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The capacity of mathematics to provide general, unifying structures is one of its most
powerful characteristics. Maths frequently shows us surprising and illuminating connec-
tions between physical systems that are not obviously related: the analysis of one system
often turns out to be ideally suited for describing another.

To illustrate this, we will show how a surface in three dimensional space — the hyper-
bolic paraboloid, or hypar — pops up in unexpected ways and in many different contexts.
In the process we find unexpected connections between architecture, tennis balls, weather
forecasting and the snack food called Pringles.

Curves and surfaces

In two dimensions a point (x, y) is given by the two coordinates x and y. Each is free to
vary independently; we say the point has two degrees of freedom. If we now specify an
equation f(x, y) = 0, the dimension is usually reduced by one if the equation has solutions:
instead of the whole plane, we have a one-dimensional subset, a curve. In the special case
where the equation is linear, the curve is a straight line.

Moving up a notch, a point (x, y, z) in 3-space is given by three coordinates x, y and z.
If we specify an equation g(x, y, z) = 0, the point is confined to a two-dimensional surface.
In the special case of a linear equation, that surface is a plane in 3-space.

To describe a curve in 3-space, we need to reduce the dimension once more, by giving
a second equation, h(x, y, z) = 0. If both equations are linear, they describe two planes,
whose intersection is typically a straight line. More generally, they are nonlinear, and
provided they intersect they describe a one-dimensional curve.

The most ancient and best-understood curves are the conic sections, the ellipse, parabola
and hyperbola, arising from the intersection of a plane and a cone. Intensively studied since
ancient times, they apply to an enormous range of physical systems, ranging from radar
scanners to planetary orbits.
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Figure 1: The intersection of two perpendicular cylinders consists of two ellipses (left). The
volume of the intersection is called a bicylinder (right). [Image needs to be redrawn]

Curves in space

All the examples described so far are flat: the curves lie in a plane. But if both intersecting
surfaces are nonlinear then the intersecting curve can twist around in 3-space like a roller-
coaster. Let’s consider the case of two cylinders, each with a circular cross-section, whose
axes are at right angles and intersect in a point.

If the equations for the two cylinders are added, we obtain the equation of an oblate
spheroid, a sphere flattened like an orange. If they are subtracted, we obtain an equation
representing two planes. The actual intersection of the cylindrical surfaces comprises two
ellipses. This may seem abstract, or even abstruse, but two perpendicular barrel vaults in
a classical building intersect in this way, and we can clearly see the elliptical curves in the
resulting groin vault.

The volume common to two cylinders of equal radii with orthogonal intersecting axes,
called a bicylinder, was known to Archimedes, and also to the Chinese mathematician Tsu
Ch’ung-Chih. In the fifth century, Tsu Ch’ung-Chih used it to calculate the volume of a
sphere.

Now let’s flatten the two cylinders so that they have elliptical cross sections and displace
them along the axis that is orthogonal to both of them, in opposite directions. Their
equations are

2y2 + (z + d)2 = R2 2x2 + (z − d)2 = R2 .

[What are R and d?] Adding and subtracting these two equations, we get

x2 + y2 + z2 = a2 x2 − y2 = 2dz .

These are the equation for a sphere of radius a (where a2 = R2 − d2), and another
surface called a hyperbolic paraboloid. For brevity, let’s call this a hypar.

In addition to its use in classical buildings, the hypar has proved useful in modern
architecture. The advent of shell construction in the 20th century and the mathematical
theory of surfaces allowed very thin, strong vaults to be constructed using the hypar form.
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Figure 2: The hypar. [Image needs to be redrawn. This one is from
http://upload.wikimedia.org/wikipedia/commons/4/4a/HyperbolicParaboloid.png]

Because it is a ‘ruled surface’, generated by straight lines, saddle-shaped roofs of this form
are easily constructed from straight sections.

In figure 3, we plot the curve determined by the intersection of the sphere and hypar. It
resembles the seam on a baseball or the groove on a tennis ball. The hyperbolic paraboloid
is also the shape of the snack food called pringles and the edge of a pringle is like the tennis
ball curve.

From tennis balls to weather forecasts

The groove on a tennis ball curve is not defined explicitly, and may be approximated in
many ways. The official rules of the game are not much help, stating only that: ‘The
ball shall have a uniform outer surface of a fabric cover and shall be white or yellow in
colour. If there are any seams, they shall be stitchless’ (ITF Rules of Tennis 2012). The
challenge is to construct a cover for the spherical ball from two flat pieces of felt. The great
mathematician Carl Friedrich Gauss showed that to do this exactly is impossible: there is
no exact mapping from a plane to a sphere. But, in practice, the felt flats are shaped like
peanuts and, with a little stretching, fit snugly on the ball.

Many models of the tennis ball curve have been proposed. Indeed, the ingenious and
versatile mathematician John Conway formulated a conjecture: No two definitions of ‘the
correct curve’ will give the same answer unless their equivalence is obvious from the start
[What does that mean?]. Indeed, the curve found on tennis balls is well approximated
by a combination of four circular arcs. While this solution may appeal to engineers, it
is unattractive to mathematicians, for the composite curve does not have nice analytical
properties. The curve formed from the intersection of the sphere and hypar has an elegant
mathematical equation [So has the hypar been used on tennis balls?].

The tennis ball curve arises from the practical need to cover the ball with flat felt.
But the resulting partition of the sphere turns out to have another very practical use. In
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Figure 3: The Tennis Ball curve, the intersection of two offset elliptic cylinders, and also
of a sphere and hyperbolic paraboloid or hypar.
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weather forecasting, we have to represent the atmosphere using a grid of points that cover
the globe. The usual geographical latitude and longitude coordinates cause big problems:
the meridians converge towards the poles, so the coverage with a latitude/longitude grid
is highly non-uniform. By dividing the sphere into two parts by means of the tennis ball
curve, and using a separate grid on each part, we avoid the difficulties. This solution is
called the Yin-Yang Grid, as it is reminiscent of the ancient Chinese symbol of that name.
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