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Adaptive post-processing of short-term wind 

forecasts for energy applications

C. Sweeney and P. Lynch
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ABSTRACT

We present a new method of reducing the error in predicted wind speed, thus enabling better management of wind energy 
facilities. A numerical weather prediction model, COSMO, was used to produce 48 h forecast data every day in 2008 at 
horizontal resolutions of 10 and 3 km. A new adaptive statistical method was applied to the model output to improve the 
forecast skill. The method applied corrective weights to a set of forecasts generated using several post-processing methods. 
The weights were calculated based on the recent skill of the different forecasts. The resulting forecast data were compared 
with observed data, and skill scores were calculated to allow comparison between different post-processing methods. The 
total root mean square error performance of the composite forecast is superior to that of any of the individual methods. 
Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The European Union has endorsed a mandatory target of 20% share of energy from renewable sources in the overall 
community energy consumption by 2020,1 while the Irish Government has committed to delivering a significant growth 
in renewable energy with a 2020 target of 33% of electricity consumption.2 A large portion of the growth in renewable 
energy is expected to come from wind energy.3 As wind energy becomes a larger proportion of the overall energy supply, 
wind energy management will become a crucial issue. The available power of wind varies with the cube of the wind 
speed. Current forecasts have wind speed errors of the order of 2 m s−1, and this can cause substantial errors in the pre-
dicted amount of wind power.

It is difficult to store electricity, so wind power predictions are established as valuable tools to integrate wind energy 
into the electricity supply. The prediction of the power output of wind farms is mainly used for grid operation, power 
production scheduling and trading and is mostly concerned with a time window of 48 h.

Wind speed forecasting can be achieved using two approaches. The first uses past wind data, which can be obtained 
easily by wind farm operators onsite. The data may then be analysed with different statistical models. However, informa-
tion about atmospheric dynamics is important for forecasts of the range considered here (48 h), and so a good forecast 
model for this range must include meteorological models.

Most meteorological forecast systems use data from a global forecast model to drive a regional numerical weather 
prediction (NWP) model, which performs dynamical downscaling. One way to increase the skill of wind forecasts is to 
run the NWP model at a higher resolution. The value of running NWP models at higher horizontal resolutions is still an 
open question. A previous study4 suggested that increasing model resolution towards 10 km allows the definition of the 
major meso-scale topographic features of the region and their corresponding atmospheric circulations. Going to resolu-
tions higher than 10 km may only show small improvements in verification statistics. An added problem with higher 
resolution forecasts is that position and/or timing errors in the forecasts will strongly affect traditional objective verifica-
tion scores. A good way to improve NWP data is to use them as input to a statistical downscaling process.



1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 

59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 

Wind Energ. 2010; 00:000–000  2010 John Wiley & Sons, Ltd.

DOI: 10.1002/we

Post-processing of short-term wind forecasts C. Sweeney and P. Lynch

2

Landberg et al.5 give an overview of the early (2003) methods used for short-term prediction of wind farm power 
output. Most prediction systems combine NWP model output, input of observations and some further statistical method 
to produce the required output. They also raise the point that increasing the skill in forecasting for wind energy has a 
beneficial commercial impact.

Costa et al.6 wrote a later (2008) review on wind power short-term prediction. Some methods have been developed 
for very short-term predictions but not extended to time horizons useful for trading (≥48 h). Costa et al. note that it is 
difficult to carry out a quantitative comparison between a large number of models and methods, as exactly the same data 
must be used by all models and methods. Researchers have come to different conclusions on the relative performance of 
forecasting methods, and indeed on the importance of different input parameters, local topography and NWP settings, in 
predicting wind power. They point out that it would be an advantage to all researchers in this area to adopt a standard 
for measurement of performance of models.

The research community is considering different ways to improve the wind forecast skill, such as running a collection 
of ensemble forecasts7 or using statistical post-processing. Calibrated ensemble forecasting has been used to predict the 
probability density function of generated wind power from 1 to 10 days ahead at five UK wind farm locations.8 It was 
found to outperform time series models and compare well with NWP models, although the advantage for short time scales 
(<48 h) was less pronounced.

Limited-area ensembles have been post-processed using Bayesian model averaging to provide 48 h probabilistic fore-
casts of wind speed.9 This method produced higher skill scores than using the raw ensemble data. Running limited-area 
ensembles requires considerable computational resources, however, which may not be practical.

A good description of the dynamical/statistical approach to forecasting is given by Salcedo-Sanz et al.,10 who used a 
bank of neural networks for the final statistical downscaling process for a number of different model inputs. This was 
found to give better performance than using a single neural network (as in Ref. 11).

Model output statistics (MOS) is another popular technique for improving forecast skill from NWP data. MOS uses 
multiple linear regression to produce an improved forecast at specific locations by using model forecast variables and 
prior observations as predictors.12 A recent study found that MOS performs better than a Kalman filter or 7 day bias 
removal.13 However, MOS requires a rather long training data set and therefore can be difficult to apply to modelling 
systems that undergo major changes and to observing networks and sites that lack a long and complete historical record.

The Kalman filter method14 does not require a long training period and has successfully been applied to NWP wind 
forecasts.13,15 It consists of a set of mathematical equations that provides an efficient computational solution of the least 
squares method with minor computational cost and easy adaptation to any alteration of the observations. Louka et al.16 
applied non-linear Kalman filters using third-order polynomials to post-process NWP wind speed data. In all cases, the 
Kalman filter was found to produce better bias and root mean square error (RMSE) scores than using direct model output. 
Louka et al. suggest that higher resolution NWP models may not be worth the additional computational expense as, in 
their case, the same skill could be achieved by applying the Kalman filter to lower resolution NWP models.

Many of the forecasting methods used for wind energy have used the same overall structure of the dynamical/statisti-
cal approach. A global model supplies data to drive a regional NWP model. The output from the regional NWP model 
is used as input to a statistical process. Different statistical processes can be used for the last step, as mentioned earlier.

The skill of forecast models, as calculated by validating the forecast variables against observations, is often compared 
with the skill of direct model output. However, even a simple process such as rolling-bias correction may significantly 
improve the forecast skill if the direct model output contains a bias. It seems that an important measure of performance is to 
compare the skill of the proposed method with both direct model output and bias-corrected model output. In this paper, we 
take such an approach. The skill scores of wind forecasts produced from raw model output are compared with those pro-
duced by rolling-bias and rolling-trend correction, and the Kalman filter (KAL) method. We then introduce a simple scheme 
to produce a composite wind forecast by combining all available forecasts with weights based on recent forecast skill.

Model data will be taken from NWP runs at 10 and 3.3 km. This will enable the benefit of running at higher resolu-
tions to be compared with the increase in skill obtained by statistical post-processing. Traditional skill scores will be used 
to compare the resulting forecasts with observed hourly wind speeds at seven different synoptic stations over a full year.

Section 2 gives a brief description of the NWP model and describes the methods used to post-process the forecast data 
and the data verification methods used. Section 3 presents the results and compares the performance of the different 
forecast methods. Section 4 consists of the discussion and conclusions.

2. METHODOLOGY

2.1. The COSMO model

The COSMO model is a non-hydrostatic limited-area atmospheric prediction model. COSMO is based on the primitive 
thermo-hydrodynamical equations describing compressible flow in a moist atmosphere. The model equations are formu-
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lated in rotated geographical coordinates and a generalized terrain following the height coordinate. Many processes are 
taken into account by parameterization schemes. For more information about COSMO, refer to the COSMO website.17

Data used to drive the COSMO model were taken from the ECMWF IFS TL799L91 deterministic forecast, which has 
a horizontal resolution equivalent to 25 km. The midnight analysis and forecast were retrieved each day, with boundary 
data available every 3 h. COSMO was run without assimilation of additional observations.

The computational domains used for the 10 and 3 km forecasts are shown in Figure 1. The 10 km forecast used a 
rotated lat/lon grid of 0.09°, with 40 vertical levels and a time step of 60 s. The output of the 10 km forecast was used 
to drive the 3 km forecast (one-way nesting). The 3 km forecast used a rotated lat/lon grid of 0.03°, with 50 vertical levels 
and a time step of 20 s. Output data were saved every forecast hour from 00 to +48 h.

2.2. Forecast verification

Hourly wind speed data were obtained from Met Éireann (the Irish National Meteorological Service) for seven different 
synoptic stations around Ireland, at the locations shown in Figure 2. The wind speed data refer to the wind speed observed 
at a height of 10 m above the ground. Hourly output data are also available from the COSMO models at a height of 10 m. 
However, the locations of the grid points used by the COSMO models may not coincide with the locations of the synop-
tic stations. Therefore, forecasts were produced for these seven locations by interpolating the 10 m wind speeds from the 
closest grid points. The forecast wind speeds could then be compared with the observed wind speeds. The skill scores 
used for the wind speed forecasts were the mean error (ME) and the RMSE.

The distances from the station to the surrounding model grid points were calculated using latitude and longitude values. 
The interpolated wind speed could then be calculated using inverse distance weighting. Wind speeds were interpolated 
from the NWP model grid points to the station location in this way using the closest three model grid points. This inter-
polation method was compared with using only the closest model grid point over a test period of 3 months for the inland 
station located at Birr. Results showed that the three-point interpolated wind speeds gave better values for ME and RMSE 
than using the closest grid point alone for both the 10 and 3 km forecasts (Table I). It is possible that different interpola-
tion techniques may give better values for different stations at different forecast resolutions. However, in this paper, we 
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Figure 1. Computational domain for 10 and 3 km forecasts.
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try to adopt a uniform post-processing method for all forecast data, and so we have chosen to use the three-point inter-
polated wind speeds for all stations and both forecast model resolutions.

2.3. Statistical post-processing methods

Some simple post-processing methods were applied to the raw model data for wind speed to see if this would improve 
the skill of the forecasts. The first method used was a short-term rolling-trend correction (STT). This method calculated 
the average error in forecast wind for each forecast hour over the previous 28 days. The forecast errors for the +25 to 
+48 section of the previous day’s forecast cannot be calculated, as the observations were not yet available. These errors 
were set to equal the mean of the 0 to +24 errors. STT resulted in a different error correction for each forecast hour, 
which was then applied to that day’s forecast to produce the STT-corrected forecast.

The second method, the short-term rolling-bias correction (STB), worked in a similar way to the STT, except it only 
used the previous 3 days and averaged over all forecast hours to produce a single error correction value, which was then 
applied to all forecast hours to produce the STB-corrected forecast for each day.

Finally, a simple Kalman filter was used to correct the forecast (KAL). The Kalman filter is described in papers such 
as Ref. 15, and only a brief overview is given here. Let Xt be a state vector, denoting the systematic part of the error of 
our NWP model at time t. We do not know Xt, and we base our initial guess on Xt−1 from the previous day:

 X Xt t− −
= 1  (1)

Let ft be our NWP forecast for the variable of interest (wind speed) at time t. We write the predictor vector as Ht = [ft1]. 
The Kalman-predicted wind speed is then given by

 µt t tH X= −  (2)

Once an observation is made, the actual wind speed wt is known, and the error in our prediction is calculated: et = wt − µt. 
The state vector Xt must now be updated. Following Ref. 18, we use a sliding window with a width of 7 days. We cal-

Malin Head

Belmullet

Valentia

Cork Airport

Dublin Airport

Casement
Birr

Figure 2. Synoptic stations used for forecast verification.

Table I. Test scores for interpolating wind speeds.

NWP resolution (km) Closest point Three-point

ME

 10 2.099 1.946

  3 1.838 1.799

RMSE

 10 2.502 2.351

  3 2.251 2.209
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culate the sample covariance V of et over the past 7 days. Similarly, we calculate the sample covariance matrix W of Xt 
over the past 7 days. We use W to give an initial estimate of the state variance matrix P:

 P P Wt t− −= +1  (3)

We now use Pt− and V to calculate the Kalman gain matrix:

 K P H H P H Vt t t

T

t t t

T= +( )− −

−1

 (4)

The Kalman gain determines how easily the filter will adjust to new conditions. Once we have Kt, we can calculate an 
updated value for our state vector:

 X X K et t t t= +− .  (5)

Finally, we update P:

 P I K H Pt t t t= −( ) −  (6)

The initial values X0 and P0 must be set, and we use

 X P0 0

1

0

1 0

0 1
=







=







 (7)

These values do not seriously affect the results of the algorithm as they soon converge to their Kalman-estimated values. 
We now have a method for the recursive estimation of the state vector Xt.

In all statistical post-processing methods (STT, STB, KAL), the wind speed was constrained to be non-negative.

2.4. The composite post-processing method, COM

If the model is run at 10 and 3 km and each raw forecast is post-processed using three different methods, there will be 
eight different forecasts to choose from. If any one method consistently performed the best, we could simply choose that 
forecast and ignore the others. However, it is often the case that different methods attain the best skill scores at different 
times and for different station locations. Therefore, we produced a composite forecast that seeks to combine all available 
forecasts with weights based on their historical performance.

This is done by taking the absolute value of the mean wind speed error over the previous 28 days for each forecast 
method. This will result in eight error values, erri, one for each of the eight available forecasts, fci. These errors are used 
to calculate the weights to apply to each forecast, as described in equation (8). The composite forecast (COM) is given 
by the sum of the weighted forecasts. Figure 3 gives an outline of this process.
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The weights used by the COM method are recalculated every day, thus enabling the method to adapt to changing synoptic 
conditions. We experimented with different sizes of sliding windows to use when calculating the weights. A test was carried 
out using window widths of 7, 14, 21 and 28 days. The COM method was tested using the whole year of data with each 
window width. All of the window widths produced very small overall MEs, and the 28 day window was found to produce 
slightly better RMSE values. Therefore, we chose a window width of 28 days to use with the COM method in this paper.

It should be noted that the COM method was applied to all available forecast data. In this paper, we used three methods, 
STT, STB and KAL, to post-process NWP data supplied at two resolutions, but the method could just as easily include 
forecast data produced by any of the other methods mentioned in Section 1.
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3. RESULTS

A 48 h forecast was run for each day in 2008. The first 28 days were used as a training period for the statistical post-
processing methods, and skill scores were based on forecasts for the rest of the year. Results for the 10 km forecast show 
that ME is reduced at all stations by all post-processing methods, as shown in Table II (the best score is shown in bold 
type). However, the lowest ME was produced by different post-processing methods at different stations. STT performed 
best at two stations, STB was best at another two and KAL was best for the remaining three.

Results for the 3 km forecast also show that post-processing reduced ME at all stations (Table III). Again, no single 
method produced the lowest ME at all stations, with KAL producing the lowest ME at four stations and STB performing 
the best at the other three stations. It is interesting to note that the method that produced the lowest ME for the 10 km 
forecast was not always the method that produced the lowest ME for the 3 km forecast. The lowest ME was given by a 
different post-processing method for 3 km than 10 km at three of the seven stations. Furthermore, the higher resolution 
forecasts did not always produce lower ME scores. At two of the stations, the 3 km forecast produced a slightly worse 
ME than the 10 km forecast.

The RMSE was also calculated for each station for each forecast resolution. Results are shown in Tables IV and V. 
Post-processing resulted in lower RMSE scores at all stations for the 10 km forecasts, with KAL performing best at five 
of the stations and STT and STB giving the best RMSE at one station each.

For the 3 km forecasts, raw model data were best for one station, STB for one station, KAL for two stations and STT 
for three stations. The best 3 km RMSE scores outperformed the best 10 km RMSE scores at only four of the seven sta-
tions, while the method that produced the best RMSE score for the 10 km forecast was different to the best method for 
the 3 km forecast at four of the seven stations.

composite

previous 28 days

+

+

+

..
.

weight

=

weighted

forecasts

forecast

fcw w1 1 11

(fc  , OBS) fcw w2 2 2

(fc  , OBS) fcw w8 8 8

2

8

(fc  , OBS)

..
.

Figure 3. Producing the composite forecast.

Table II. 10 km forecast wind speed ME (m s−1).

Station Raw STT STB KAL

Belmullet +1.877 −0.012 +0.030 +0.018

Birr +1.827 +0.022 +0.047 +0.019

Casement −0.461 +0.056 +0.028 +0.062

Cork Airport +0.581 −0.001 +0.009 −0.003

Dublin Airport −0.792 +0.032 +0.017 +0.001

Malin Head −0.136 −0.033 +0.007 −0.032

Valentia +2.110 +0.049 +0.043 +0.012

Table III. 3 km forecast wind speed ME (m s−1).

Station Raw STT STB KAL

Belmullet +0.069 −0.027 −0.019 +0.001

Birr +1.771 +0.012 +0.046 −0.001

Casement +0.021 +0.006 +0.014 −0.001

Cork Airport +0.406 −0.010 +0.005 +0.011

Dublin Airport −1.262 +0.031 +0.013 +0.007

Malin Head −1.847 −0.027 −0.010 −0.069

Valentia +0.514 +0.026 −0.006 +0.018
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3.1. Composite forecasts, COM

A composite forecast was also produced by combining forecasts with weights calculated from their historical errors 
(COM), as described in Section 2.4. Table VI shows the ME of the COM forecast alongside the ME of the raw 10 and 
3 km forecasts. The composite forecast had lower ME scores than the raw forecasts at all stations except Casement 3 km 
but did not produce ME scores as low as the best of all other forecasts. Table VII shows the RMSE of the COM forecast 
alongside the RMSE of the raw 10 and 3 km forecasts. Not only did COM result in better RMSE scores than either of 
the raw forecasts. It produced RMSE scores that were better than any of its eight constituent forecasts for six of the seven 
stations. The average of the RMSE scores at all seven stations is shown in Table VIII for all of the forecast methods. 
This shows that the total RMSE performance of the COM forecast was superior to any of the other forecast methods.

Table IV. 10 km forecast wind speed RMSE (m s−1).

Station Raw STT STB KAL

Belmullet 2.664 1.881 1.947 1.786

Birr 2.229 1.382 1.438 1.019

Casement 1.611 1.574 1.565 1.606

Cork Airport 1.490 1.405 1.421 1.345

Dublin Airport 1.651 1.471 1.495 1.523

Malin Head 2.051 2.034 2.062 1.978

Valentia 2.635 1.620 1.687 1.425

Table V. 3 km forecast wind speed RMSE (m s−1).

Station Raw STT STB KAL

Belmullet 1.778 1.745 1.776 1.796

Birr 2.199 1.409 1.441 1.007

Casement 1.346 1.356 1.388 1.390

Cork Airport 1.423 1.391 1.393 1.365

Dublin Airport 1.898 1.500 1.519 1.555

Malin Head 2.648 1.989 2.055 2.084

Valentia 1.528 1.459 1.453 1.469

Table VI. Raw and COM forecast wind speed ME (m s−1).

Station Raw 10 km Raw 3 km COM

Belmullet +1.877 +0.069 +0.038

Birr +1.827 +1.771 +0.057

Casement −0.461 +0.021 +0.035

Cork Airport +0.581 +0.406 +0.027

Dublin Airport −0.792 −1.262 −0.001

Malin Head −0.136 −1.847 −0.026

Valentia +2.110 +0.514 +0.028

Table VII. Raw and COM forecast wind speed RMSE (m s−1).

Station Raw 10 km Raw 3 km COM

Belmullet 2.664 1.778 1.682

Birr 2.229 2.199 1.088

Casement 1.611 1.346 1.334

Cork Airport 1.490 1.423 1.307

Dublin Airport 1.651 1.898 1.405

Malin Head 2.051 2.648 1.907

Valentia 2.635 1.528 1.393
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4. DISCUSSION AND CONCLUSION

A set of 48 h wind forecasts was produced for every day in 2008 at horizontal resolutions of 10 and 3 km. The raw model 
data were post-processed using traditional rolling-bias correction (STB), rolling-trend correction (STT), and a Kalman 
filter (KAL). A new adaptive statistical method was applied to all available forecasts to produce a composite forecast 
(COM). The ME and RMSE scores were calculated for all forecast data.

Running the NWP model at 3 km did not always result in a better wind forecast than that produced at a 10 km hori-
zontal resolution. Post-processing almost always increased the forecast skill. The total RMSE performance of the COM 
forecast was better than any of the other individual forecast methods.

The COM method is easy to implement and has a very small computational cost. It is fully automatic, and forecast 
streams can be added or removed as required once they have been available for a short training period.

Future work is underway in producing an improved Kalman filter method, which takes wind direction as well as speed 
into account. It is hoped that this will allow a further increase in skill for wind speed forecasts.

ACKNOWLEDGEMENTS

This material is based upon work supported by the Science Foundation Ireland under Grant No. 09/RFP.1/MTH/2359 
and MACSI under Grant No. 06/MI/005. The authors also wish to acknowledge the SFI/HEA Irish Centre for High-End 
Computing for the provision of computational facilities and support and Met Éireann for kindly supplying the observed 
wind speed data.

REFERENCES

 1. EC. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the 
use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/
EC. Official Journal of the European Union 2009; 140: 16–45.

 2. Marine Department of Communications and Natural Resources. Delivering a sustainable energy future for Ireland. 
Government White Paper, 2007.

 3. EC. The support of electricity from renewable energy sources. Commission of the European Communities Technical 

Report, 2008.
 4. Mass CF, Ovens D, Westrick K, Colle BA. Does increasing horizontal resolution produce more skillful forecasts? 

Bulletin of the American Meteorological Society 2002; 83: 407–430.
 5. Landberg L, Giebel G, Nielsen HA, Nielsen T, Madsen H. Short-term prediction—An overview. Wind Energy 2003; 

6: 273–280.
 6. Costa A, Crespo A, Navarro J, Lizcano G, Madsen H, Feitosa E. A review on the young history of the wind power 

short-term prediction. Renewable and Sustainable Energy Reviews 2008; 12: 1725–1744.
 7. Leutbecher M, Palmer TN. Ensemble forecasting. Journal of Computational Physics 2008; 227: 3515–3539.
 8. Taylor JW, McSharry PE, Buizza R. Wind power density forecasting using ensemble predictions and time series 

models. ECMWF Technical Report No. 553. 2008.

Table VIII. Average of the RMSE scores at all seven 

stations (m s−1).

Forecast method Average RMSE

Raw 10 km 2.0474

STT 10 km 1.6237

STB 10 km 1.6594

KAL 10 km 1.5260

Raw 3 km 1.8316

STT 3 km 1.5497

STB 3 km 1.5751

KAL 3 km 1.5238

COM 1.4450



1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 

59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 

Wind Energ. 2010; 00:000–000  2010 John Wiley & Sons, Ltd.

DOI: 10.1002/we

C. Sweeney and P. Lynch Post-processing of short-term wind forecasts

9

 9. Sloughter JM, Gneiting T, Raftery AE. Probabilistic wind speed forecasting using ensembles and Bayesian Model 
Averaging. Department of Statistics Technical Report No. 544. University of Washington, 2008.

10. Salcedo-Sanz S, Pérez-Bellido AM, Ortiz-García EG, Portilla-Figueras E, Prieto P, Correoso F. Accurate short-term 
wind speed prediction by exploiting diversity in input data using banks of artificial neural networks. Neurocomputing 
2009; 72: 1336–1341

11. Salcedo-Sanz S, Pérez-Bellido AM, Ortiz-García EG, Portilla-Figueras A, Prieto L, Paredes D. Hybridizing the fifth 
generation mesoscale model with artificial neural networks for short-term wind speed prediction. Renewable Energy 
2009; 34: 1451–1457.

12. Glahn HR, Lowry DA. The use of model output statistics (MOS) in objective weather forecasting. Journal of Applied 

Meteorology 1972; 11: 1203–1211.
13. Cheng WYY, Steenburgh, WJ. Strengths and weaknesses of MOS, running-mean bias removal, and Kalman filter 

techniques for improving model forecasts over the western United States. Weather and Forecasting 2007; 22: 
1304–1318.

14. Kalman RE. A new approach to linear filtering and prediction problems. ASME Journal of Basic Engineering 1960; 
D: 35–45.

15. Crochet P. Adaptive Kalman filtering of 2-metre temperature and 10-metre wind-speed forecasts in Iceland. Meteoro-

logical Applications 2004; 11: 173–187.
16. Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, Kallos G. Improvements in wind speed 

forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial 

Aerodynamics 2008; 96: 2348–2362.
17. Consortium for small-scale modeling (COSMO). [Online]. Available: http://www.cosmo-model.org. (Accessed 

December 2009)
18. Galanis G, Anadranistakis M. A one-dimensional Kalman filter for the correction of near surface temperature fore-

casts. Meteorological Applications 2002; 9: 437–441.

3


