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| Hyperelliptic Curve Cryptography

o 1989-Koblitz proposed hyperelliptic curves
and the associated Jacobian variety, Jg-, to

supply the group.

» There Is ongoing “conversation” about using
elliptic vs. hyperelliptic curves...

See Tanja and Dan’s series of talks at ECC

2006, 2007...
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| WhyHECC?

Security Is related to difficulty of solving the
DLP in a (sub)group of large prime order...

With g > 1, it Is possible to work over a
smaller field while achieving the same group
size as with elliptic curves.

s For genus 1 curves over F,, need ¢ > 2'%.
s For genus 2, can have ¢ =~ 2%'; genus 3,

254
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| What Is a pairing?

A pairing is a map
e: G x Gy — G

where G4, GG}, GG are groups of order r, such that
the following hold:
o bilinear: e(aP,bQ) = e(bP,aQ) = e(P, Q)™

» non-degenerate: for every P € G, P # 0,
there exists () € G, such that e(P, Q) # 1.

—
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| Pairing-based Cryptography

® Destructive: transport the DLP from the curve to a finite field,
where there are more efficient methods for solving the DLP.

— p.6/51



| Pairing-based Cryptography

® Destructive: transport the DLP from the curve to a finite field,
where there are more efficient methods for solving the DLP.

o MOV attack—uses Well pairing

— p.6/51



| Pairing-based Cryptography

® Destructive: transport the DLP from the curve to a finite field,
where there are more efficient methods for solving the DLP.

o MOV attack—uses Well pairing

» Frey-Rlck attack—uses Tate pairing

— p.6/51



| Pairing-based Cryptography

® Destructive: transport the DLP from the curve to a finite field,
where there are more efficient methods for solving the DLP.

o MOV attack—uses Well pairing

» Frey-Rlck attack—uses Tate pairing

® Constructive:

— p.6/51



| Pairing-based Cryptography

® Destructive: transport the DLP from the curve to a finite field,
where there are more efficient methods for solving the DLP.

o MOV attack—uses Well pairing

» Frey-Rlck attack—uses Tate pairing

® Constructive:

» One-round three person key agreement

— p.6/51



| Pairing-based Cryptography

® Destructive: transport the DLP from the curve to a finite field,
where there are more efficient methods for solving the DLP.

o MOV attack—uses Well pairing

» Frey-Rlck attack—uses Tate pairing

® Constructive:
» One-round three person key agreement

» l|dentity-based encryption

— p.6/51



| Pairing-based Cryptography

® Destructive: transport the DLP from the curve to a finite field,
where there are more efficient methods for solving the DLP.

o MOV attack—uses Well pairing

» Frey-Rlck attack—uses Tate pairing

® Constructive:
» One-round three person key agreement
» l|dentity-based encryption

» Short digital signatures

— p.6/51



| Pairing-based Cryptography

® Destructive: transport the DLP from the curve to a finite field,
where there are more efficient methods for solving the DLP.

o MOV attack—uses Well pairing

» Frey-Rlck attack—uses Tate pairing

® Constructive:
» One-round three person key agreement
» l|dentity-based encryption
» Short digital signatures

o And more!

(Sakai, Ohgishi, Kasahara, Joux, Boneh, Franklin,...) |
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| Curves for Pairings

What curves do we use”?

#® For general (hyper)elliptic curve cryptography,
somewhat “randomly" generated curves can be used.

But...

#® For pairing-based systems, certain properties are
required for the curves, such as:

s embedding degree k—want "small enough"”

—
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| Pairing-friendly Curves

o +#J-(F,) divisible by a large prime r so the DLP in the
r-order subgroup is resistant to known attacks.

s prime r > 210

# Minimal embedding field large enough so that the DLP
In it withstands index-calculus attacks.
P qk’ > 21024

#® Embedding degree k& small enough for the pairing over
IF» to be efficiently computable.

s say 2 < k <30g |
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| Mathematical Framework

® Let[F, be afinite field with ¢ = p™ elements.

# A hyperelliptic curve C of genus g over F, is defined
by a non-singular equation of the form

Cry’ + hz)y = f(2),

where h, f € F [z],deg(f) =29 + 1,deg(h) < g, f
monic, g > 0 € Z.

When g = 1 we call C' an elliptic curve.

B
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| Mathematical Framework

o |f E'is an elliptic curve, then the set of [F-rational
points, £ (IF,), forms a group.

® For hyperelliptic curves with ¢ > 2, must use the group
of ¥ ,-rational points (divisors) of the Jacobian of C.

s The Jacobian of C, J, Is an abelian variety of
dimension g such that

Jo(F,) < Pic(F,)

where Picd(F,) = Divy(F,)/Prince (F,), the degree zero
divisor class group of C' over F,,. |
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| Mathematical Framework

» Theorem:(\/q — 1)* < #Jc(F,) < (/g + 1)%.
s S0 #Jo(F,) ~ ¢ when ¢ is large compared
to g.

» For g > 2, one can work over a smaller F, and
yet achieve a group of similar size to that of
an elliptic curve.

B
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| Mathematical Framework

® Jo(F,)|r] denotes the set of r-torsion points of
Jo(F,), i1.e. all P € Jo(F,) such that [r|P = O.

#® When over a field of characteristic p > 0, Jo Is said to
have p-rank s if the subgroup of points of order p (over
F,) has cardinality p°.

—
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| Mathematical Framework

® Jo(F,)|r] denotes the set of r-torsion points of
Jo(F,), i1.e. all P € Jo(F,) such that [r|P = O.

#® When over a field of characteristic p > 0, Jo Is said to
have p-rank s if the subgroup of points of order p (over
F,) has cardinality p°.

s C'isordinary if Jo has p-rank g;

s Cis supersingular if Js is isogenous over FF, to the
product of supersingular elliptic curves (an elliptic

curve iIs supersingular if it has p-rank 0). |
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| Pairings

Let » be a large prime dividing #.Jc(F,), coprime to ¢, and p, be
the r-th roots of unity.

We have the Well pairing, Tate pairing, eta pairing, ate
pairing...

The reduced Tate pairing is a bilinear non-degenerate

L e X Jo(F ) /rdo(F o) —

where
t(P,Q) = fp(Dg) @ V",

These pairings can be computed using a generalization of
Miller’s algorithm. |
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| Embedding Degreek

# Traditionally, the pairings were viewed as mapping the
DLP into the smallest extension of ¥, containing ..
That is, F,(x,.) = F» for some integer k.

® The degree of this extension was called the
embedding degree k.
So k is the smallest positive integer such that r | ¢* — 1.

#® Thus the security of a DL cryptosystem has been
understood to be related to the size of k. (Galbraith

suggests k/g.) |
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| Minimal Embedding Field

Galbraith and Rubin-Silverberg recognized an
exception:

In the supersingular case It is possible for the
minimal embedding field to be I /.

We will show that if ¢ = p™ for m > 1, then

» the difference in the field exponents of [F .

and the minimal embedding field can be as
much as a factor of m.

»# this includes the non-supersingular case as
well. |
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| Implications

Since it may be possible for pairings to embed
Into a significantly smaller field than IF «, we note
that:

o Attacks on the DLP can be dramatically faster
than expected.

» There may exist curves used in DL systems
that are not as secure as believed.

» A modified parameter needs to be used to

Indicate security. |
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| Minimal Embedding Field

Let a be a positive integer,  a prime, r 1 a.
The order of « modulo r, denoted by ord.a, is the smallest
positive integer x such that a* = 1 mod r.

Lemma 0.1. Let ¢ = p™ for some prime p and
positive integer m, r be a prime not equal to p,
and k£ be the smallest integer such that

¢" =1 mod r. Then

L ord,p

~ ged(ord,p,m)’ |
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| Minimal Embedding Field

» When ¢ is not prime, the minimal embedding
field is

]Fpordrp — ]Fka7

where D = ged(ord,.p, m).

» It suffices to have a positive rational number
k', not merely an integer k, with ¢* — 1
divisible by the prime r.

. k/ _ ord,p
m

s The minimal embedding field is I .. |
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| Fleld Diagram

m Fw = Fgorapp/m = Fprp where D = ged(ord,-p, m)

—

— p.19/51



| Examples

Example 0.1. Let »r = 2P — 1 be prime, and ¢ = 2P*¢, for
integer1 <s<p+1, s #p.

For each s, there exists at least one non-supersingular
elliptic curve over F, with |E(F,)| = 2°r.

#® These curves have embedding degree k = p, SO
]:Fqk — ]:F2p(p—|—8) .

® Butgced(ord,2,p + s) = 1, so the minimal embedding
field is F9», and these extension degrees differ by a

factor of A = p + s.
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I Exam pleS(preprint Galbraith, McKee, Valenca)

Example 0.2. Family of (ordinary) genus 2 curves over F,
where ¢(I) = I* for any prime (power) [. The associated
Jacobian has size n(l) = * £ P+ 1> £ 1+ 1.

® These curves have embedding degree k = 5.

® However, if n(l) =1*+1° +1? + 1+ 1, then prime r
dividing n(l) also divides I — 1 = ¢°/2 — 1, so in fact the
minimal embedding field cannot be larger than F s/-.

# Dramatic difference in how large [ must be chosen for
curve to remain secure; curve may have been such

that ¢° > 21?4, but probably wasn’t checked for
¢P/? > 21024,
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| Examples

Example 0.3. The genus 2 curve over 267 given by the
characteristic polynomial of Frobenius with coefficients
(a1,a9) = (—1,2%7 + 2178 Then #Jo(Fyeer) = 217 - 17 - 1,

o 24(89)_|_1 . .
where r = =——"= Is prime.

#® The embedding degree is k£ = 8.

#® Since log, r = 351 and klog, ¢ = 2136, we have a
351-bit DLP on the curve, and a 2136-bit DLP In F(’;k
which Is considered hard.

® However, since ord, 2 = 712, then in the minimal

embedding field we have only a 712-bit DLP, which is
considered easy. |
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| Examples

Example 0.4. The genus 2 curve over F,i36 given by the
characteristic polynomial of Frobenius with coefficients
(Cll, CLQ) — (—1, 2136 + 2124). Then #JC(F2136) — 2124 17 -7,

o 24(37)_|_1 . .
where r = =——"= Is prime.

® The embedding degree is k = 37.

#® Since klog, ¢ = 5032, we have a 5032-bit DLP in I,
which is considered hard.

® However, since ord,2 = 296, then in the minimal
embedding field we have only a 296-bit DLP, which is

considered easy. |
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| Security Indicator

Solving the DLP both on the (Jacobian of the) curve and in
the finite field containing the embedding, F ., should be
computationally infeasible.

Compare the size of the minimal embedding field with size
of Jc(Fq):

ord,p

log p
log q9 mg

~ord,p K

—
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| Security Indicator £'/g

Thus a security indicator should be £'/g, where

k/ _ ord,.p
X

o Need to adjust standards specifications to
consider the minimal embedding field.

s In particular for non-supersingular elliptic

curves over binary fields...
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| Security Standards

The MOV condition is checked when validating parameters
for elliptic curves over binary fields.

#® |EEE P1363: MOV condition "ensures that an elliptic
curve IS not vulnerable to the reduction attack of
Menezes, Okamoto and Vanstone."

# For afield size ¢ and base point order r, algorithm
verifies ¢* # 1 mod r for any : < B, where B is a

selected MOV threshold.
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| Security Standards

We suggest appropriate modifications be made in the
standards to account for the minimal embedding field.

® Check what we call the subfield-adjusted MOV
condition:

For field size ¢ = p™ and base point order r,
p' # 1 mod r for any i < mB.

See H. ePrint 2007\ 343. |
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| Sizes for Security

One wants discrete logarithms in .+ to be of

approximate difficulty as elliptic curve discrete
logarithms over IF,..

So if we have a (sub)group of order », and r Is a
160-bit prime, then one would like

qk’ > 21024_

—
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I Minimal Embedding Field Summary

# Pairings embed into y, which lies In Fpora,p = F w
where k' = 22,

# Conceivable for the extension degree of this field to
differ by a factor of m from that of I ».

# Critical to check when working over fields of small
characteristic; if ¢ = p, no discrepancy occurs.

® Use 2 parameters: embedding degree £ for
computations; % as a security indicator.

#® Modify standards (such as IEEE P1363). |
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| Parameter p

» Itis desirable for #.J-(F,) to be prime or
near-prime, to avoid known attacks.

» One examines the ratio p = 2829

logy 7

o For secure and efficient implementation, the
ideal situation Is to have p ~ 1,

Currently the best ratio achieved is p ~ 5/4,

by Brezing and Weng.
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| Pairing-friendly Curves

o +#J-(F,) divisible by a large prime r so the DLP in the
r-order subgroup is resistant to known attacks.

s prime r > 210

# Minimal embedding field large enough so that the DLP
In it withstands index-calculus attacks.
P qk’ > 21024

#® Embedding degree k& small enough for the pairing over
IF» to be efficiently computable.

s say 2 < k <30g |
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| Size ofk

In general, k£ is enormous. However:

® Supersingular elliptic curves have k < 6.
# |In characteristic 2, we have k£ < 4.
» In characteristic 3, we have k < 6.
s Over prime characteristic F, with p > 5, we have

k< 2.

While we’d like £ to be small, we’d like the flexibility of
making k larger for more security, if needed.

So we try higher genus and/or non-supersingular curves. |
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| Size ofk

» Supersingular curves of genus 2 have k£ < 12.

» Ordinary genus 1 and genus 2 curves in
special cases can achieve various k < 12.

—
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| Size ofk

» Supersingular curves of genus 2 have k£ < 12.

» Ordinary genus 1 and genus 2 curves in
special cases can achieve various k£ < 12.

s We will focus on non-supersingular,

non-ordinary hyperelliptic curves of genus
2.

» We will give a family of such curves with
small embedding degree (e.g. k=8,13,16).

—
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| Pairing-Friendly ¢ =1

Use CM methods to construct ordinary elliptic curves:
Miyaji-Nakabayashi-Takano (2001)

Cocks-Pinch (2001)

Barreto-Lynn-Scott (2002)
Galbraith-McKee-Valenca (2004)
Dupont-Enge-Morain (2005)

Brezing-Weng (2005)

Barreto-Naehrig (2005)

© © o o o o o o

Freeman (2006)

See Freeman-Scott-Teske’s “A Taxonomy of Pairing-Friendly Elliptic |
Curves”
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| Pairing-friendly ¢g = 2

o Galbraith-McKee-Valenca (2004)
o Hitt (2007)
o Freeman (2007)

— p.35/51



| Pairing-Friendly g =2

® Galbraith-McKee-Valenca (2004)—ordinary curves
® Hitt (2007)—-2-rank 1 curves

Give families of non-supersingular hyperelliptic curves with small
embedding degree.

Downfall: No explicit curve construction (only represent isogeny
classes of Jacobians by characteristic polynomial of Frobenius).

® Freeman (2007)—ordinary curves

Constructs individual curves over prime fields (following
Cocks-Pinch method, using CM).

Downfall: p ~ 8 too large for practical implementation. |
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I Complex Multiplication Method for Elliptic Curves

For a given square-free D > 0, construct an elliptic curve E with
CM by Q(v—D).
® Fix D, kL, find t, r, g satisfying:

& r prime, g prime (or prime power),

s r|qg+1—1t(so E(F,) has an r-order subgroup),

s r|¢"—1landrfq¢ —1forl<i< k(soembedding
degree k),

s Dy? = 4q — t? for some integer y (called the CM
equation).
® Find aroot j of the Hilbert class polynomial Hp(z); j is the

j-invariant of a curve E(IF,). |

— p.37/51



| Curves.of Genus 2

® Freeman:

» Find primes ¢, r and characteristic poly’l of Frobenius
h(z) of ordinary curve over I, with embedding degree k.

» Construct curve using roots of Igusa class polynomials
for the quartic CM field K = Q[x]|/(h(x)).
® Galbraith, et al: Let ®;(x) be the k-th cyclotomic polynomial.

o Parametrize quadratic ¢(/) such that ®x(q(l)) splits as
n1(l)nsa(1).

» Represent quadratic families by the characteristic
polynomial of Frobenius of the ordinary curve over F,,.

» Unable to generate any curves using the CM method.
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| Our Approach

#® Give a parametrization of a family of large integers

N, = Q;fjll for » > 0 and odd L > 5.

#® Determine the embedding degrees for subgroups
having these orders when they are prime, and for
various F,.

#® Associate with each prime a sequence of genus 2
curves over IF, , such that N, | #Jc(F,).

® The F, -isogeny class of the Jacobian of C'is

determined by the characteristic polynomial of
Frobenius. |
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| Mathematical Framework

» In particular, for g = 2 there exist integers
a1, as such that the characteristic polynomial

of Frobenius iIs
ch (t) — t* + altg + &2752 + qaq 1t + q2,

where the a; and a, determine the [ -iIsogeny
class of J..

o #Jo(F,) =1+ai+as+ qay + ¢°.

—
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| Heuristics

N,.;, will be of the form 4+ where L is prime and
A IS a positive integer.

If the behavior follows that of the primes fﬁf_‘f

and there is no algebraic factorization, then we
would expect:

» Iinfinitely many such primes,

» the number of such primes with L < M is
asymptotic to <52 for fixed A.

Experimental evidence seems to confirm this for r = 0, 2, 3. |
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| The Setup

Let ¢ = 2™ and C' be a genus 2 curve over [, of
the form

v’ + oy = ax” + ba® + cx® + dw
where a # 0, b, ¢, d arbitrary.
o (C'Is 2-rank 1.

» We will identify C' by the (a4, as), which

determine the I -iIsogeny class of the
Jacobian. |

— p.42/5]



| Family of Primes

Let N, ; = 222;Lj11 be prime for r > 0, odd L > 5.
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| Family of Primes

Let NV, =

QZTH L be prime for » > 0, odd L > 5.

® LemmaO0.l. Letg=2",where1 < m <2"(L—-1)—1,
and also allow m = L“ In the case that r = 0. Then

—
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QZTH L be prime for » > 0, odd L > 5.
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| Family of Primes

Let N, 1 = L be prime for r > 0, odd L > 5.

22”’+1
® LemmaO0.l. Letg=2",where1 < m <2"(L—-1)—1,
and also allow m = L“ In the case that r = 0. Then

s k=2"t""when gcd(ordy, ,2,m) = 2'L for
ie€{0,...,r—1},

s k=2""""L when gced(ordy, ,2,m) = 2* for
ie{0,...,r+ 1}

—
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| Family of Primes

Let N, 1 = L be prime for r > 0, odd L > 5.

22”’+1
® LemmaO0.l. Letg=2",where1 < m <2"(L—-1)—1,
and also allow m = L“ In the case that r = 0. Then

s k=2"t""when gcd(ordy, ,2,m) = 2'L for
ie€{0,...,r—1},

s k=2""""L when gced(ordy, ,2,m) = 2* for
ie{0,...,r+ 1}

s kis always “small"; & < (log ¢)? for L > 15.

—
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| Family of Primes

Let N, 1 = L be prime for r > 0, odd L > 5.

22”’+1
® LemmaO0.l. Letg=2",where1 < m <2"(L—-1)—1,
and also allow m = L“ In the case that r = 0. Then

s k=2"t""when gcd(ordy, ,2,m) = 2'L for
ie€{0,...,r—1},

s k=2""""L when gced(ordy, ,2,m) = 2* for
ie{0,...,r+ 1}

s kis always “small"; & < (log ¢)? for L > 15.

o k<7 |
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| Genus 2. Curves

Theorem 0.6. [Maisner and Nart] There exists a curve of
the form y? + 2y = ax® + b’ + cx? +dx, a # 0,b, ¢, d
arbitrary, with characteristic polynomial of Frobenius
f(t) = t* + a1t3 + ast* + qait + ¢ if the following hold:
1. ay IS 0dd
2. la] < 4./q
3. (a) 2|a1]/q —2q < ax < at/4 + 2q
(b) a, is divisible by 2/™/2]
() A = a% — 4a, + 8¢ is not a square in Z

(d) 0 = (as + 29)* — 4qa? is not a square in Z, (the 2-adic

Integers). |
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| Proposition

Proposition 0.7. For odd L > 9, the following a; and a,
satisfy the conditions for the existence of the genus 2
curves in the theorem of Maisner and Nart.

® Whenm = £ let (a1, a2) = (1, —2™).

® When [25L] <m < 27(L—1) — 1, let

(a1, a) = (—1,2m 4 22m=2"L)
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| Main Theorem

Theorem 0.8. Let N, = % be a prime for some r > 0
and odd L > 9.

® Ifr =0, thenform = % there exists a genus 2 curve
over Fom with the property that #Jo(Fom) =2 -3 - Ny 1,
and a; = 1,ay = —2™.

# Ifr > 0, then for each integer m in the interval
[22L] <m < 27(L — 1) — 1, there exists a genus 2
curve over Fy» With the property that

#Jo(Fam) = 2%(2%" + 1)N,.1, where x = 2m — 2" L, and

a1:—17a2:2m—|—2$. |
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| Parameter, — & -
32

For this family of curves, we have p ~ 2r_17(72+1),
which Is often near 1 and at most 2.

» When m = £, we have p ~ 21,
» When (Tglﬂ <m <2 (L—1)— 1, the ratio

can be as small as p ~ 3(L_1) and at most

2
o (L—1)"

p o~ 2

This suggests potential for secure and efficient

Implementation. |
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Table of Family of Curves

k L r m ai a2 P

8 | 37 | 2| 111 | -1 | 2111 427 | 32
8 89 | 2| 267 | -1 | 2267 4 2178 | 3/2
8 | 149 | 2 | 447 | -1 | 2447 42298 | 3/2
13 | 13 | 3| 80 | -1 | 280425 | 53
16 | 13 | 3| 91 | -1 291 4 278 2

23 | 23 | 2| 72 | -1 | 2724252 | g5/3
23 | 23 | 2| 80 | -1 | 2804268 | g/5
26 | 13 | 3| 72 | 1 272 4+ 240 | 3/2
26 | 13 | 3| 88 | -1 | 2884272 | 9/5
37 | 37 | 2| 104 | -1 | 21044260 | 7/5
37 | 37 | 2| 112 | -1 | 2124276 | 3/2
37 | 37 | 2| 120 | -1 | 212049292 | 5/3
37 | 37 | 2| 128 | -1 | 2128 42108 | g5
37 | 37 | 2| 136 | -1 | 2136 12124 | 2
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Table for Security Comparison

Kk L r m ai ao logo Ny, | kloggq | mk'
8 | 37 | 2| 111 | -1 | 2t 4 o™ 143 888 296
8 | 89 | 2| 267 | -1 | 2267 4 2178 351 2136 712
8 | 149 | 2 | 447 | -1 | 2447 4 2298 591 3576 1192
13 | 13 | 3| 80 | -1 | 2804256 95 1040 208
16 | 13 | 3| 91 | -1 | 291 4278 95 1456 208
23 | 23 | 2| 72 | 1 272 4 252 87 1656 184
23 | 23 | 2| 80 | -1 | 280 4268 87 1840 184
26 | 13 | 3| 72 | 1 272 4 240 95 1872 208
26 | 13 | 3| 88 | -1 | 28 4272 95 2288 208
37 | 37 | 2| 104 | -1 | 2104 4 260 143 3848 296
37 | 37 | 2| 112 | -1 | 21124276 143 4144 296
37 | 37 | 2| 120 | -1 | 2120 4292 143 4440 296
37 | 37 | 2| 128 | -1 | 2128 4 2108 143 4736 296
37 | 37 | 2| 136 | -1 | 2136 4 2124 143 5032 296

— p.49/5]



I Yet to do...

#® Construct the curves: efficient systematic way of
determining the explicit coefficients of a curve when
given the (a1, as) parameters is not yet established.

s CM-method for p-rank 17

#® Examine ordinary curves using similar technigues;
construct using CM-methods?

In general: We still need constructions of non-supersingular

—

— p.50/51

pairing-friendly curves of genus g > 2.



| Questions?

— p.51/5]
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