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Abstract

We study the dynamics of a spherical rigid body that rocks and rolls on a plane
under the effect of gravity. The distribution of mass is non-uniform and the
centre of mass does not coincide with the geometric centre. The symmetric case,
with moments of inertia I1 = I2 < I3, is integrable and the motion is completely
regular. Three known conservation laws are the total energy E, Jellett’s quantity
QJ and Routh’s quantity QR. When the inertial symmetry I1 = I2 is broken,
even slightly, the character of the solutions is profoundly changed and new
types of motion become possible. We derive the equations governing the
general motion and present analytical and numerical evidence of the recession,
or reversal of precession, that has been observed in physical experiments. We
present an analysis of recession in terms of critical lines dividing the (QR,QJ )

plane into four dynamically disjoint zones. We prove that recession implies
the lack of conservation of Jellett’s and Routh’s quantities, by identifying
individual reversals as crossings of the orbit (QR(t),QJ (t)) through the critical
lines. Consequently, a method is found to produce a large number of initial
conditions so that the system will exhibit recession.

PACS numbers: 45.20.dc, 45.20.Jj, 45.40.Cc

(Some figures in this article are in colour only in the electronic version)

1. Introduction

We investigate the dynamics of a spherical rigid body rolling on a plane. The distribution of
mass is non-uniform, so that the centre of mass does not coincide with the geometric centre.
However, the line joining the mass centre and geometric centre is assumed to be a principal
axis. We denote the principal moments of inertia by I1, I2 and I3, and assume that I1 � I2 < I3.
The symmetric case, when I1 = I2, was first studied by Routh [15], and in this case the body
is called Routh’s sphere. There are three constants of motion and the system is integrable. In
the asymmetric case, I1 �= I2, the system is no longer known to be integrable, and we find that
even a small degree of asymmetry (i.e. a small deviation of ε = (I2 − I1)/I1 from zero) has a
dramatic effect on the motion of the body.
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Figure 1. The physical rock’n’roller constructed by slicing off a polar cap from a standard bowling
ball. The polar angle is � ≈ 53◦.

The equations of the symmetric loaded sphere are identical to those governing the motion
of the tippe-top, which has been studied extensively (see [7] for a comprehensive reference
list). However, in the case of the tippe-top, the angular momentum about the principal axis
with maximum moment of inertia is large, and the sliding friction plays a key role. In the case
under consideration here, we are interested in solutions where the angular velocity remains
moderate and there is pure rolling contact. There are two characteristic modes of behaviour:
pure rocking motion in a vertical plane, and pure circular rolling motion. The general motion
has aspects of both these special cases, which leads us to name the body the rock’n’roller.

This investigation arose from the observation of the oscillations of a glass candle holder,
spherical in form with an opening at the top. For a more systematic study, we constructed
a larger and more massive body by removing a polar cap from a bowling ball to produce a
truncated sphere (figure 1). As long as the tilting angle is such that the geometric centre is
vertically above the contact point, the dynamics are equivalent to those of a loaded sphere. It
was found that when the ball was tilted over to an angle of about 130◦, it rocked back and forth
but also precessed through an azimuthal angle that alternately increased and decreased. This
unexpected and surprising recession1, or reversal of precession, demanded an explanation in
terms of dynamics.

We will show that for a symmetric loaded sphere reversal of the precession is impossible.
This raises the question: what factor is missing from our dynamical model? We rule out sliding
friction, since the motion is gentle with no evidence of slipping. Random perturbations, due to
the imperfect shape of the ball or irregularities of the underlying surface, were not considered

1 Note that the word recession is used here not as an antonym of precession, but with the meaning of ‘reversal of
action’, as given, for example, in http://thesaurus.reference.com/.
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Figure 2. Hierarchy of loaded spheres. The vector
→

OC is from the mass centre O to the geometric
centre C, and k is the unit vector along the I3-axis. See the text for details.

as a likely cause of the behaviour, as experiments indicated that the recession was quite a
robust feature of the motion.

Although bowling balls are manufactured to high tolerance, and deviations from perfect
sphericity must be very small, slight anomalies in the mass distribution are unavoidable.
Moreover, the recesses in the physical body remaining from the finger holes introduce some
asymmetry (figure 1). We were thus led to study the dynamics when the inertial symmetry
I1 = I2 is broken. We find that even a minute deviation from symmetry changes the behaviour
of the numerical solution profoundly. Of the three quantities conserved in the symmetric
case (total energy E, Jellett’s quantity QJ and Routh’s quantity QR), only the energy remains
invariant when I1 �= I2. We derive the equations governing the general motion and present
analytical and numerical evidence of recession. We base our analysis on the existence of
critical lines dividing the (QR,QJ ) plane into four dynamically disjoint zones. We prove that
recession implies the lack of conservation of Jellett’s and Routh’s quantities, by identifying
individual reversals as crossings of the orbit (QR(t),QJ (t)) through the critical lines. This
leads to a method of defining initial conditions for which the system will exhibit recession.

The rock’n’roller is one of a hierarchy of loaded spheres. For the most general case,
the vector

−→
OC from the mass centre O to the geometric centre C does not lie on a principal

axis, and all moments of inertia are distinct. This is called Chaplygin’s top [3]. For the
rock’n’roller, the geometric centre lies on a principal axis and

−→
OC is parallel to k, the unit

vector along the I3-axis. Routh’s sphere is the special case of this with I1 = I2 and Chaplygin’s
sphere the special case where the mass centre and geometric centre coincide. The hierarchy
is illustrated in figure 2. For recent discussions, see [2, 4, 5, 9, 10, 16, 17]. Animations
generated using numerical solutions of the equations for the rock’n’roller may be found at
http://mathsci.ucd.ie/∼plynch/RnR.

2. Symmetric body (I1 = I2): the dynamical equations

We consider a body, spherical in shape with unit mass and unit radius, whose mass distribution
is non-uniform but symmetric about some line through the centre. We assume that the centre
of mass is off-set a distance a from the geometric centre and that the moments of inertia
perpendicular to and along the symmetry axis are I1 and I3, with I1(=I2) < I3. All the
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Figure 3. The intermediate coordinate frame used to study Routh’s sphere.

parameters are determined once the angle of the polar cap that is removed is known (see
appendix A.1). In an inertial frame of reference, the equations governing the dynamics of the
body are

dv

dt
= F (1)

where v is the velocity of the centre of mass in the absolute frame and F is the total force
acting on the body; and

dL

dt
= G (2)

where L is the intrinsic angular momentum and G is the total moment about the centre of
mass.

The derivation in this section is similar to that in [19]. We consider a rotating frame of
reference, with unit triad (i′, j ′, k′), whose origin moves with the centre of mass of the body.
The vector k′ is aligned with the axis of symmetry of the body and j ′ is aligned in the same
vertical plane as k′ (see figure 3). Then i′ is horizontal and perpendicular to the plane shown
in the figure, pointing inward. We use primes for this intermediate frame to distinguish it from
the body frame that will be introduced in section 4 below.

The angular velocity of the body, expressed in the intermediate frame, is

ω = ω′
1i

′ + ω′
2j

′ + ω′
3k

′.
Although this frame is not fixed in the body, it forms a set of principal axes in the symmetric
case, I1 = I2, and the angular momentum is given by

L = I1ω
′
1i

′ + I1ω
′
2j

′ + I3ω
′
3k

′.
We denote the angular velocity of the frame itself by Ω and note that

Ω = θ̇i′ + φ̇K = θ̇i′ + sφ̇j ′ + cφ̇k′ = (�1,�2,�3) (3)

where s = sin θ , c = cos θ and K is a unit vertical vector. The Euler angles (θ, φ, ψ) are
related to the components of angular velocity by

ω′
1 = θ̇ , ω′

2 = sφ̇, ω′
3 = cφ̇ + ψ̇. (4)

Definitions are standard, and may be found in [12, 18, 20]. For a list of the principal symbols
used in this study, see table 1.
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Table 1. Principal symbols used in this study.

Symbol Meaning

F Total forcing in Newton’s equation
G Total moment in Newton’s equation
I1, I2, I3 Principal moments of inertia of body
K Unit vertical vector
L Angular momentum of a body about centre of mass
L Lagrangian function
QJ Jellett’s quantity, constant in the symmetric case
QR Routh’s quantity, constant in the symmetric case
R Force of reaction at a contact point
T Total kinetic energy
V Potential energy
V Velocity of centre of mass in the space frame
W Force due to gravity (weight)
a Distance from the geometric centre to the centre of mass
c Cosine of tilting angle, c = cos θ

cφ Cosine of azimuthal angle, cφ = cos φ

d Cosine of polar angle, d = cos �

f Projection of vertical radius on the k-axis, f = cos θ − a

g Acceleration of gravity
h Height of centre of mass, h = 1 − a cos θ

i, j, k Principal unit orthogonal triad in body coordinates
i′, j ′, k′ Principal unit orthogonal triad in body coordinates
r Moment vector, from the contact point to the mass centre
s Sine of tilting angle, s = sin θ

sφ Sine of azimuthal angle, sφ = sin φ

t Time
v Velocity of centre of mass in the body frame
v1, v2, v3 Components of v in body coordinates
� Co-latitude of a polar cap removed to construct the rock’n’roller.
Υ Rotation matrix
	 Azimuthal angle spanned by the solution, 	 = φmax − φmin

Ω Angular velocity of the intermediate frame
ε Asymmetry parameter, ε = (I2 − I1)/I1

θ, φ,ψ Euler angles (tilting, azimuth and spinning angles)
μk Lagrange multipliers
ρ Measure quantity, ρ = [I3 + s2 + (I3/I1)f

2]−1/2

σ Sine of spining angle, σ = sin ψ

τ Period of rocking motion
χ Cosine of spinning angle, χ = cos ψ

ω Angular velocity of a body
ω′

1, ω
′
2, ω

′
3 Components of ω in intermediate coordinates

ω1, ω2, ω3 Components of ω in body coordinates

5



J. Phys. A: Math. Theor. 42 (2009) 425203 P Lynch and M D Bustamante

2.1. Equations in the intermediate frame

In the moving frame, equations (1) and (2) become respectively
dv

dt
+ Ω × v = F (5)

and
dL

dt
+ Ω × L = G. (6)

Expanding these in components in the i′j ′k′-frame, we get

v̇′
1 + �2v

′
3 − �3v

′
2 = F1

v̇′
2 + �3v

′
1 − �1v

′
3 = F2 (7)

v̇′
3 + �1v

′
2 − �2v

′
1 = F3

for momentum. The angular momentum equations become

I1ω̇
′
1 + I3�2ω

′
3 − I1�3ω

′
2 = G1

I2ω̇
′
2 + I1�3ω

′
1 − I3�1ω

′
3 = G2 (8)

I3ω̇
′
3 = G3.

Equations (7) and (8) are identical to (12.412) in [18] (with I1 = I2).
The forces acting on the body are gravity W = (0,−gs,−gc) and the force of reaction

R = (R1, R2, R3):

F = W + R.

Defining f = c − a, the vector from the point of contact P to the centre of mass O is
r = (0, s, f ) (see figure 3). Then the total moment about O is given by G = −r × R. The
constraint of no slipping at the contact point requires that the body is instantaneously rotating
about this point. Thus,

v = ω × r = (f ω′
2 − sω′

3,−f ω′
1, sω

′
1). (9)

The reactive forces may be eliminated by combining the angular momentum equation (6) with
the vector product of r and the momentum equation (5). The velocity v may be expressed
in terms of the rotation ω by means of the constraint (9). We then obtain three equations for
ω1, ω2 and ω3: ⎡

⎣I1 + s2 + f 2 0 0
0 I1 + f 2 −f s

0 −f s I3 + s2

⎤
⎦

⎛
⎝ω̇′

1

ω̇′
2

ω̇′
3

⎞
⎠ =

⎛
⎝P1

P2

P3

⎞
⎠ (10)

where P1, P2 and P3 depend on the angles and angular velocities. Full details of the derivation
are presented in appendix (A.2). The rates of change of the angular variables follow from (4):

θ̇ = ω′
1, φ̇ = ω′

2/s, ψ̇ = ω′
3 − (c/s)ω′

2. (11)

We now have six equations (10) and (11) for the six variables {θ, φ,ψ, ω′
1, ω

′
2, ω

′
3}.

2.2. Special solutions

2.2.1. Pure rocking. For pure rocking motion, with no change of azimuthal angle and no
rotation about the axis of symmetry, we have φ = ψ = 0 and so ω′

2 = ω′
3 = 0. Then the

system reduces to a single equation for the tilting angle θ :

θ̈ +

[
(g + θ̇2)a

I1 + f 2 + s2

]
sin θ = 0. (12)

6



J. Phys. A: Math. Theor. 42 (2009) 425203 P Lynch and M D Bustamante

For small amplitude θ � 1, and assuming a � 1, this becomes

θ̈ +

[
ga

I1 + 1

]
θ = 0, (13)

the equation for simple harmonic oscillations.

2.2.2. Pure rolling. For the case of pure circular rolling motion we have

θ̇ = 0, φ̇ = constant, ψ̇ = constant

so that �1 = ω′
1 = 0 and ω′

2 and ω′
3 are constants. It follows immediately that P2 = P3 = 0

(see (A.2)). The requirement that θ = θ0, constant, implies P1 = 0, which yields a relationship
between ω′

2 and ω′
3:

ω′
3 = (I1 cot θ0 + mh0f0 csc θ0)ω

′2
2 − ga sin θ0

(I3 + h0)ω
′
2

(14)

where f0 = cos θ0 − a and h0 = 1 − a cos θ0 are constants. If we start with ω′
2 and ω′

3 related
by (14) and θ slightly perturbed from θ0, motion with nutation about θ0 results.

2.3. Constants of motion and general solution

We consider the case of a perfectly rough contact, with rolling motion. Given that there
are two symmetries in the problem, invariance under addition of arbitrary constants to either
φ or ψ , we might expect two invariants in addition to the total energy. For general initial
conditions, there are three constants of integration. They are the total energy, Jellett’s constant
and Routh’s constant (see [7] for a complete derivation of these constants).

The kinetic energy is the sum of translational and rotational components:

T = 1
2

[
v′2

1 + v′2
2 + v′2

3

]
+ 1

2

[
I1ω

′2
1 + I2ω

′2
2 + I3ω

′2
3

]
and the potential energy is

V = ga(1 − cos θ).

Then, since there is no dissipation, the total energy

E = T + V (15)

is conserved. Jellett’s constant is the scalar product of the angular momentum and the vector
joining the point of contact to the centre of mass:

QJ = L · r = I1s ω′
2 + I3f ω′

3, (16)

and Routh’s constant, more difficult to interpret physically, is

QR = ω′
3

ρ
(17)

where, following [2], we define the measure

ρ(θ) = 1/
√

I3 + s2 + (I3/I1)f 2. (18)

Note that our definition of Routh’s constant differs from the usual quadratic function of ω′
3, in

[15], [7] and elsewhere.
An interesting historical discussion of these constants may be found in [7]. Note that the

constancy of QR implies conservation of the sign of ω′
3: since the measure ρ is positive definite,

ω′
3 cannot pass through zero. For the tippe-top, this precludes the tipping phenomenon for the

case of rolling motion.
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From equations (11) determining the rates of change of the angles, we can solve explicitly
for φ̇ and ψ̇ in terms of θ and Jellett’s and Routh’s constants:

φ̇ = Vφ(θ,QR,QJ ) ≡ 1

I1s2
[QJ − ρf I3QR], (19)

ψ̇ = Vψ(θ,QR,QJ ) ≡ − 1

I1s2
[cQJ − ρ(cf I3 + I1s

2)QR]. (20)

Since QJ and QR are constants, the rates of change φ̇ and ψ̇ are determined as single-valued
functions of the angle θ . We will show in the next section that recession, or reversal of
precession, implies in particular that φ̇ and ψ̇ at a given angle θ systematically change their
sign as time evolves. Therefore, in the symmetric case it is impossible to have recession for
Routh’s Sphere.

We can use the constants of motion to reduce the system to a single equation for the tilting
angle θ . We use Routh’s constant (17) to obtain ω′

3(θ). Then Jellett’s constant (16) gives
ω′

2(θ). Finally, the energy (15) gives an expression for ω′
1(θ), yielding an equation of the form

θ̇2 = F(θ), (21)

which may be integrated to obtain θ(t). As a result, the system can be explicitly integrated.
However, we will not derive explicit analytical expressions for F(θ) and θ(t). The reader is
referred to [7] for a more explicit treatment; see also [4, 16]. We see that the evolution of
θ(t) obtained from (21) gives the rocking component of the motion, while the evolution of
φ(t) and ψ(t), obtained from (19) and (20), gives the rolling and spinning components of the
motion respectively.

2.4. Precession of the rocking motion

The generic motion of the symmetric body is quasi-periodic. On the one hand there is a period
τ of the rocking motion, determined by the equation

τ = 4
∫ θX

θN

dθ√
F(θ)

,

where 0 � θN � θX � π , and θN and θX are the turning points where F(θN) = 0 and
F(θX) = 0. On the other hand, the rolling motion during this period can be computed by
integrating the rates of change of the angles φ and ψ from (19) and (20) respectively:

�φ =
∫ τ

0
Vφ(θ(t),QR,QJ ) dt = 4

∫ θX

θN

Vφ(θ,QR,QJ )√
F(θ)

dθ, (22)

with an analogous formula for the angle �ψ . Generically, �φ is not commensurate with
2π ; this implies the quasi-periodicity of the precessing motion. As a consequence of
quasi-periodicity, the projection of the trajectory onto the θ–φ plane densely covers a two-
dimensional region.

In order to quantify the precession, we distinguish two angles, the full azimuthal angle
φ and the visible angle φ (mod 2π), which is the angle that is seen by an observer in
the space frame. (We will occasionally use the visible half-angle φ (mod π), which gives
more illustrative plots in the case of the (asymmetric) rock’n’roller.) Correspondingly, there
will be two types of precession angle: �φ, the full precession angle defined by (22), and
�φ (mod 2π), the visible precession angle.
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2.5. Qualitative analysis of the precession. Criticality

We now estimate the precession angles �φ and �φ (mod 2π) from (22). Heuristically,
the main contribution comes from the regions near the turning points, where F(θ) = 0.
The relative contributions at θN and θX will be determined by the magnitude and sign of
Vφ(θ,QR,QJ ) at the turning points. It is therefore useful to study separately the behaviour
of Vφ(θ,QR,QJ ) for θ in each of the asymptotic regions θ ≈ 0 and θ ≈ π .

• Asymptotic region θ ≈ 0. A Laurent expansion of (19) gives

Vφ(θ,QR,QJ )|θ≈0 = 1

I1 θ2

(
QJ − Qcrit

J,0

)
+ O(1), (23)

where we define the ‘critical Jellett quantity at θ = 0’ as

Qcrit
J,0 ≡ ρ0(1 − a)I3QR, (24)

with ρ0 = 1/
√

I3 + (I3/I1)(1 − a)2.
• Asymptotic region θ ≈ π . A Laurent expansion of (19) gives

Vφ(θ,QR,QJ )|θ≈π = 1

I1 (π − θ)2

(
QJ − Qcrit

J,π

)
+ O(1), (25)

where we define the ‘critical Jellett quantity at θ = π ’ as

Qcrit
J,π ≡ −ρπ(1 + a)I3QR, (26)

with ρπ = 1/
√

I3 + (I3/I1)(1 + a)2.
• Monotonicity property. The factor [QJ − ρf I3QR] appearing on the right-hand side of

(19) is a monotonic function of the angle θ ∈ [0, π ]. The proof of this is straightforward.

From the above asymptotic expansions, we conclude that, in the space of initial conditions
parameterized by (QR,QJ ), there are four regions of interest, and the behaviour of φ̇ is
qualitatively different in each region.

Region I: QR > 0,Qcrit
J,π < QJ < Qcrit

J,0. The function Vφ(θ,QR,QJ ) goes from −∞ at
θ = 0 to ∞ at θ = π . From the monotonicity property it follows that this function has a
single zero.

Region II: Qcrit
J,π < QJ ,Qcrit

J,0 < QJ . The function Vφ(θ,QR,QJ ) goes from ∞ at θ = 0 to
∞ at θ = π . From the monotonicity property it is possible to show that this function is
positive definite and has a single minimum.

Region III: QR < 0,Qcrit
J,0 < QJ < Qcrit

J,π . The function Vφ(θ,QR,QJ ) goes from ∞ at
θ = 0 to −∞ at θ = π . From the monotonicity property it follows that this function has
a single zero.

Region IV: QJ < Qcrit
J,π ,QJ < Qcrit

J,0. The function Vφ(θ,QR,QJ ) goes from −∞ at θ = 0
to −∞ at θ = π . From the monotonicity property it is possible to show that this function
is negative definite and has a single maximum.

Similar results can be obtained for the velocities ψ̇ , but these are omitted here.
In figure 4 we show the four regions separated by the two critical lines QJ = Qcrit

J,π (line
from top left to bottom right) and QJ = Qcrit

J,0 (line from bottom left to top right). Typical
plots of the function Vφ(θ,QR,QJ ) versus θ are inserted in each region. The asymptotic
behaviours are evident.

The critical Jellett quantity Qcrit
J,π plays a key role in determining the visible precession

angle �φ (mod 2π) in the interesting case θX ≈ π . The main contribution to the precession
angle comes from the turning point θ = θX and from (25); we see that the sign of this
contribution depends on the sign of QJ − Qcrit

J,π . For example, if an initial condition with

9
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Figure 4. The four critical regions defined by the critical lines QJ = Qcrit
J,π (red online, top left to

bottom right) and QJ = Qcrit
J,0 (blue online, bottom left to top right). In each region, the graph of

φ̇ as a function of θ is shown, for the selected values QR, QJ and parameters a = 0.05, I3 = 2/5
and I1 = (1 − 5 a/2)I3.

QJ − Qcrit
J,π � 0 (regions I or II) has a precession angle �φ = α0 (mod 2π), then a slightly

different initial condition with QJ − Qcrit
J,π � 0 (region IV or III) will have a precession angle

�φ = −α0 (mod 2π); the corresponding motion will appear to be reversed.
The critical Jellett quantity Qcrit

J,0 determines the full precession angle �φ when θN ≈ 0.
The main contribution to �φ comes from the turning point θN , and is given by rapid changes of
φ in jumps of approximately ±π , the sign of these jumps depending on the sign of QJ −Qcrit

J,0.
In this way, an initial condition in region I or IV will give rise to a full-angle precession
�φ < 0, whereas for initial conditions in region II or III, �φ > 0. It is worth mentioning
that this critical quantity is related to the energy of the system since it appears in the Laurent
expansion of the function F(θ) near θ = 0. See [7], where this critical quantity was identified
in terms of the centrifugal barrier.
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2.6. Quantitative estimate of applicability of criticality criteria

Let us consider the asymptotic region θ ≈ π . For the above asymptotic analysis to be of
practical importance, the maximum rocking angle θX must be close to π . Only then will
the asymptotic Laurent expansion (25) determine, to a good approximation, the value of φ̇

at θ = θX. In particular, we will observe a dramatic difference in φ̇ at θ = θX and in
the precession angle when considering two nearby points, one in region I and the other in
region IV.

To quantify how close should θX be to π , necessary conditions are (i) in regions I and III,
θz, the zero of φ̇(θ) must be less than θX; (ii) In regions II and IV, θe, the extremum of φ̇(θ)

must be less than θX. In each case, there is a relation between θX,QR,QJ and the parameters
a, I1, I3 respectively.

For regions I and III, this condition has a simple analytical formulation:

−1 � cos θX � cos θz ≡ aβI3 +
√

I1(I3 − β)[β(I3 − I1)(I3 + 1) − a2βI3 + I1I3(I3 + 1)]

β(I3 − I1) + I1I3

where β = I3 − (QJ /QR)2. Realistic values of parameters and ratio QJ /QR allow any value
of θX in the interval (0, π).

It is noteworthy that, near the critical line QJ = Qcrit
J,π , the necessary condition is satisfied

if and only if θX ≈ π . Letting QJ

/
Qcrit

J,π = 1 − δ we get

π � θX � π −
⎛
⎝

√
2(1 + a)[(1 + a)2 + I1]I3

I1(I3 + 1 + a)

⎞
⎠ δ1/2 + O(δ3/2). (27)

3. Recession of the asymmetric body (I1 �= I2)

In this section we give a precise description of recession, or reversal of precession, of the
rock’n’roller. The definition is based on observational evidence: for initial conditions close to
pure rocking motion and such that the local maxima (turning points) of the tilting angle θ are in
the range (∼ 3/4π, π), the rates of change φ̇(tj ) and ψ̇(tj ) at times tj , j = 1, . . . ,∞, where
the angle θ(tj ) is a (local) maximum θX(tj ), depend on the time tj, contrary to the case of the
symmetric body. The functions φ̇(tj ) and ψ̇(tj ) have a quasi-periodic behaviour, undergoing
changes of sign that translates observationally to alternating reversals of the visible precession
angles �φ(tj ) (mod 2π) and �ψ(tj ) (mod 2π), where

�φ(tj ) =
∫ tj

tj−2

φ̇(t) dt, �ψ(tj ) =
∫ tj

tj−2

ψ̇(t) dt.

Note that the integration is from tj−2 to tj, which accounts for a full period of motion. In the
dynamical region of interest, θX(tj ) ∈ (∼3/4π, π), the critical quantities defined in section 2.5
allow us to understand the behaviour qualitatively, and to predict the occurrence of reversals.

The key observation from numerical simulations is that, in the asymmetric case, the Jellett
and Routh quantities, (16) and (17), cease to be conserved, but oscillate about mean values.
We thus define the Jellett and Routh quantities QJ and QR respectively to be

QJ (t) = I1sω
′
2 + I3f ω′

3, QR(t) = ω′
3

ρ
. (28)

We have observed that these quantities oscillate about time-averaged values with a period that
is generally longer than the period of the rocking motion, and that depends on the amplitude
of the motion. We remark that the motion in the (QR,QJ )-plane is bounded. We will perform
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a numerical study of this behaviour in connection with reversals at the end of the next section.
The analytical study of this will be the subject of forthcoming work.

The analysis in section 2.5 regarding the asymptotic behaviour of φ̇ near the turning points
remains valid if we consider QJ (t) and QR(t) to be functions of time. In particular, as long as
the point (QR(t),QJ (t)) remains within one of the regions I–IV, we can safely conclude that
there is no reversal of the system, because the sign of φ̇ at the turning points cannot possibly
change. Reversal is due to crossing of the system from one region to an adjacent one. In order
to observe reversal, we need to initialize the system sufficiently close to the boundary of a
region in such a way that, during the evolution of the motion, the system crosses the boundary.
We call this a critical crossing. Due to the oscillating nature of QJ (t) and QR(t) evidenced in
numerical simulations, if this critical crossing happens, then the system will eventually cross
back to the original region and will continue crossing periodically back and forth between the
two regions, in a bounded motion within the space (QR,QJ ).

Corresponding to the critical crossings of the two types of critical quantities—Qcrit
J,0 defined

at the turning point near θ = 0 and Qcrit
J,π defined at that near θ = π—there are two types of

reversal. On the one hand, the full angle, φ(t), has reversals that are related to the critical
crossings of Qcrit

J,0. This is due to the fact that, for motion close to pure rocking, the main
change of φ(t) from t = tj−1 to t = tj is typically a jump of magnitude about π when θ passes
the turning point θN . The sign of this jump depends on which critical region the system is in,
and will therefore change when reversal occurs. Critical crossings from region I to region II
or from region III to region IV correspond to this type of reversal.

On the other hand, the visible precession angle, �φ(tj ) (mod 2π), is mainly due to
the change of φ(t) near the turning point θX. The sign of this change depends exclusively
on the criticality Qcrit

J,π . Critical crossings from region IV to region I or from region II to
region III determine this type of reversal. This reversal corresponds to the recession evident
in real experiments. A numerical study of the two types of reversal will be presented in
section 6 below.

4. Asymmetric body (I1 �= I2): the dynamical equations

We now derive the equations for the asymmetric case I1 �= I2. Since the intermediate frame
(i′, j ′, k′) is no longer a principal frame, it is convenient to use a body frame (i, j, k) aligned
in the direction of the principal axes. The angular velocity and angular momentum are then
respectively

ω = ω1i + ω2j + ω3k L = I1ω1i + I2ω2j + I3ω3k.

The momentum equations of motion in the body frame are

v̇1 + ω2v3 − ω3v2 = F1

v̇2 + ω3v1 − ω1v3 = F2 (29)

v̇3 + ω1v2 − ω2v1 = F3

and the angular momentum equations are

I1ω̇1 + (I3 − I2)ω2ω3 = G1

I2ω̇2 + (I1 − I3)ω3ω1 = G2 (30)

I3ω̇3 + (I2 − I1)ω1ω2 = G3.

12
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We proceed as in section 2, using constraint (9), to express the velocity v in terms of the
rotation ω and eliminating the moment G by means of the momentum equations. The result
may be written as

Σθ̇ = ω, Kω̇ = Pω (31)

where

θ̇ =
⎛
⎝ θ̇

φ̇

ψ̇

⎞
⎠ , ω̇ =

⎛
⎝ω̇1

ω̇2

ω̇3

⎞
⎠ ,

the matrices Σ and K are respectively

Σ =
⎡
⎣ χ sσ 0

−σ sχ 0
0 c 1

⎤
⎦ K =

⎡
⎣I1 + f 2 + s2χ2 −s2σχ −f sσ

−s2σχ I2 + f 2 + s2σ 2 −f sχ

−f sσ −f sχ I3 + s2

⎤
⎦ , (32)

and the vector Pω is

Pω =
⎛
⎝−(g + ω2

1 + ω2
2)asχ + (I2 − I3 − af )ω2ω3

(g + ω2
1 + ω2

2)asσ + (I3 − I1 + af )ω1ω3

(I1 − I2)ω1ω2 + as(−χω1 + σω2)ω3

⎞
⎠ ,

with χ = cos ψ and σ = sin ψ . Note that neither K nor Pω depends explicitly on φ. Thus,
φ is an ignorable coordinate in the system (31).

4.1. Special solutions

We consider pure rocking motion with φ and ψ constants. Then ω = (χθ̇,−σ θ̇, 0). The
system (31) implies

(I1 − I2)σχθ̇2 = 0

so that a nontrivial solution requires σχ = 0. That is, the rocking motion must be about one
of the principal axes. For σ = 0 the system reduces to (12), pure rocking about the i-axis.
For χ = 0 we get the corresponding equation with I2 replacing I1 and pure rocking about the
j-axis. From (13), the ratio of the small amplitude oscillations about these principal axes is

ν1

ν2
=

√
I2 + 1

I1 + 1
.

In general, there are no periodic solutions corresponding to the pure rolling motion found
in the symmetric case. However, if θ remains zero, we may have spinning about the k-axis,
with k vertical. Then ω = (0, 0, ψ̇). Equations (31) reduce to I3ω̇3 = 0, confirming that the
spin rate is an arbitrary constant.

4.2. Nonholonomic constraints

The rock’n’roller is subject to three constraints, one holonomic and two nonholonomic. The
body must remain in contact with the underlying surface, and the point of contact must be
momentarily stationary to ensure rolling contact. We can embrace the three constraints in the
single equation (9), i.e. v = ω × r. We will now express this in terms of the space frame.
The velocities in the body and space frames, v and V respectively, are related by v = ΥTV

or, explicitly, ⎛
⎝v1

v2

v3

⎞
⎠ =

⎡
⎣cφχ − csφσ −cφσ − csφχ ssφ

sφχ + ccφσ −sφσ + ccφχ −scφ

sσ sχ c

⎤
⎦

T ⎛
⎝V1

V2

V3

⎞
⎠ (33)
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where cφ = cos φ and sφ = sin φ. The matrix Υ is the product of three rotations, and is
derived in many standard texts in mechanics; see, for example, [8, 11, 12, 18, 20]. We write
ω × r = Γω and ω = Σθ̇, where

Γ =
⎡
⎣ 0 f −sχ

−f 0 sσ

sχ −sσ 0

⎤
⎦ . (34)

Now the constraints can be expressed in the form V = ΥΓΣ θ̇, relating the velocity in the
space frame to the time derivatives of the Euler angles. More explicitly,⎛

⎝Ẋ

Ẏ

Ż

⎞
⎠ =

⎡
⎣ hsφ −ascφ −scφ

−hcφ −assφ −ssφ

as 0 0

⎤
⎦

⎛
⎝ θ̇

φ̇

ψ̇

⎞
⎠ . (35)

It is clear from this form that the constraint on Ż is holonomic and may be integrated
immediately to give Z = 1 − ac = h, the height of the mass centre in terms of the tilting
angle θ . The constraints on Ẋ and Ẏ are nonholonomic.

5. Lagrangian formulation

Systems with holonomic constraints can be solved by elimination of redundant coordinates
or by adding to the Lagrangian a sum of the constraints weighted by Lagrange multipliers.
When the constraints are nonholonomic, this procedure does not apply [11, 20]. We must
resist the temptation to substitute (9) into the Lagrangian and obtain a Lagrangian that
involves only the Euler angles and their derivatives. Rather, we must embed the problem
in a configuration space of dimension N+M, where N is the number of degrees of freedom and
M is the number of nonholonomic constraints. There has been considerable misunderstanding
regarding nonholonomic constraints; see [6] for a review. When the constraints are of the
form

gk(q, q̇, t) ≡ Ak(q, t)q̇ = 0,

that is, where they are linear in the velocities, we can write the equations of motion in the form

d

dt

∂L
∂ q̇

− ∂L
∂q

+
∑

k

μk

∂gk

∂ q̇
= 0, (36)

where μk are Lagrange multipliers that can be determined using the constraints. In the
present case, the configuration space has five dimensions, with coordinates (θ, φ, ψ,X, Y ),
the holonomic constraint having been used to eliminate Z. We may write the Lagrangian in
terms of these coordinates and their time derivatives:

L = 1
2 {(I1χ

2 + I2σ
2 + a2s2)θ̇2 + 2(I1 − I2)sχσ θ̇ φ̇ + [(I1σ

2 + I2χ
2)s2 + I3c

2]φ̇2

+ 2I3c φ̇ψ̇ + I3 ψ̇2 + (Ẋ2 + Ẏ 2)} − ga(1 − c). (37)

Note that L does not depend on φ. From (35), the nonholonomic constraints are

g1 ≡ Ẋ − (hsφ θ̇ − ascφ φ̇ − scφ ψ̇) = 0

g2 ≡ Ẏ − (−hcφ θ̇ − assφ φ̇ − ssφ ψ̇) = 0.
(38)

Although φ occurs in these expressions, it is absent from the combinations
∑

k μk∂gk/∂ q̇ that
occur in the equations. This symmetry should imply the existence of an invariant quantity in
addition to the total energy.
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The Euler–Lagrange equations (36) for X and Y immediately yield respectively

μ1 = −Ẍ μ2 = −Ÿ .

Using the constraints, we may now eliminate the multipliers μ1 and μ2 from the remaining
equations and obtain a system of three equations for θ, φ and ψ . They may be written as

Mθ̈ + Pθ(θ, θ̇) = 0 (39)

where θ̈ = (θ̈ , φ̈, ψ̈)T and M is a symmetric matrix. The explicit expansion of (39) is given in
appendix (A.3). Using Mathematica, the system has been shown to be completely equivalent
to the system (31).

In general, we can write the Lagrangian in the form

L = L0(θ, θ̇) + εL1(θ, ψ, θ̇)

where L0 is the Lagrangian for the integrable symmetric system and ε = (I2 − I1)/I1 is the
asymmetry parameter. This provides a basis for a perturbation analysis when ε is small, which
will not be undertaken here but will be the subject of future work.

6. Numerical experiments

The numerical integration of the equations is delicate, as there is a singularity of the coordinate
system when θ = 0, and significant errors may result from this. To be sure of reliable numerical
results, we used a routine of eighth-order accuracy, ODE87, coded by Vasiliy Govorukhin
(http://www.mathworks.com/matlabcentral/), which is a realization of the formulae of Prince
and Dorman [14]. With this method, invariants of the motion remained constant to high
accuracy. To further confirm the robustness of the numerics, we coded both sets of equations,
the system (31) in terms of (θ̇, ω̇) and the system (39) in terms of (θ̇, θ̈), and compared the
results. Furthermore, we verified the MATLAB coding by an independent coding in Mathematica.
Finally, the results presented below were checked for convergence by varying the error
tolerance. We can therefore be confident in the reliability of the numerical results.

Unless otherwise stated, the numerical values of the parameters are set as follows: gravity
g = 9.87, unit mass, unit radius, centre of mass off-centring a = 0.05, moments of inertia
I1 = 0.35 and I3 = 0.4. Some initial conditions will not be varied in the various simulations;
these are θ0 = 0.95π, θ̇0 = 0 and φ0 = 0.

6.1. The consequence of asymmetry

We first compare the numerical solution of equations (31) for the symmetric case I1 = I2 and
for a case of slight asymmetry. The solutions are for 1500 time units and the initial conditions
are, in each case, θ0 = 0.95π, φ0 = ψ0 = 0, ω1,0 = 0, ω2,0 = 0.001, ω3,0 = −0.001. Figure 5
(top left panel) shows the trajectory of the point of contact for the symmetric case I1 = I2.
The azimuthal angle increases regularly and steadily for each cycle of rocking motion. This
is confirmed by figure 5, top right panel, which shows φ at the points where θ reaches a
maximum. For the solution shown in the bottom panels of figure 5, the only difference is an
increase of 0.1% in the inertial moment about j, so that ε = 10−3. The bottom left panel shows
the trajectory of the point of contact: the precession is no longer uniform. The azimuthal
angle alternately increases and decreases (figure 5, bottom right panel). We see that there is
recession, with a period much longer than that of the rocking motion. Thus, a minute change
in the mass distribution of the body, that changes the inertial structure slightly and breaks the
symmetry I1 = I2, has a dramatic effect on the character of the motion.
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Figure 5. Top left: trajectory of the point of contact for the solution for the symmetric case
I1 = I2. Top right: φ versus θmax for the symmetric case. Bottom left and right: corresponding
solution for the asymmetric case I2 = 1.001I1.

6.2. Stability of rocking motion

We initiate the motion from a stationary state with ω(0) = 0 and θ(0) = 0.95π . Clearly,
a symmetric body started in this configuration would execute pure rocking motion, passing
repeatedly through the equilibrium position, with φ and ψ remaining constant (apart from
jumps of π due to the coordinate singularity at θ = 0). For the asymmetric body, the solution
depends on the initial angle ψ(0) = ψ0. As before, we assume that the asymmetry is slight,
with I2 = 1.001I1.

The trajectory of the point of contact of the rock’n’roller is shown in figure 6 for ψ0 in
the set {π/100, π/8, π/4, 3π/8, 3.9π/8, π/2}. All integrations are for 1000 time units. We
see that the motion precesses through an angle 	 = φmax − φmin that depends sensitively on
the initial phase ψ0. It appears that the relationship

	 = π − 2ψ0 for ψ0 ∈ (0, π)

is satisfied, at least approximately.
The cases ψ0 = 0 and ψ0 = π/2 correspond to pure rocking about the principal axes

with moments of inertia I2 and I1 respectively. Motion close to pure rocking about the I1 axis
is stable (figure 6(E)) while that starting close to the I2 axis changes dramatically, precessing
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(A) ψ
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=3π/8 (E) ψ

0
=3.9π/8 (F) ψ
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=π/2

Figure 6. Trajectory of the point of contact in the XY -plane for the initial phase angle
ψ0 ∈ {π/100, π/8, π/4, 3π/8, 3.9π/8, π/2}. All integrations are for 1000 time units. The
small circles indicate the starting position in each case.

through almost 180◦ (figure 6(A)). We recall the classical result for free motions of a rigid
body with I1 < I2 < I3, where rotation about the I2 axis is unstable whereas rotations about
the I1 and I3 axes are stable.

In general we expect the trajectory to be dense in the domain of angle 	 spanned by the
solution. However, KAM theory [1, 13] suggests that for exceptional initial conditions the
solution is periodic. The character of the solution for ψ0 = 3π/8 appears to be close to a
periodic solution (figure 6(D)). Searching in the neighbourhood of this solution, we found that
when ψ0 = 2.965π/8 the trajectory becomes periodic, repeatedly tracing out the same track,
some 15 times in 1000 s. Solutions of this nature, whose trajectories span a set of measure
zero, are a signature of integrability.

6.3. Recession and criticality

We now present a numerical study of reversals based on the theory of criticality described
in section 2.5. In all cases, the numerical experiments consist of releasing the rock’n’roller
at an angle θ0 = 0.95π , with θ̇0 = 0 and with an angle ψ0 = π/4 half-way between the
body’s principal axes. The system (31) is integrated numerically for 200 time units, using
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Figure 7. Top frame: orbit in the (QR, QJ )-plane for 200 time units. Middle frame: azimuth
angle φ(t). Bottom frame: visible angle φ(t) (mod π) sampled when θ � 0.5θ0. Initial conditions
QR = 0, QJ = 0. For full details, see the text.

an adaptive Mathematica code (stiffness-switching method) with 11th order accuracy. The
results are insensitive to resolution improvements. We monitor energy conservation point
wise and confirm that the relative error is less than 10−10. Routh’s and Jellett’s quantities are
computed in post-processing.

In figures 7, 8 and 9 all parameters are identical except for the initial conditions.
In all three cases, θ0 = 0.95π, θ̇0 = 0, φ0 = 0, ψ0 = π/4. Parameter values are
a = 0.05, g = 9.87, I3 = 2/5, I1 = (1 − 5a/2)I3, ε = 10−3. The top frame in each
case shows the orbit in the (QR,QJ )-plane for 200 time units (zigzagging bounded curve
(black)). In all three cases, the orbit starts at a point on one of the critical lines and begins
moving to the bottom right, subsequently alternating between adjacent critical regions. The
straight lines from top left to bottom right (red online) denote the critical line QJ = Qcrit

J,π ,
useful for visible angle reversal. The straight lines from bottom left to top right (blue online)
denote the critical line QJ = Qcrit

J,0, useful for full angle reversal. Dots correspond to instances
when θ(t) is near the turning points: (red online) dots denote θ � 0.99θ0 (near turning point
θX) and (blue online) dots denote θ < 0.005θ0 (near turning point θN ). The middle frame
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Figure 8. Top frame: orbit in the (QR, QJ )-plane for 200 time units. Middle frame: azimuth
angle φ(t). Bottom frame: bisible angle φ(t) (mod π) sampled when θ � 0.5θ0. Initial conditions
QR = 0.0030,QJ = Qcrit

J,π ≈ −0.0017. For full details, see the text.

in each case shows the azimuth angle φ(t). Solid lines (red online) denote instances when
θ � 0.5θ0 and dashed lines (blue online) denote instances when θ < 0.5θ0. The bottom
frames show the visible (half) angle φ(t) (mod π) sampled when θ � 0.5θ0.

In figure 7, the initial velocities are φ̇0 = ψ̇0 = 0. The motion remains close to the centre
QR = QJ = 0, i.e. close to pure rocking (the black zigzagging orbit in a top frame). The
system alternates between regions I and III, spending approximately five periods of rocking
motion in each region. Consequently, both full-angle reversal (middle frame) and visible
angle reversal (bottom frame) can be observed. This case corresponds exactly to case (C) in
figure 6.

In figure 8, the initial conditions are right on the critical line QJ = Qcrit
J,π : the initial

velocities are φ̇0 = −0.002 and ψ̇0 = 0.002. The orbit is very similar in shape and size
to the orbit in the previous case. We observe two critical crossings between region I and
region IV, corresponding to visible angle reversals (bottom frame). There is no full angle
reversal (middle frame).
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Figure 9. Top frame: orbit in the (QR, QJ )-plane for 200 time units. Middle frame: azimuth
angle φ(t). Bottom frame: visible angle φ(t) (mod π) sampled when θ � 0.5θ0. Initial conditions
QR = 0.0030,QJ = Qcrit

J,0 ≈ 0.0016. For full details, see the text.

In figure 9, the initial conditions are right on the critical line QJ = Qcrit
J,0: the initial

velocities are φ̇0 = 0.379 and ψ̇0 = 0.378. The orbit differs in shape from the ones seen
above and its horizontal dimension is three times smaller. We observe 11 critical crossings
between region I and region II, corresponding to full angle reversals (middle frame). There is
no visible angle reversal (bottom frame).

We note in each of the three cases that, regardless of the apparent complexity of the orbits,
when the system is near one of the turning points (θ = θX(tj ), (red online) dots; θ = θN(tj ),
(blue online) dots), the points (QR,QJ ) are distributed along a straight line (top frame in each
case). In figure 10 a plot is shown combining the orbits of the three initial conditions used
in figures 7, 8 and 9, in order to compare their distribution and extent in the plane (QR,QJ ).

It is evident from the above that the criticality criterion is a useful description of both full
angle and visible angle reversals. One just needs to initialize the system near a critical line
and the dynamics will do the rest. However, we do not yet have an explanation for the extent
of the orbit, so our method is only descriptive and cannot predict, for example, the number of
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Figure 10. Combined plot of orbits for the three initial conditions described in figures 7, 8 and 9.
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Figure 11. Left frame: high-QR reversal orbit, predicted by the asymptotic theory. Colour code
as shown in figure 7. Right frame: visible angle φ mod 2π, sampled at times tj when θ(tj ) attains
its maximum value θX(tj ).

rocking cycles executed in each critical region. Forthcoming work should be dedicated to this
subject.

Regarding visible angle reversals, we have found that these cease to be observed if the
initial (QR,QJ ) is chosen far enough from the origin (keeping all other initial conditions
fixed). This can be understood from the fact that the asymptotic Laurent expansion in
(25) is valid only near θ = π , but the maximum attainable θ(t) is bounded, from energy
conservation, by θ0, which is strictly less than π . From the analysis given in section 2.6, and
equation (27), it follows that the necessary condition for validity of the Laurent expansion
becomes QR � 0.1 for the present choice of parameters and initial conditions, where we
have used the observational estimate (from figure 10) of 0.001 for the orbit extension along
the QR-axis. We have checked that there is indeed reversal for QR = 0.1 (see figure 11, left
frame). It is important to mention that at this relatively high value of QR (and correspondingly
high angular velocity) the lowest-order Laurent asymptotic expansion given in (25) needs to be
improved. As a result, the simple interpretation of reversals in terms of critical crossings and
changes of sign of φ̇ will change slightly. In practice, to observe recession in this limiting case,
it is necessary to offset slightly the initial condition in the plane (QR,QJ ), to a point above
the critical line QJ = Qcrit

J,π . The resulting orbit remains in region I so that there is no change
in sign of φ̇(tj ). However, the visible precession angle �φ(tj ) (mod 2π), being determined
by an integral in time, can and does have reversals (figure 11, right frame).
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7. Conclusion

Experiments show that the recession, or reversal of precession, is a robust feature of the motion
of the physical rock’n’roller. Analysis has confirmed that for a perfectly symmetric body with
I1 = I2, this behaviour is impossible. However, even the slightest breaking of this inertial
symmetry (i.e. a small nonzero value of ε = (I2 − I1)/I1) is sufficient to change the character
of the solution profoundly, allowing entirely new types of motion. Physical experiments
and numerical results show that the reversal angle 	 = φmax − φmin depends sensitively on
the initial conditions. For motion that is initially close to pure rocking, the angle 	 can be
controlled by the choice of the initial phase angle ψ0. A rigourous analytical demonstration
of this result is outstanding.

The symmetric equations are integrable, with three invariants: the total energy E, Jellett’s
quantity QJ and Routh’s quantity QR. In the asymmetric case, only one of the above three
quantities is conserved, namely the total energy. We present an analysis of recession based
on the existence of critical lines dividing the (QR,QJ )-plane into four dynamically disjoint
regions. We prove that recession is directly related to the lack of conservation of Jellett’s and
Routh’s quantities, by identifying individual reversals as crossings of the orbit (QR(t),QJ (t))

through the critical lines. The criticality criterion allows one to produce a family of initial
conditions so that the system will exhibit recession.

In the asymmetric case, there remains an underlying geometric symmetry—invariance
under change of the azimuthal angle φ—so it is arguable that another dynamical invariant
exists. Note that Borisov and Mamaev [2] indicate in their table 1 that the quantity M 2 −2Kr2

is conserved in the asymmetric case (where M is the angular momentum about the contact
point); however, this is only true in the absence of gravity. In the realistic case where gravity
is present, this additional integral (if it exists) remains to be found.

There is apparently a slow period of the orbit (QR(t),QJ (t)). This suggests multi-scale
analysis as an appropriate technique for analysis of this problem. For a small asymmetry
parameter ε, the problem may be formulated as a perturbed integrable Lagrangian system, and
is amenable to standard asymptotic analysis. This will be the subject of future work. KAM
theory [1, 13] would indicate that certain aspects of integrability should apply to the weakly
asymmetric rock’n’roller. However, the question of the general integrability of the system
remains open.
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Appendix

A.1. The basic parameters of the rock’n’roller

Let us assume that the body consists of a homogeneous material of uniform density, and that
its mass and radius are both unity. We denote by � the co-latitude of the polar cap that is
removed to construct the rock’n’roller. All the dynamical parameters are determined once this
angle is fixed. We define the distance from the geometric centre to the centre of the planar
face of the body:

d = cos �.
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The volume of the body is then

V = π

(
2

3
+ d − 1

3
d3

)
.

The off-set of the mass centre from the geometric centre is

a = π

4

(
d2(2 − d2) − 1

V

)
.

The moments of inertia about the geometric centre are

I ′
3 = π

2

(
8
15 + d − 2

3d3 + 1
5d5

V

)
, I ′

1 = π

(
4
15 + 1

4d + 1
6d3 − 3

20d5

V

)
.

By means of the parallel axis theorem [18], the moments of inertia about the centre of mass
are

I3 = I ′
3 I1 = I ′

1 − a2.

For the actual rock’n’roller shown in figure 1, the polar angle is � ≈ 53◦. Thus d = 0.6,
giving the (nondimensional) parameter values

a = 0.085 I1 = 0.362 I3 = 0.42.

For our numerical experiments we used the values a = 0.05, I1 = 0.35 and I3 = 0.4.

A.2. The equations for the symmetric rock’n’roller

The equations for the symmetric case I1 = I2 were given in section2.1. The details are given
here. Taking the cross-product of r with the momentum equation (5) gives

r × v̇ + r × (Ω × v) = rF = r × W − G. (A.1)

Noting that θ̇ = ω1, the acceleration in i′j ′k′-components is

v̇ = (f ω̇′
2 − sω̇′

3,−f ω̇′
1, sω̇

′
1) +

( − ω′
1(sω

′
2 + cω′

3), sω
′2
1 , cω′2

1

)
.

It follows that

r × v̇ = [(s2 + f 2)ω̇′
1, f

2ω̇′
2 − f sω̇′

3,−f sω̇′
2 + s2ω̇′

3)

+ (asω′2
1 ,−f ω′

1(sω
′
2 + cω′

3), sω
′
1(sω

′
2 + cω′

3)]

and

r × (Ω × v)r = (r · v)Ω − (r·Ω)v

= −(s2 + cf )(ω′
2/s)(f ω′

2 − sω′
3,−f ω′

1, sω
′
1).

Moreover,

r × W = −gasi′.

Using these expressions in (A.1) we get

G1 = G0
1 − (s2 + f 2)ω̇′

1

G2 = G0
2 − (f 2ω̇′

2 − f sω̇′
3)

G3 = G0
3 − (s2ω̇′

3 − f sω̇′
2)

where, defining the height of the centre of mass as h = 1 − ac,

G0
1 = −[

asω′2
1 − h(f ω′

2 − sω′
3)ω

′
2/s

] − gas

G0
2 = −[−f ω′

1(sω
′
2 + cω′

3) + hf ω′
1ω

′
2/s]

G0
3 = −[sω′

1(sω
′
2 + cω′

3) − hω′
1ω

′
2].
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We can now substitute for G in (8) to obtain

[I1 + (s2 + f 2)]ω̇′
1 = −(I3�2ω

′
3 − I1�3ω

′
2) + G0

1 ≡ P1

[I1 + f 2]ω̇′
2 + [−f s]ω̇′

3 = −(I1�3ω
′
1 − I3�1ω

′
3) + G0

2 ≡ P2 (A.2)

[ − f s]ω̇′
2 + [I3 + s2]ω̇′

3 = +G0
3 ≡ P3.

The first equation immediately gives the evolution of ω′
1:

ω̇′
1 = P1

I1 + s2 + f 2
≡ S1.

The second and third equations can be written as[
I1 + f 2 −f s

−f s I3 + s2

] (
ω̇′

2

ω̇′
3

)
=

(
P2

P3

)
.

The matrix is nonsingular, with determinant � = (I1I3 + I1s
2 + I3f

2) and inverse(
ω̇′

2

ω̇′
3

)
= 1

�

[
I3 + s2 f s

f s I1 + f 2

] (
P2

P3

)
≡

(
S2

S3

)
.

The complete system of equations for the angular variables is now obtained:

θ̇ = ω′
1, φ̇ = ω′

2/s, ψ̇ = ω′
3 − (c/s)ω′

2,

ω̇′
1 = S1, ω̇′

2 = S2, ω̇′
3 = S3.

This system provides six equations for the six variables {θ, φ,ψ, ω′
1, ω

′
2, ω

′
3}.

A.3. The Euler–Lagrange equations

The Lagrange equations arising from (37) may be written as

Mθ̈ + Pθ(θ, θ̇) = 0 (A.3)

where θ̈ = (θ̈ , φ̈, ψ̈)T. The symmetric matrix M is defined as

M =
⎡
⎣I1χ

2 + I2σ
2 + a2s2 + h2 (I1 − I2)sσχ 0

(I1 − I2)sσχ (I1σ
2 + I2χ

2 + a2)s2 + I3c
2 I3c + as2

0 I3c + as2 I3 + s2

⎤
⎦

and the vector Pθ = (Pθ , Pφ, Pψ) has components:

Pθ = [as]θ̇2 + [−(I1σ
2 + I2χ

2 − I3)sc + has]φ̇2 + [−(I1 − I2)2σχ ]θ̇ ψ̇

+ [(I1 − I2)s(χ
2 − σ 2) + I3s + hs]φ̇ψ̇ + gas,

Pφ = [(I1 − I2)cσχ ]θ̇2 + [(I1σ
2 + I2χ

2 − I3)2sc + (2ac − 1)as]θ̇ φ̇

+ [(I1 − I2)s(χ
2 − σ 2) − I3s + asc]θ̇ ψ̇ + [(I1 − I2)2s2σχ ]φ̇ψ̇,

Pψ = [(I1 − I2)σχ ]θ̇2 + [−(I1 − I2)s
2σχ ]φ̇2

+ [−((I1 − I2)(χ
2 − σ 2) + I3)s + (2ac − 1)s]θ̇ φ̇ + [sc]θ̇ ψ̇ .

Now (A.3) may be solved for (θ(t), θ̇(t)). It has been confirmed, using Mathematica, that the
system (39) is completely equivalent to the system (31).
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