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A remarkable theorem, discovered in 1959 by Armenian
astronomer Mamikon Mnatsakanian, allows problems in
integral calculus to be solved by simple geometric rea-

soning, without calculus or trigonometry. Mamikon’s theorem
states that: ‘The area of a tangent sweep of a curve is equal to the
area of its tangent cluster.’ We shall illustrate how this theorem
can help to solve a range of integration problems.

The area of an annulus

The inspiration for his theorem came to Mamikon while, as an un-
dergraduate, he was examining how to calculate the annular area
A between two concentric circles, given only the length 2a of the
chord tangent to the inner circle (Figure 1). Since a2 = R2 − r2,
it follows that A = π(R2− r2) = πa2. For a given a, this area is
independent of the radii, r and R, of the inner and outer circles.

Figure 1: An annulus, the area between two concentric circles of
radii r and R.

Figure 2: (a) A single tangent segment; (b) The tangent sweep
of a large collection of segments; (c) The tangent cluster, with all
segments emanating from a common point.

Mamikon considered a segment of length a tangent to the in-
ner circle (Figure 2(a)). It is clear that the annulus is the area
swept out by the tangent segment as it rotates around the inner
circle, the tangent sweep (Figure 2(b)). Mamikon realised that
this area, comprising the sum of numerous triangular regions, re-
mains unchanged if all the regions are moved parallel to them-
selves so that all the tangent points coincide, forming the tangent
cluster (Figure 2(c)). Since the area of the tangent cluster is πa2,
so is that of the tangent sweep, or annulus.

Figure 3: (a) The tangent sweep (shaded area) for an elliptic
curve; (b) The tangent cluster formed when all tangents start
from a common point.
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Mamikon’s theory can be applied to the motion of a turning bicycle. 
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Mamikon showed that the areas of the tangent sweep and tan-
gent cluster are equal in much more general circumstances. The
circles forming the annulus may be replaced by any smooth con-
vex curves, closed or open, and the lengths of the tangents do not
have to be constant. Figure 3 shows the (a) tangent sweep and
(b) tangent cluster in a more general case. Mamikon’s theorem
ensures that the shaded areas in the two diagrams are equal.

Evaluating integrals

Tom Apostol, author of several influential textbooks on calcu-
lus, was a strong supporter of Mamikon’s methods [1, 2]. In [1]
he gave several examples of integral evaluation using Mamikon’s
theorem. The exponential function y = exp(x/b) and the
parabola y = cx2 can easily be integrated in this way. We re-
mark that the quadrature of the parabola was first achieved by
Archimedes, using a method that adumbrated integral calculus
2000 years before Newton and Leibniz. More generally, polyno-
mial functions are easily integrated using Mamikon’s approach.
Indeed, Apostol discussed the quadrature of a wide selection of
classical curves, the hyperbola, catenary, cardioid, tractrix and
cycloid amongst them (details in [1]).

Figure 4: Bicycle moving in a circle. Steady bicycle (a and b)
where the annular areas are equal and (c) wobbling bicycle.

Another interesting application is the calculation of the area
confined between the front and rear tyre tracks of a bicycle. This
is a generalisation of the tractrix curve, dubbed by Mamikon the
bicyclix curve. A bicycle with the angle of the front wheel held
constant moves in a circle while the front and rear wheels trace
out concentric circles forming an annulus (Figure 4). Since the
distance d between the axles is fixed, the area between the two
circles is independent of the angle of the front wheel: the tangent
cluster is a circle with radius d. More generally, the tracks cross
each other as the front wheel angle varies, enclosing areas that
may be counted as positive or negative (Figure 4(c)). However,
the tangent segment from the rear wheel to the front one is of
constant length d and sweeps out the region between the tracks.
The total area is given by the area of the tangent cluster, which is
a circular sector.

The cycloid

The cycloid is the locus of a point fixed to the rim of a circular
disc that is rolling along a straight line (Figure 5). The parametric
equations for the cycloid are

x = r(θ − sin θ), y = r(1− cos θ), (1)

where θ is the angle through which the disc has rotated. The
centre of the disc is at (x, y) = (rθ, r). The differentials of the
coordinates (1) are

dx = r(1− cos θ) dθ, dy = r sin θ dθ. (2)

Figure 5: The cycloid, generated by a rolling disc. A single arch
of the cycloid is shown, bounded within a rectangle of area 4πr2.

From these we find the increment of arc length d�:

d� =
√
dx2 + dy2 = 2r sin 1

2θ dθ, (3)

and the increment of area dA:

dA = y dx = r2(1− cos θ)2 dθ. (4)

The length L of an arch is easily computed by integrating (3):

L =

∫ 2π

0

2r sin 1
2θ dθ = 8r.

We see that the arc length does not depend on π. The area under
an arch is the integral of (4) over the interval θ ∈ [0, 2π], which
is slightly more tricky:

A =

∫ 2π

0

r2(1− cos θ)2 dθ = 3πr2. (5)

Thus, the area under an arch is three times the area of the gener-
ating circle or three-quarters of the area of the surrounding rect-
angle.

To get the area A, we required the parametric equations (1)
for the cycloid and the evaluation of a definite integral (5). Us-
ing Mamikon’s theorem, we shall now show that the area can be
found by simple geometric reasoning, without any equations or
integrations [1].

Figure 6: Tangent TQ is orthogonal to PT from the point of
contact.

For rolling motion, the instantaneous centre of rotation of the
disc is the point of contact P (Figure 6) and the vertical line PQ
is the diameter of the disc. All points T , T ′ and T ′′ on the bound-
ary of the disc move in directions orthogonal to the chords joining
them to P . In particular, the angle PTQ is a right angle, so TQ
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is a segment of the tangent to the cycloid. As the disc rolls, the
point Q moves and the chords tangent to the cycloid sweep out
the region above this curve.

We draw a set of tangents for the left-hand side of the arch in
Figure 7(a). Now, moving all these segments so that they have a
common upper point O (Figure 7(b)), we see that they fill a semi-
circle of radius r. The tangents for the right-hand side of the arch
complete the circle. Thus, the area of the tangent cluster is πr2,
the same area as the generating disc.

Figure 7: (a) Tangent sweep and (b) tangent cluster.

By Mamikon’s theorem, the area of the rectangle above the
arch – the tangent sweep – is equal to the area of the tangent clus-
ter or πr2. But the total area of the rectangle is 4πr2, so the area
of the arch must be 3πr2, or three times the area of the generating
disc.

Hamilton’s hodograph

The hodograph is a vector diagram showing how velocity changes
with position or time. It was made popular by William Rowan
Hamilton, who, in 1847, gave an account of it in the Proceedings
of the Royal Irish Academy [3]. The underlying idea is very sim-
ple: velocity vectors at different times or places are plotted with
a common origin, or emanating from a single point. The hodo-
graph is the locus of the arrow heads. Their varying directions
and magnitudes make a pattern that can yield dynamical infor-
mation in a visually clear way. Hamilton explained the origin of
the word hodograph, from oδoς , a way and γραϕω, to write.

Figure 8: (a) Kepler orbit with velocity vectors and (b) circular
hodograph.

Hodographs are valuable in fluid dynamics, astronomy and
meteorology. Wind arrows at different levels, plotted on a po-
lar diagram, illustrate the wind shear with height. Dynamically,

vertical wind shear is linked to horizontal temperature gradients,
through a relationship called the thermal wind [4]. Just as the
wind blows with the low pressure to the left (in the northern hemi-
sphere), the wind-shear vector has the low temperature to its left.
So, the hodograph gives information about the location of warm
and cold air and about temperature advection or heat transport.

In 1609, Kepler published his law of the ellipse, shattering
the arguments of the ancient Greeks that circular orbits, being
the epitome of perfection, must be found. However, the circle re-
emerged some 237 years after Kepler, when Hamilton announced
his law of the circular hodograph [3].

Figure 8(a) shows a Kepler orbit with velocity vectors. The
velocity is scaled so that, at the pericentre, vP = a where a is the
semimajor axis. The velocity vA at the apocentre follows from
conservation of angular momentum, rP vP = rAvA. Hamil-
ton discovered the remarkable fact that if all velocity vectors are
plotted from a common point, they trace out a circle of radius
v̄ = (vP + vA)/2 (Figure 8(b)).

Hamilton’s hodograph is also what Mamikon calls a tangent
cluster. Since the area of the hodograph is πv̄2, Mamikon’s the-
orem shows that the region swept out by the vectors around the
Kepler orbit (shaded region in Figure 8(a)) also has this area.

Discussion

Mamikon Mnatsakanian worked with Tom Apostol in Project
Mathematics, at the California Institute of Technology, to develop
a series of educational videos and accompanying workbooks [5].
When combined with computer animation, his method provides
a valuable teaching aid. It is applicable not only to plane curves
and areas but to space curves, areas of ruled surfaces and solids
of revolution in three dimensions.

Apostol [1] observed that the great contribution of Newton
and Leibniz was to demonstrate the relationship between differ-
entiation and integration. He remarked that Mamikon’s method
has some of the same ingredients, because ‘it relates moving tan-
gent segments with the areas of the regions swept out by those
tangent segments’. Thus, the relationship between differentiation
and integration is embedded in Mamikon’s method.

However, it must be acknowledged that the method lacks the
great generality of classical calculus. It is valuable for solving a
large class of integration problems but, usually, the solutions are
far from obvious and require special geometric insight, whereas
the techniques of calculus are applicable in a transparent manner.
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