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Abstract

Max Margules contributed a short paper for the
Festschrift published in 1904 to mark the sixti-
eth birthday of his former teacher, the renowned
physicist Ludwig Boltzmann. Margules con-
sidered the possibility of predicting pressure
changes by means of the continuity equation. He
showed that, to obtain an accurate estimate of the
pressure tendency, the winds would have to be
known to a precision quite beyond the practical
limit. He concluded that any attempt to forecast
synoptic changes by this means was doomed to
failure.

We re-examine the numerical weather forecast
made by Lewis Fry Richardson in the light of
Margules’ findings. Richardson employed the
method which Margules had shown to be prob-
lematical; as a result, his prediction was com-
pletely unrealistic. It appears that Richardson
was unaware of Margules’ paper, although a
copy was received by the Met Office Library in
1905.

1 Max Margules (1856–1920)

Many outstanding scientists were active in mete-
orological studies in Austria in the period 1890–
1925, and great progress was made in dynamic
and synoptic meteorology and in climatology
during this time. Amongst the most important
members of this ‘Vienna School’ were Julius
Hann, Josef Pernter, Wilhelm Trabert, Felix
Exner, Wilhelm Schmidt, Heinrich Ficker, Al-
bert Defant and, of course, Max Margules. The
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Figure 1: Max Margules (1856-1920). Photograph
from the archives of Zentralanstalt für Meteorologie
und Geodynamik, Wien.

Austrian Central Institute for Meteorology and
Geodynamics (ZAMG) recently celebrated its
150th anniversary, in conjunction with which an
attractive book has been produced (Hammerl, et
al., 2001) containing contributions on the work
of the Vienna School and on the many scientists
who worked there.

Margules, one of the founders of dynamical
meteorology, was unquestionably a brilliant the-
oretician, the true value of whose work was ad-
equately appreciated only after his death. The
present biographical sketch is based on Khrgian
(1959), Kutzbach (1979) and Gold (1920), and
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on several articles in Hammerl (2001) (see
Davies, 2001; Fortak, 2001; Pichler, 2001). Mar-
gules was born in the town of Brody, in west-
ern Ukraine, in 1856. He studied mathematics
and physics at Vienna University, and among his
teachers was Ludwig Boltzmann. After a two-
year spell as a Volunteer at the Meteorological
Institute in Vienna, Margules went to Berlin Uni-
versity in 1879. He returned to Vienna Univer-
sity the following year as a lecturer in physics.
In 1882 he rejoined the Meteorological Institute
as an Assistant, and continued to work there for
24 years.

Margules studied the diurnal and semi-diurnal
variations in atmospheric pressure due to so-
lar radiative forcing, analyzing the Laplace tidal
equations and deriving two species of solutions,
which he called ‘Wellen erster Art’ and ‘Wellen
zweiter Art’ (Margules, 1893). This was the
first identification of the distinct types of waves
now known as inertia-gravity waves and rota-
tional waves. Margules turned next to the study
of the source of energy of storms. He demon-
strated that the available potential energy associ-
ated with horizontal temperature contrasts within
a cyclone was, if converted to kinetic energy,
sufficient to explain the observed winds. In the
course of this work, he derived an expression
for the slope of inclination of the boundary be-
tween two air masses, a formula which bears his
name and is occasionally found in modern text-
books. This work overturned the convective the-
ory of cyclones and adumbrated the frontal the-
ory which emerged about a decade later.

Margules was an introverted and lonely man,
who never married and worked in isolation, not
collaborating with other scientists. He was dis-
appointed and disillusioned at the lack of recog-
nition of his work and retired from the Me-
teorological Institute in 1906, aged only fifty,
on a modest pension. Its value was severely
eroded during the First World War so that his 400
crowns per month was worth about one Euro,
insufficient for more than the most meagre sur-
vival. His colleagues tried their best to help
him, making repeated offers of help which Mar-
gules resolutely resisted. He died of starvation in
1920.

2 Hydrostatic Balance and Con-
servation of Mass

In his 1904 paper, Margules considered the pos-
sibility of predicting pressure changes by direct
use of the mass conservation principle.1 The
pressure at a point is due to the weight of air in
the column above it. Thus, it changes only if air
flows into or out of the column. So, to calcu-
late the pressure change, we just need to calcu-
late this flow. However, the difficulty is that, nor-
mally, there is flow through the column, and the
nett change depends on the balance between in-
flux and outflow, a small difference between two
large numbers. Margules showed that the calcu-
lation is very error-prone, and may give ridicu-
lous results. He concluded that any attempt to
forecast the weather was immoral and damag-
ing to the character of a meteorologist (Fortak,
2001).

2.1 Pressure of a Layer of Incompress-
ible Fluid

The physical principle of mass conservation is
expressed mathematically in terms of the con-
tinuity equation, a partial differential equation.
However, it is possible to give a quantitative
description of the essential physical processes
which cause changes in surface pressure with-
out recourse to complicated mathematics. All
that is required is a knowledge of how powers
of ten are manipulated. We first recall that the
pressure at a point is determined by the mass
of air above it. This is the hydrostatic approx-
imation, and is found to hold to a high degree
of accuracy for the atmosphere. The density of
air decreases with height because of compress-
ibility, and the atmosphere extends indefinitely
in the vertical direction. However, in some ways
its behaviour resembles that of an incompress-
ible fluid layer of finite depth. The mean surface
pressure is about 1000 mbar or 100,000 Pascals
(10

�

Pa). The density at the surface is about
one kilogram per cubic metre. The pressure of
a layer of incompressible fluid is given by the

1A translation of Margules’ paper, together with a short
introduction, has been published as a Historical Note by
Met Éireann, the Irish Meteorological Service (Lynch,
2001).
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product of three quantities: the density (which is
constant), the gravitational acceleration and the
depth. We take the density to be numerically
equal to one (comparable to air) and the grav-
itational acceleration as

���
m s ��� . Then, if the

depth is ten kilometres (or
�����

m), the pressure
is
�	�
�����
��� �� �������������

Pascals. In other
words, this ten-kilometre layer of incompress-
ible fluid of unit density gives rise to a surface
pressure similar to that of the compressible at-
mosphere. So, for simplicity, we substitute for
the compressible atmosphere a layer of incom-
pressible fluid of mean depth ten kilometres.

The total mass of the atmosphere is constant.
Let us consider a geographical region bound by
the four sides of a square of side 10 kilome-
tres. As an example, think of Central London
from Notting Hill to Wapping and Holloway to
Clapham (Fig. 2a). The area of the region is
the square of the side, or

�����
square metres.

The column of fluid above this square forms a
cube whose volume is the area multiplied by the
depth, or

������������� � ����� � cubic metres. The
total mass of fluid contained in the cube is easily
calculated: since the density is unity, the mass in
kilograms has the same numerical value as the
volume. So, the mass is 10

� � kilograms (or one
thousand mega-tonnes).2

2.2 Convergence and Divergence

How does the pressure at a point change? Since
pressure is due to the mass of fluid above the
point in question, the only way it can change
is through fluxes of air into or out of the col-
umn above the point. Nett inward and outward
fluxes are respectively called convergence and
divergence. Let us suppose that the movement
of air is from west to east, so that no air flows
through the north or south faces of our cubic col-
umn. Let us further assume for now that the wind
speed has a uniform value of ten metres per sec-
ond. Thus, in a single second, a slab of air of
lateral extend 10 kilometres, of height ten kilo-

2The fluid exerts a force on the surface beneath it. The
unit of force is the Newton. The force on the surface is
simply pressure times area. Assuming the pressure to be
100,000 Pascals, this is ������� ���"! , or �#�%$'& Newtons. It can
also be calculated, using Newton’s second law of motion,
as mass times (gravitational) acceleration, or 10 $)( by 10,
giving the same result.
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Figure 2: (a) Sample grid box over London. (b)
Illustration of influx on western face and outflow on
eastern face. (c) No convergence: influx equal to out-
flow. (d) Convergence: Influx exceeds outflow.
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metres and of thickness ten metres, moves into
the cube through its western face (Fig. 2b). This
slab has total volume of

�����
cubic metres. Its

mass in kilograms has the same numerical value
(the density is unity). So the mass of the cube
would increase by

�����
kilograms or one million

tonnes in a single second if this were the only
flux. However, there is a corresponding flux of
air outward through the eastern face of the cube,
with precisely the same value (Fig. 2c). So, the
nett flux is zero, the total mass of air in the cube
remains unchanged, and the pressure at the sur-
face remains constant.

Now suppose that the flow speed inward
through the western face of the cube is slightly
greater, let us say 1% greater at 10.1 metres
per second, while the speed outward through the
eastern face remains at 10 metres per second
(Fig. 2d). There is thus more fluid flowing into
the cube than out of it: there is a nett conver-
gence of mass into the cube. We may expect a
pressure rise; let us now calculate it. The ad-
ditional inward flux of mass is 1% of the total
inward flux, or

�����
kilograms per second. We

saw that, initially, the total mass of the cube
was 10

� � kilograms, so the fractional increase
in mass is just the ratio of these two numbers, or��� ��� ��� � � � ��� � �

.
To get the rate of increase in mass, we mul-

tiply the total mass by 10 � �

. Since pressure is
proportional to mass, its fractional increase is
precisely the same: to get the rate of pressure
increase, we multiply the total pressure (

��� �

Pa)
by 10 � �

, yielding one Pascal per second. A pres-
sure tendency of

�
Pa s � � may not sound impres-

sive, but we shall soon see that, if the relatively
small difference between inflow and outflow is
sustained over a long period of time, the result-
ing pressure rise is dramatic. The situation is
reminiscent of the song from the musical The Pa-
jama Game:

Seven and a half cents doesn’t buy a heck-of-a-lot,
Seven and a half cents doesn’t mean a thing.
But give it to me every hour, forty hours of every
week,
That’s enough for me to be livin’ like a king.

We recall that there are 86,400 seconds in a day.
To confine the arithmetic to powers of ten, let
us redefine a day (in italics) to be a period of
100,000 seconds (about 27 hours 46 minutes).
So, our day is

��� �

s. The pressure change in a

day will then be the tendency (
�

Pa s � � ) multi-
plied by the number of seconds in a day. Thus,
the pressure will increase by

��� �

Pascals. But
this is the same as its initial value, so the pres-
sure will increase by 100% in a day!

An even more paradoxical conclusion is
reached if we consider the speed at the western
face to be 1% less than, rather than greater than,
the outflow speed at the eastern face. The above
reasoning would suggest a decrease of pressure
by 100% in a day, resulting in a total vacuum and
leaving the citizens of London quite breathless.
Of course, there is a blunder in the reasoning: as
the mass in the ‘cube’ decreases, its volume must
decrease in proportion, since the density is con-
stant. In effect, the fluid depth, which we have
taken to be constant, must decrease.

2.3 Gravity Waves and Numerical Pre-
diction

While the calculated pressure tendency is arith-
metically correct, the resulting pressure change
over a day is meteorologically preposterous.
Why? We have extrapolated the instantaneous
pressure change, assuming it to remain constant
over a long time period. The assumption that the
convergence of fluid into the cubic column re-
mains unchanged for a day is quite unrealistic. It
ignores the propensity of the atmosphere to re-
spond rapidly to changes. An increase of pres-
sure within the cube causes an immediate out-
ward pressure gradient which acts to resist fur-
ther change. Indeed, the result of this negative
feedback is for over-compensation, so that the
pressure falls below its initial value, and a cy-
cle of pressure oscillations ensues. These oscil-
lations are known as gravity waves, and they ra-
diate outwards with high speed from a localised
disturbance, dispersing it over a wider area. The
detailed discussion of gravity waves requires a
level of mathematics beyond what is appropriate
to this article (Margules, 1893, was the first com-
prehensive study of their dynamics). We note
only that, as soon as an imbalance arises in the
atmosphere, these waves act in such a way as
to restore balance. Since they are of high fre-
quency, they result in pressure changes which
may be large but which oscillate rapidly in time:
the instantaneous rate of change is not a reliable
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indicator of the long-term change in pressure.
To obtain an accurate prediction, it is neces-

sary to proceed in stages. From the initial ten-
dency, we calculate the pressure a short time
later. The motion fields must also be advanced
in this way, using the momentum equations to
compute the accelerations. Then, using the up-
dated fields, new values of the tendencies and ac-
celerations are calculated and another short step
forward is made. By this means, the mutual ad-
justments between the fields of mass and veloc-
ity can be accommodated. The time step has
to be short enough to allow this adjustment to
take place. Gravity-wave oscillations may be
present, but they need not spoil the forecast: they
may be regarded as noise super-imposed on the
long-term synoptic evolution. They may also
be effectively removed by a minor adjustment
of the initial data; this process is called initial-
ization (Lynch, 1987). Modern numerical fore-
casts are made using the continuity equation in
the manner that Margules regarded as impossi-
ble, but initialization controls excessive gravity
wave noise and a small time step ensures that the
calculations remain stable.

3 Richardson’s Forecast

During the First World War, Lewis Fry
Richardson carried out a manual calculation
of the change in pressure over Central Eu-
rope (Richardson, 1922). His initial data were
based on a series of synoptic charts published in
Leipzig by Vilhelm Bjerknes. Richardson chose
the date 20 May, 1910, which had the best ob-
servational coverage available at that time. Us-
ing Bjerknes’ charts, he extracted the relevant
values on a discrete grid. From these data, he
was able to compute the rate of change of pres-
sure for a region in Southern Germany. To do
this, he used the continuity equation, employing
precisely the method which Margules had shown
more than ten years earlier to be seriously prob-
lematical. As is well known, the resulting pre-
diction of pressure change was completely unre-
alistic.

Richardson divided the compressible atmo-
sphere into five discrete layers in the vertical.
From the initial data given on page 185 of
Weather Prediction by Numerical Process, we

can easily extract the values of momentum at the
four points adjacant to the central point where
pressure is given. The values are presented in Ta-
ble 1. Note that Richardson’s values have been
converted to SI units, and some signs changed so
that positive values represent influx. For simplic-
ity, we shall consider only the vertically summed
values. These are given on the last line of Ta-
ble 1.

Table 1: Richardson’s Initial Values of Mass
Flux (kg m � � s � � ).

Level North South East West
I � ������� � ������� � ����� ���
II ����� ��� �
	 ����� � � ��� ��� �� � �����
III

� ��� ��� � ��������� ��� ����� � ��� � ���
IV

�������� � ������� � � � ��� ��������
V

�������� �
	 ����� ��� ����� �
	 �����
Total

� ��� ��� � � � ����� � � 	 ����� � 	���� ���

Table 2: Calculation of mass influx for central
grid box.

Mass Flux per Width of Mass Flux
Unit Length Grid Face Rate (kg/s)
(kg m � � s � � ) (metres) (

�����
kg s � � )

North
� ��� ��� 	���	 � � ��� � ����� ���

South � � � ����� 	 � � ��� � � � � ��� � 	�	
East � � 	 ����� 	 �����M����� � ��� � �����
West

� 	���� ��� 	 �����M����� � � ��� �����
Total � � ��� � ���

To compute pressure tendency, it is necessary
to calculate the rate at which air is flowing into or
out of the grid box. The totals from Table 1 are
repeated in the first numerical column of Table 2.
The width of each face (in metres) is given in the
following column. The mass influx through the
face is the product of these, given in the last col-
umn. Finally, the fluxes through the four faces
are summed to give the total rate of mass influx.

The extra force due to the influx is the prod-
uct of the additional mass and the acceleration of
gravity. Since pressure is force per unit area, the
pressure tendency over the grid box can be cal-
culated as the product of the mass influx rate and
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gravitational acceleration divided by the area of
the grid box. The rate at which mass is flowing
into the grid-box is

� ��� � ��� � ����� kg per second.
We multiply this by the acceleration of gravity
(9.81 m s ��� ) and divide by the area of the grid-
box (

� � � � �h� ������� m � ). The result is 0.675 Pa s � �
or 145.8 mbar in six hours. This is almost ex-
actly equal to the value (145.1 mbar/6h) given
by Richardson on page 211 of his book.

4 Margules and Richardson

One especially interesting question about Mar-
gules’ results is what influence, if any, they had
on Richardson’s approach to forecasting. Mar-
gules’ sent a copy of his 1904 paper to the
Met Office, where it was lodged in the library.3

Thus, it was available for consultation by sci-
entists such as Sir Napier Shaw and William
H. Dines. If Napier Shaw, who was fully aware
of Richardson’s weather prediction project and
indeed supported it strongly, knew of Margules’
work, he would surely have alerted Richardson
to its existence. There was ample opportunity
for this between 1913, when Richardson was
appointed Superintendent of Eskdalemuir Ob-
servatory, and 1916, when he resigned in or-
der to work with the Friends Ambulence Unit in
France.

Richardson ascribed the difficulties with his
predicted tendency to spurious values of diver-
gence arising from errors in the wind observa-
tions. This explanation, while incomplete, is
consistent with the analysis of Margules. Had
Richardson been aware, at an earlier stage, of
Margules’ results, he might well have decided
not to proceed with his trial forecast, or sought a
radically different approach (Platzman, 1967).

There is no reason to believe that Richard-
son was aware of Margules’ paper; certainly, he
makes no reference to it in his book. As pointed
out by Platzman (1967), Margules’ results were
summarised by Exner in his textbook Dynamis-
che Meteorologie, which Richardson does cite,
but without explicit reference to the relevant sec-

3Graham Bartlett of the National Meteorological Li-
brary and Archive has kindly checked the records and has
informed me that Margules’ article was received and cata-
logued by the Met Office Library in March, 1905.

tion.4 Since this book was published in Leipzig
in 1917, Richardson could not have seen it un-
til his return to Britain in 1919, after the First
World War and after his trial forecast had been
completed (this was done while he was still in
France).

It is possible that Richardson may have real-
ized the significance of Margules’ results when
he read Exner’s book, in 1919 or 1920. But in
this case, it is inexplicable that he did not refer
to Margules, or to the relevant section of Exner,
explicitly. He had finished a Homeric numer-
ical forecast and included it in his book, and
Margules’ results showed that his approach was,
from the outset, doomed to failure. Although
such a realization would have been devastating,
one cannot doubt that Richardson would have
faced it with honesty. It appears more likely
that Richardson overlooked the relevant section
of Exner. He was busy at this time with his
strange and wonderful instruments for upper-air
measurements at Benson, in collaboration with
Dines (Ashford, 1985). His explanation of the
failure of his forecast, while compatible with
Margules’ results, was incomplete. In his book,
he writes that smoothing of the data would yield
a realistic forecast. This is, of course, question-
able.

Shortly after Margules published his paper,
his colleague Felix Exner presented a method of
forecasting the weather using dynamical meth-
ods (Exner, 1908). Exner assumed geostrophi-
cally balanced flow and thermal forcing constant
in time. He derived a prediction equation for
advection of the pressure pattern with constant
westerly speed, modified by the effects of dia-
batic heating. Exner did not make use of the
continuity equation, so his forecasts were not af-
fected by the difficulties associated with it. His
method, while of limited applicability, yielded a
realistic forecast in the case illustrated in the pa-
per.

4Oliver Ashford, who holds Richardson’s copy of
Exner’s book, has kindly checked the relevant section (

�
31)

and has confirmed that there are no annotations, whereas
Richardson liberally annotated several other sections of the
book.
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