeddings of  $J_X$  are too hard to work with, so we always work with  $\operatorname{Pic}^0(X)$  and X instead.

# Homomorphisms and the DLP

Hyperelliptic and non-hyperelliptic curves have completely different geometries.

H cannot be isomorphic to C

 $\implies$   $J_H$  cannot be isomorphic to  $J_C$  (as PPAVs)

...so we can't translate Index Calculus algorithms between  $J_C$  and  $J_H$ .

But we **can** have homomorphisms  $J_H \rightarrow J_C$ — so we should be able to translate DLPs from  $J_H$  to  $J_C$ :

$$Q = [m]P \implies \phi(Q) = [m]\phi(P).$$

A surjective homomorphism with finite kernel is called an isogeny.

# Our aim

**Aim**: explicit isogenies from hyperelliptic to non-hyperelliptic Jacobians. Oort and Ueno:

every 3-dimensional PPAV is isomorphic (over  $\mathbb{F}_{q^2}$ ) to a Jacobian.

 $\implies$  quotients of  $J_H$  by small subgroups give isogenies to other Jacobians.

Naïve picture of moduli spaces:

(It's on the board!)

If we start from  $J_H$  and take an arbitrary isogeny  $J_H \to J_X$ , then with overwhelming probability we will have an isomorphism  $X \cong C$ , and hence an isogeny  $J_H \to J_C$ .

# Computing explicit isogenies

For almost all choices of kernel, no explicit construction of the isogenies are known.

We will give a general construction for (2, 2, 2)-isogenies.

# Computing explicit isogenies

For almost all choices of kernel, no explicit construction of the isogenies are known.

We will give a general construction for (2, 2, 2)-isogenies.

The Weierstrass points of  $H : y^2 = F(x, z)$ are the eight points  $W_1, \ldots, W_8$  of  $H(\overline{\mathbb{F}_q})$  where  $y(W_i) = 0$ .

The divisor classes  $[W_1 - W_2]$ ,  $[W_3 - W_4]$ ,  $[W_5 - W_6]$ , and  $[W_7 - W_8]$  generate a subgroup  $S \cong (\mathbb{Z}/2\mathbb{Z})^3$  of  $J_H$ . We call such subgroups **tractable subgroups**.

We have derived algorithms to compute isogenies with tractable kernels.

## Geometric methods

Suppose we are given H and  $S = \langle [W_i - W_{i+1}] : i \in \{1, 3, 5, 7\} \rangle$ .

Let  $g: \mathbb{P}^1 \to \mathbb{P}^1$  be a 3-to-1 (trigonal) map such that

 $g(W_i) = g(W_{i+1})$  for each  $[W_i - W_{i+1}] \in S$ .

#### Geometric methods

Suppose we are given H and  $S = \langle [W_i - W_{i+1}] : i \in \{1, 3, 5, 7\} \rangle$ .

Let  $g: \mathbb{P}^1 \to \mathbb{P}^1$  be a 3-to-1 (trigonal) map such that

$$g(W_i)=g(W_{i+1})$$
 for each  $[W_i-W_{i+1}]\in S.$ 

Recillas' **trigonal construction**, applied to  $\pi : H \to \mathbb{P}^1$  and  $g : \mathbb{P}^1 \to \mathbb{P}^1$ , yields a curve X of genus three and a 4-to-1 map  $f : X \to \mathbb{P}^1$ . Donagi and Livné: there is an isogeny  $\phi : J_H \to J_X$  with kernel S.

If Q is a point on  $\mathbb{P}^1$ , then

$$(g \circ \pi)^{-1}(Q) = \{P_1, P_2, P_3, \iota(P_1), \iota(P_2), \iota(P_3)\}$$
$$f^{-1}(Q) = \begin{cases} Q_1 \leftrightarrow \{P_1, P_2, P_3 | \iota(P_1), \iota(P_2), \iota(P_3)\}, \\ Q_2 \leftrightarrow \{P_1, \iota(P_2), \iota(P_3) | \iota(P_1), P_2, P_3\}, \\ Q_3 \leftrightarrow \{\iota(P_1), P_2, \iota(P_3) | P_1, \iota(P_2), P_3\}, \\ Q_4 \leftrightarrow \{\iota(P_1), \iota(P_2), P_3 | P_1, P_2, \iota(P_3)\} \end{cases}$$

Everybody loves commutative diagrams...



# Explicit trigonal constructions

Given S (over  $\mathbb{F}_q$ ), we can compute g using basic linear algebra. this requires solving a quadratic equation over  $\mathbb{F}_q$ .

Given g and H, we can compute a model of X in  $\mathbb{A}^1 \times \mathbb{A}^3$ using linear algebra and modular polynomial arithmetic. (The computation is involved, but essentially easy.) Again, we need to solve a quadratic equation over  $\mathbb{F}_q$ .

The map  $f : X \to \mathbb{A}^1$  is projection onto the first factor.

Having computed g, f, and X, we get R,  $\pi_H$  and  $\pi_X$  "for free".

Finally, the canonical map of X (for the isomorphism to C) can be computed quickly using standard algorithms.

# Rationality

It is important that our isogenies be  $\mathbb{F}_q$ -rational — otherwise they map  $J_H(\mathbb{F}_q)$  into  $J_C(\mathbb{F}_{q^d})$ ; Index Calculus in  $J_C(\mathbb{F}_{q^d})$  requires  $\widetilde{O}(q^d)$  time, so we gain nothing!

We therefore need

- A rational kernel subgroup S
- A rational trigonal map g → 1/2 probability for a given rational S
- A rational model for X
  - $\longrightarrow 1/2$  probability for a given rational S and g

We should be able to use descent to deal with irrational trigonal maps g.

#### How many kernel subgroups are there?

 $H: y^2 = F(x, z)$ , F homogeneous, squarefree, deg F = 8. S(H) := set of  $\mathbb{F}_q$ -rational tractable subgroups of  $J_H$ .

| Degrees of k-irreducible factors of F    | $\#\mathcal{S}(H)$ |
|------------------------------------------|--------------------|
| (8), (6, 2), (6, 1, 1), (4, 2, 1, 1)     | 1                  |
| (4, 4)                                   | 5                  |
| (4,2,2), (4,1,1,1,1), (3,3,2), (3,3,1,1) | 3                  |
| (2, 2, 2, 1, 1)                          | 7                  |
| (2, 2, 1, 1, 1, 1)                       | 9                  |
| (2, 1, 1, 1, 1, 1, 1)                    | 15                 |
| (2,2,2,2)                                | 25                 |
| (1, 1, 1, 1, 1, 1, 1, 1)                 | 105                |
| Other                                    | 0                  |

# How often do we have a rational isogeny?

Summing over probabilities of the different factorization types, we find that for a randomly chosen  $H: y^2 = F(x, z)$ , there is an expectation of

 $\sim 18.57\%$ 

that our methods will produce a rational isogeny from  $J_H \rightarrow J_C$ .

If we can use descent to account for the square root in computing g, we obtain an even better expectation:

 $\sim 31.13\%$ 

• This approach is independent of the size of the DLP subgroup.

- This approach is independent of the size of the DLP subgroup.
- Provide the automatical and the set of th

- This approach is independent of the size of the DLP subgroup.
- These algorithms are "very fast".
- With more general methods for isogenies, more hyperelliptic curves will be vulnerable to O(q) index calculus (including characteristic 2).

- This approach is independent of the size of the DLP subgroup.
- These algorithms are "very fast".
- With more general methods for isogenies, more hyperelliptic curves will be vulnerable to O(q) index calculus (including characteristic 2).
- This approach is not generally applicable in lower genus...

- This approach is independent of the size of the DLP subgroup.
- These algorithms are "very fast".
- With more general methods for isogenies, more hyperelliptic curves will be vulnerable to O(q) index calculus (including characteristic 2).
- This approach is not generally applicable in lower genus...
- ...and probably will not work in higher genus either.

- This approach is independent of the size of the DLP subgroup.
- These algorithms are "very fast".
- With more general methods for isogenies, more hyperelliptic curves will be vulnerable to O(q) index calculus (including characteristic 2).
- This approach is not generally applicable in lower genus...
- S ...and probably will not work in higher genus either.
- As things stand, "security" of genus three hyperelliptic Jacobians depends on the factorization of the hyperelliptic polynomial.

#### Thanks

#### Thanks: to Roger Oyono and Christophe Ritzenthaler