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Improving the Laplace transform integration method
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We consider the Laplace transform filtering integration scheme applied to the shallow
water equations, and demonstrate how it can be formulated asa finite difference
scheme in the time domain. In addition, we investigate a moreaccurate treatment of
the nonlinear terms. The advantages of the resulting algorithms are demonstrated by
means of numerical integrations.
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1. Introduction

In Clancy and Lynch (2011), hereafter CL11, a time integration
scheme based on a modified inversion to the Laplace transform
(LT) was applied to a spectral shallow water model. The scheme is
designed to permit long time-steps for integrations and to filter out
unwanted high frequencies. In terms of stability and accuracy, it
was generally found to compare favourably with the widely-used
semi-implicit method (Kwizak and Robert, 1971). The LT scheme
had the additional benefit of reduced phase error, which is a
feature of the trapezoidal averaging in the semi-implicit approach.

In this note, we describe two improvements to the LT algorithm.
We show how, in certain models, we can formulate it as a scheme
in the time domain without any explicit computations in the
domain of the complex transform variable. We also consider a
more accurate treatment of the nonlinear terms in the discretised
model and compare with the scheme of CL11.

2. The Laplace transform integration method

We begin with a general dynamical system, which may arise
after the spatial discretisation of the equations governing a given
atmospheric model:

dX

dt
= LX+N(X) (1)

HereX is the state vector and we have split the right-hand side
forcing into linear and nonlinear terms. We take the Laplace
transform of this system, making use of the properties givenin
(10) in the appendix. As in CL11, we first consider the transform
over the interval[(τ − 1)∆t, (τ + 1)∆t]: the ‘initial condition’ is
then given byXτ−1 and the nonlinear terms are evaluated at the
centre valueNτ ≡ N(Xτ ). Thus, we have

s X̂−X
τ−1 = LX̂+

1

s
N

τ (2)

Rearranging, we have an equation for the transform:

X̂(s) = (sI− L)−1
[
X

τ−1 +
1

s
N

τ
]

(3)

The physical solution is recovered by applying an inverse
transform. As described in the appendix, a modified inversion
operator may be used to filter components with frequencies larger
than a cut-offωc. This operator,L∗, involves a complex integral
around a circle. In CL11, a discretised form of the operator was
used, denoted byL∗

N and defined in (14) below. Using this we get
the solution:

X
τ+1 = L

∗
N

{
X̂(s)

}
=

1

N

N∑

n=1

esn 2∆t
N X̂(sn) sn (4)

Together, equations (3) and (4) define a time-stepping scheme,
which may be applied to any dynamical system of the form (1).

In the context of atmospheric models, the(sI− L)−1 term in
(3) corresponds to an elliptic equation which would need to be
solved at each of the pointssn, n = 1, . . . , N ; as an example,
Lynch (1991) usedN = 8. This extra computational effort
motivated the use of a spectral transform model in CL11, in which
the solution of the elliptic equation reduces to multiplication by
constants in spectral space. In the next section, we will outline
some further improvements on this approach.

3. Improvements to the time scheme

3.1. Spectral model

The shallow water equations may be written in the form

∂η

∂t
= −∇.ηV

∂δ

∂t
+∇2Φ = k.∇× ηV −∇2

(
V.V

2(1− µ2)

)
(5)

∂Φ′

∂t
+ Φ̄δ = −∇.

(
Φ′ − Φs

)
V

Hereη is the absolute vorticity,δ is the horizontal divergence,V
is the horizontal wind vector andµ is the sine of latitude. The
free surface geopotential height has been written asΦ = Φ̄ + Φ′,
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whereΦ̄ is constant. The geopotential of the orography is given
by Φs.

In CL11, the equations were discretised using the spectral
transform model of Hack and Jakob (1992), in which the fields are
expanded as truncated series of spherical harmonics; for example,
with a triangular truncation,

η(λ, µ, t) =

L∑

ℓ=0

ℓ∑

m=−ℓ

ηmℓ (t)eimλPm
ℓ (µ)

For the spectral transform method, the nonlinear terms on the
right-hand side of (5) are computed in physical space and the
product is expanded in a series. Orthogonality of the spherical
harmonics can then be used to obtain a series of equations forthe
spectral coefficients. We are left with a set of ordinary differential
equations of the form

d

dt
ηmℓ = Nm

ℓ

d

dt
δmℓ =

ℓ(ℓ+ 1)

a2
Φm
ℓ +Dm

ℓ (6)

d

dt
Φm
ℓ = −Φ̄ δmℓ + Fm

ℓ

where Nm
ℓ , Dm

ℓ and Fm
ℓ are the spectral coefficients of the

nonlinear terms. Note that theΦm
ℓ are the spectral coefficients of

the perturbation geopotentialΦ′; the prime has been dropped for
ease of notation.

We now take the LT of the system (6), as described in Section
2 above. The resulting decoupled system can be solved to give

η̂m
ℓ

=
1

s

{
ηmℓ

}τ−1
+

1

s2
{
Nm

ℓ

}τ

δ̂m
ℓ

= d

(
s{δmℓ }τ−1 +R+

1

s

ℓ(ℓ+ 1)

a2
{Fm

ℓ }τ
)

(7)

Φ̂m
ℓ

= d
(
s
{
Φm
ℓ

}τ−1
+Q−

1

s
Φ̄
{
Dm

ℓ

}τ)

where

d =
1

s2 + ω2
ℓ

R = {Dm
ℓ }τ +

ℓ(ℓ+ 1)

a2
{Φm

ℓ }τ−1

Q = {Fm
ℓ }τ − Φ̄{δmℓ }τ−1

and ωℓ =
√

ℓ(ℓ+ 1)Φ̄/a2 is the frequency of theℓ-th gravity
mode (cf. CL11, Eqn. (15) rewritten in a different form).

In CL11, we used the inversion operatorL
∗
N to compute the

spectral coefficients at the new time(τ + 1)∆t, which is at a
time 2∆t after the beginning of the time interval. However, by
inspection of the form of (7), it is apparent that we can apply the
analytical operatorL∗, as defined in (12) in the appendix, to obtain
the solution.∗ The right-hand side of the vorticity equation has
poles at the origin, so it inverts to

{ηmℓ }τ+1 = {ηmℓ }τ−1 + 2∆t{Nm
ℓ }τ

This is equivalent to the conventional leapfrog scheme.
The divergence and continuity equations have poles ats = 0

and also ats = ±iωℓ. Depending on whetherωℓ < ωc or ωℓ >

ωc, these are within or outside the contourC∗. We can use the

∗Nick Byrne, personal communication.

identities in (13) below to write the solutions as

{δmℓ }τ+1 = H(ωℓ) cos (2ωℓ∆t) {δmℓ }τ−1

+
1

ωℓ

H(ωℓ) sin (2ωℓ∆t)R

+
1

ω2
ℓ

[(1−H(ωℓ) cos (2ωℓ∆t)]
ℓ(ℓ+ 1)

a2
{Fm

ℓ }τ (8)

{Φm
ℓ }τ+1 = H(ωℓ) cos (2ωℓ∆t) {Φm

ℓ }τ−1

+
1

ωℓ

H(ωℓ) sin (2ωℓ∆t)Q

−
1

ω2
ℓ

[(1−H(ωℓ) cos (2ωℓ∆t)]
ℓ(ℓ+ 1)

a2
Φ̄{Dm

ℓ }τ

(9)

The system (8)–(9) provides a means of advancing the
integration without any explicit computations in the complex s-
plane. It is simpler than the method discussed in CL11, and avoids
the errors associated with the numerical inversion usingL

∗
N.

There is a further benefit of analytical inversion, relatingto
stability. Equation (10) of CL11 gives a stability criterion for
the LT discretisation, which may be limiting for largeωc and
small values ofN . Using the analytic inversion, i.e.N → ∞,
removes this constraint. Stability is then governed by the condition
associated with the discretisation of the nonlinear terms.

3.2. Nonlinear terms

Until now, we have been using a leapfrog scheme, in which
the nonlinear terms are treated at their centred values; c.f. the
discretisation in (2). The three time levels used in the leapfrog
introduces a spurious computational mode. Traditionally,when
using the semi-implicit leapfrog scheme, a time filter has been
added to suppress this noise (Asselin, 1972), although thisis
known to cause a reduction in accuracy (Williams, 2011).

We would like to have a more accurate treatment of nonlinear
terms in the LT scheme. A number of single-stage methods
were tested, including a third-order Adams-Bashforth scheme.
Durran (1991) previously showed that this scheme is unstable
when coupled with a trapezoidal averaging of the linear terms in a
semi-implicit. This also proved to be the case when coupled with
the LT approach.

Clancy and Pudykiewicz (2013a) tested a number of two-
stage semi-implicit methods, in which the nonlinear terms
are discretised in time using a predictor–corrector method.
One in particular, labelled T-ABT, uses an implicit trapezoidal
(T) averaging for the linear terms, with an Adams-Bashforth-
Trapezoidal (ABT) method (Kar, 2012) for the nonlinear
terms. WithX

p denoting the intermediate, predicted level, the
discretisation for the system (1) is then

X
p −X

τ

∆t
=

1

2
LX

p +
1

2
LX

τ +
3

2
N

τ −
1

2
N

τ−1

X
τ+1 −X

τ

∆t
=

1

2
LX

τ+1 +
1

2
LX

τ +
1

2
N

p +
1

2
N

τ

Although this is also a three time-level scheme, the computational
mode is heavily damped and a filter is not needed.

We can use this approach in the LT scheme. For the predictor
stage, the LT of system (1) is given by

s X̂−X
τ = LX̂+

1

s

[
3

2
N

τ −
1

2
N

τ−1
]

As usual, we solve for̂X and invert to getXp. The second,
corrector stage is then

s X̂−X
τ = LX̂+

1

s

[
1

2
N

p +
1

2
N

τ
]

Again, we solve and invert to give the solutionXτ+1.

c© 0000 Royal Meteorological Society Prepared using qjrms4.cls



Laplace transform integration 3

24 48 72 96 120 144 168 192 216 240
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−3

hours

ℓ
∞

 

 

T−ABT
LT N=8
LT N=16
LT analytic
LT−ABT

Figure 1. Normalisedℓ∞ errors for the unsteady flow case. The cut-off period for
the LT schemes is 1 hour.

4. Numerical tests

The various time integration schemes will now be tested in the
spectral transform model described in the previous section. As
mentioned, the model is based on that of Hack and Jakob (1992)
used in CL11. Here we use a version written in Matlab, using the
spectral routines of Drake and Guo (2001).

All cases shown use a T119 spectral resolution, corresponding
to a grid of approximately 110km at the equator. The time-step
used throughout is 900 s. Three different LT schemes are tested:
the original from CL11 using a numerical inversion withN = 8

andN = 16; the new version with the analytic transform; and the
LT with the ABT treatment of the nonlinear terms, denoted LT-
ABT, as described in the previous section. The analytic inversion
is also used in the LT-ABT. For comparison, results with the semi-
implicit T-ABT are also shown.

We focus on two test cases. The first is described in Läuter
et al. (2005) consists of an unsteady flow which has an analytic
solution. The horizontal winds and geopotential are given by

u(λ, φ, t) =u0(sin θ sinφ (cosλ cosΩt− sinλ sinΩt) + cos θ cos φ)

v(λ, φ, t) =− u0 sin θ (sinλ cos Ωt+ cos λ sinΩt)

Φ(λ, φ, t) =−

1

2
[u0(sin θ cosφ (− cosλ cos Ωt+ sinλ sinΩt)

+ cos θ sinφ) + aΩ sinφ]2 +
1

2
(aΩ sinφ)2 + k1

Φs(λ, φ, t) =
1

2
(aΩ sinφ)2 + k2

Here a and Ω are the Earth’s radius and angular velocity. As
in Clancy and Pudykiewicz (2013a), we takeu0 = 2πa/12 (one
circuit of the Earth in twelve days), and choose parameter values
k1 = 133681m2s−2, k2 = 10m2s−2 andθ = π/4.

In Figure1 we show the normalisedℓ∞ height errors over 10
simulated days. For the LT schemes, the cut-off frequencyωc

corresponds to a period of 1 hour. The solutions from the leapfrog-
based LT schemes are very similar, regardless of whether we use
a numerical or analytic inversion. Moving away from the leapfrog
to the LT-ABT, there is a dramatic improvement and this scheme
shows better scores than the T-ABT.

The second case we consider is Case 5 of the suite of
Williamson et al. (1992), consisting of zonal flow interacting with
an isolated mountain. As this case has no known analytic solution,
we compute errors relative to a reference solution from an explicit
third-order Adams-Bashforth scheme with∆t = 90s. The results
are shown in Figure2. On the left we have the same cut-off as
before for the LT algorithms, corresponding to a 1 hour period.
On the right, a 3 hour period is used.

In general, the LT solutions outperform the semi-implicit
here but differences between the various schemes appear with

the longer 3-hour cut-off. This corresponds to a lower cut-off
frequencyωc; i.e. the radius of the contour for inversion with
L
∗ is smaller and we are filtering more frequencies. The analytic

inversion has a sharp, step-function filter response, whereas
the response of the numerical inversion (given by (15) in the
appendix) distorts modes near the cut-off. Referring againto the
right-hand panel of Figure2, this effect is clearly lessened when
N is increased to 16, and disappears in the analytic cases.

5. Discussion

In this note we have outlined some improvements to the Laplace
transform time integration scheme developed in Clancy and
Lynch (2011) and tested these modifications with numerical
simulations. In the original formulation of the LT scheme, we used
a numerical inversion to compute the physical solution. Here, in
a spectral transform shallow water model, we have shown that
this may be replaced by an analytic inversion, thus requiring no
explicit integration in the complex transform space. Testswith the
model show improved results.

One important advantage of the LT method of time integration
is the more accurate phase speed of the linear modes. The analysis
of CL11 showed the phase error to beO(∆tN ), compared with
O(∆t2) for a trapezoidal discretisation used in semi-implicit
schemes. The analytic inversion represents theN → ∞ limit.
In this case we have exact treatment of linear modes and the
algorithm is among a class of exponential integration methods
(Beylkin et al., 1998; Clancy and Pudykiewicz, 2013b).

The approach described in this study will not always be
practical, because it requires a simple representation of the linear
terms. However, it is particularly convenient for application to
spectral and pseudo-spectral eulerian models. The numerical
experiments show that we can increase the accuracy with a
better treatment of the nonlinear terms; previously these were
discretised with a centred, leapfrog scheme. The predictor–
corrector approach used here increases the computational
overhead as a result of the two-stage solution. Of course, this
burden is shared by the corresponding semi-implicit approach and
is not due to the LT treatment. The trade-off between the twin
increases in accuracy and cost will depend on the model and
application.
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Appendix

Here we present the basic theory of Laplace transforms which
is relevant to this work. Further theory and applications may be
found in Doetsch (1971).

Given a functionf(t) for t ≥ 0, the Laplace transform (LT) is
defined as

f̂(s) ≡ L{f} =

∫ ∞

0

e−stf(t) dt

The variables is complex. It is clear thatL is a linear operator.
In addition, the following results may be readily found fromthe
definition ofL:

L

{
df

dt

}
= s f̂(s)− f(0)

L {c} =
c

s
for constantc (10)
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Figure 2. Normalisedℓ∞ errors for the mountain case. The cut-off period for the LT schemes is 1 hour (left) and 3 hours (right).

The inversion from a transformed function back to the original is
given by the contour integral

f(t) ≡ L
−1{f̂} =

1

2πi

∫

C

estf̂(s) ds (11)

where the contourC is a line parallel to the imaginary axis in the
s-plane, to the right of all the singularities of̂f .

To remove high frequency components, we define a closed
contourC∗, the circle centred at the origin with radiusωc (ωc is
called the cut-off frequency). We replaceC by C∗ in the integral in
(11), yielding the modified inversion

f∗(t) ≡ L
∗{f̂} =

1

2πi

∮

C∗

estf̂(s)ds (12)

Now f∗(t) contains only contributions from the poles lying within
C∗, that is, those with frequencies less thanωc. Thus, the modified
inversion integral (12) acts to filter high frequency behaviour.

From the definition ofL∗ we can readily deduce the following

L
∗
{
1

s

}
= 1

L
∗
{

1

s2

}
= t

L
∗
{

1

s2 + ω2

}
=

1

ω
H(ω) sinωt (13)

L
∗
{

s

s2 + ω2

}
= H(ω) cosωt

L
∗

{
1

s (s2 + ω2)

}
=

1

ω2
(1−H(ω) cosωt)

where we have used the step function

H(ω) =

{
1 , |ω| < ωc ,

0 , |ω| > ωc .

Inversion may also be carried out numerically, by replacingthis
integral with a sum involvingN discrete points. The resulting
numerical inversion operator is denotedL

∗
N and is given by

f∗(t) ≈ L
∗
N

{
f̂
}
=

1

N

N∑

n=1

esntN f̂(sn) sn (14)

Here,sn are equally-spaced points around the circleC∗ andezN is
the Taylor series of the exponential function, truncated toN terms.
Further details of this operator are given in CL11.

Properties analogous to (13) hold for L
∗
N : the cos and sin

functions are replaced by their truncated Taylor series andthe
numerical filter response is given by

HN (ω) =
1

1 + (iω/ωc)N
. (15)

As N → ∞, this limits to the step functionH(ω).
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