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Generation of zonal flow by resonant Rossby-Haurwitz wave

interactions
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Starting out with two interacting Rossby-Haurwitz waves, the generation of zonal flow is
discussed. It is shown that zonal flow cannot be generated by first or second order interactions
between two such waves, unless they are exchanging energy with a third wave within a resonant
triad. The generation of zonal flow at second order through resonant triad interactions is
subsequently established and studied.
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1. Introduction

Over the years there has been great interest in zonal flow and a number of mechanisms

to generate zonal flow in different settings have been suggested. More recently it has

been shown that Reynolds stresses between Rossby waves can excite zonal flow in a

shallow rotating atmosphere (Shukla and Stenflo 2003, Onishchenko et al. 2004). This

results in a transfer of energy from short scale Rossby waves to long scale zonal flows.

Suggestions to generate zonal flow through the interaction of Rossby waves, however,

go back much further. In 1969 Newell proposed a quartet mechanism to generate zonal

flow through the interaction of Rossby waves at second order (Newell 1969). Newell’s

work in this area was later extended by Loesch (1977). Both these authors used the

�-plane approximation instead of taking the spherical nature of the earth fully into

account.

In this paper we re-examine Newell’s mechanism for interacting Rossby waves by

going beyond the �-plane approximation, working with spherical coordinates through-

out. In this setting, the Rossby waves become the Rossby-Haurwitz waves. Our aim is to

study how Rossby-Haurwitz waves can produce zonal flow through the resonant

interaction energy transfer mechanism. It was previously shown that for meaningful

interaction between Rossby-Haurwitz waves to occur a resonant triad should be

considered (see, e.g., Reznik et al. 1993). Following on from these discoveries we found
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that if the second order of the equation under consideration is examined, zonal flow is

produced. This method does not work in the case of a plane. To produce zonal flow in the

�-plane approximation, i.e. for large wavenumbers, it is necessary to use a quartet

mechanism (Newell 1969, Loesch 1977). In this paper we show that we require only a

triad solution to produce zonal flow. Hence one less wave is required to be present, if the

spherical form of the earth is important.

To indicate the range of applicability of our results, the non-divergent barotropic

absolute vorticity equation will be discussed in the second section of the paper.

In section 3, we examine Rossby-Haurwitz wave interactions. In this section we prove

that zonal flow cannot be produced up toO(�2), if we start out with twoRossby-Haurwitz

waves which do not interact resonantly. Section 4 shows that the generation of zonal

flow occurs at O(�2) if we start out our calculations with two resonantly

interacting Rossby-Haurwitz waves. Finally we illustrate this mechanism with a

worked example in section 5.

Many global circulation models exhibit systematic deficiencies in representing the

mean circulation. In particular, the distribution of the strength of the average westerly

flow in the northern mid-latitudes appears to be difficult to simulate well. Van Ulden

et al. (2006) analysed the characteristics of some nineteen global climate models. Most

models had a significant westerly bias (too strong zonal flow) in winter, and had

difficulties in getting the correct frequency for blocking situations. The onset and

maintenance of blocks depends delicately on nonlinear energy exchanges from smaller

scales (Buizza and Molteni 1996). Likewise, the accurate simulation of the mean zonal

flow requires a correct representation of such exchanges. The mechanisms discussed in

the present paper may be important for determining the strength of the mid-latitude

westerly jet streams in the atmosphere. However, a more detailed examination of the

mechanism in the context of a full global climate model, and comparison with

observational data, which goes beyond the scope of the current study, would be

required to confirm this.

2. Rossby-Haurwitz waves

In this section we will briefly discuss the derivation of the non-divergent barotropic

absolute vorticity equation and its solutions, the Rossby-Haurwitz waves. We start with

the two-dimensional mass conservation equation

@u

@�
þ
@

@�
cos�vð Þ ¼ 0 ð1Þ

and momentum equations

@u

@t
þ

1

a cos�
u
@u

@�
�
tan�

a
uvþ

1

a
v
@u

@�
� 2�v sin� ¼ �

1

�a cos�

@p

@�
, ð2Þ

@v

@t
þ

1

a cos�
u
@v

@�
þ
tan�

a
u2 þ

1

a
v
@v

@�
þ 2�u sin� ¼ �

1

�a

@p

@�
: ð3Þ

Here � represents the longitude (��� �<�), � represents the latitude (��/2� ���/2),

and t represents time. The constant � is the density, � is the angular frequency of the
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earth, a is its radius, and p is the pressure. The velocities in eastern and northern

direction are given by u and v, respectively. Equations (1) to (3) are widely used in

oceanography and meteorology.

The solution of the mass conservation equation is given by

u ¼ �
1

a

@ 

@�
, v ¼

1

a cos�

@ 

@�
: ð4Þ

To reduce (2) and (3) down to a single equation, we apply the differential operators

D� ¼
@

@�
� tan�, D� ¼

1

cos�

@

@�
ð5Þ

to equation (2) and (3), respectively, and substract the resulting equations from each

other. We also nondimensionalize our variables by setting t0 ¼ t/T,  0 ¼T /(�L2),

�
0 ¼T�, where T and L are typical time and length scales, respectively, and � is a small

number reflecting our interest in waves of small amplitude. Dropping the primes, we

obtain

@

@t

1

cos2 �

@2 

@�2
þ
@2 

@�2
� tan�

@ 

@�

� �

þ 2
@ 

@�
¼ �

1

cos�

@ 

@�

@

@�
�

1

cos�

@ 

@�

@

@�

� �

�
1

cos2 �

@2 

@�2

�

þ
@2 

@�2
� tan�

@ 

@�

�

ð6Þ

with �¼�L2/a2. This is the non-divergent barotropic absolute vorticity equation whose

solutions we will study.

Assuming �� 1 and expanding  about �,

 ðt,�, �, �Þ ¼  0ðt,�, �Þ þ � 1ðt,�, �Þ þ . . . , ð7Þ

the leading order equation of (6) is

@

@t

1

cos2 �

@2 0

@�2
þ
@2 0

@�2
� tan�

@ 0

@�

� �

þ 2
@ 0

@�
¼ 0: ð8Þ

This equation is satisfied for the Rossby-Haurwitz waves (Haurwitz 1940)

 0 ¼ ðAeiðm���tÞ þ �Ae�iðm���tÞÞPm
n ð	Þ, ð9Þ

where

Pm
n ð	Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2nþ 1Þ
ðn�mÞ!

ðnþmÞ!

s

Tm
n ð	Þ,

Tm
n ð	Þ ¼ ð�1Þm

ð1� 	2Þm=2

2nn!

dnþm

d	nþm
ð	2 � 1Þn,

n ¼ 1, 2, 3, . . . , m ¼ �n, . . . , n,

	 ¼ sin�

and

� ¼
�2m

nðnþ 1Þ
: ð10Þ

Generation of zonal flow by resonant Rossby-Haurwitz wave interactions 167

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
u
r
z
l
a
f
f
,
 
J
.
]
 
A
t
:
 
1
6
:
3
6
 
1
8
 
A
u
g
u
s
t
 
2
0
0
8



Note that  ¼ 0 is actually a solution of (6), since the quadratic term on the right-hand

side of (6) vanishes for  0 given in (9). Since the leading order equation (8) is linear, any

linear superposition of Rossby-Haurwitz waves is also a solution of (8).

3. Wave interactions

To study the interaction of Rossby-Haurwitz waves we have to consider (6) for higher

orders of �. The O(�) equation is

@

@t
r2 1 þ 2

@ 1

@�
¼ Jðr2 0, 0Þ, ð11Þ

where

r2 ¼
1

cos 2�

@2

@�2
þ
@2

@�2
� tan�

@

@�

� �

and

Jða, bÞ ¼
@a

@�

@b

@	
�
@a

@	

@b

@�
:

In our calculations we will repeatedly use the identities

P�m
n ¼ ð�1ÞmPm

n , r2Ym
n ¼ �nðnþ 1ÞYm

n ,

where

Ym
n ð�,	Þ ¼ eim�Pm

n ð	Þ:

We want to study the resonant generation of zonal flow, i.e., the generation of Rossby-

Haurwitz waves of the form eiðm���tÞPm
n where m¼ 0. Firstly we examine a superposition

of two solutions and start with

 0 ¼ ðA1e
iðm1���1tÞ þ �A1e

�iðm1���1tÞÞPm1

n1
ð	Þ þ ðA2e

iðm2���2tÞ þ �A2e
�iðm2���2tÞÞPm2

n2
ð	Þ,

ð12Þ

where

�1 ¼
�2m1

n1ðn1 þ 1Þ
, �2 ¼

�2m2

n2ðn2 þ 1Þ
:

Calculating the right-hand side of (11) we obtain

Jðr2 0, 0Þ ¼ iln1n2

(

A1A2e
i½ðm1þm2Þ��ð�1þ�2Þt� m2P

m2

n2

dPm1

n1

d	
�m1P

m1

n1

dPm2

n2

d	

� �

� A1
�A2e

i½ðm1�m2Þ��ð�1��2Þt� m2P
m2

n2

dPm1

n1

d	
þm1P

m1

n1

dPm2

n2

d	

� �

þ c:c:

)

, ð13Þ

where

lninj ¼ niðni þ 1Þ � njðnj þ 1Þ:
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By examining (13) it is clear that none of these terms can be a Rossby-Haurwitz wave

and at the same time correspond to zonal flow. Zonal flow on the sphere corresponds to

Rossby-Haurwitz waves whose � derivative terms are zero. For (13) this means that

m1¼�m2. However, for a Rossby-Haurwitz wave we must also have the condition that

�1¼��2. This condition will immediately force n1¼ n2. If this were true ln1n2 would

vanish. Therefore it can be concluded that it is not possible to produce resonant zonal

flow at O(�) when starting out with two Rossby-Haurwitz waves.

The next possibility to consider is whether zonal flow can be generated at O(�2).

Before examining this equation,  1 needs to be determined. To solve (11) and find  1,

we expand (13) in terms of Legendre functions. To do this we shall use the following

expansion:

 ð�,	, tÞ ¼
X

1

n¼1

X

n

m¼�n

 m
n ðtÞY

m
n ð�,	Þ, ð14Þ

where

 m
n ðtÞ ¼

1

4�

Z 1

�1

Z �

��

�Ym
n ð�,	Þ ð�,	, tÞ d�d	: ð15Þ

From this expansion we seet that each term on the right-hand side of (11) can be written

as a sum of Legendre functions. In fact it can be shown (Infeld and Hull 1951) that only

a finite number of terms in this sum are nonzero, since

imkP
mk
nk

dPmj

nj

d	
� imjP

mj

nj

dPmk
nk

d	
¼

X

njþnk

n¼jnk�njj

Bmjmk
njnkn

Pmjþmk
n ,

where

Bmjmk

njnkn
¼

1

2

Z 1

�1

Pmjþmk

n imkP
mk

nk

dPmj

nj

d	
� imjP

mj

nj

dPmk
nk

d	

� �

d	: ð16Þ

There are further conditions on ni and mi which, unless satisfied, will result in B
mjmk
njnkn

being zero. These conditions are discussed by Silberman (1954).

Assuming that the Rossby-Haurwitz waves are not resonantly interacting, we can

determine  1. Using (11) and (12) we obtain

 1 ¼
X

n1þn2

n¼jn2�n1j

A1A2B
m1m2

n1n2n
bm1m2

n1n2n
ei½ðm1þm2Þ��ð�1þ�2Þt�Pm1þm2

n

þ ð�1Þm2

X

n1þn2

n¼jn2�n1j

A1
�A2B

m1�m2

n1n2n
bm1�m2

n1n2n
ei½ðm1�m2Þ��ð�1��2Þt�Pm1�m2

n þ c:c:, ð17Þ

where

bmjmk

njnkn
¼

�ilnjnk

nðnþ 1Þð�j þ �kÞ þ 2ðmj þmkÞ
:

With  1 now determined, the O(�2) equation

@

@t
r2 2 þ 2

@ 2

@�
¼ Jðr2 1, 0Þ þ Jðr2 0, 1Þ ð18Þ
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is studied. Examining the exponential terms obtained when the right-hand side of (18) is

calculated we see that we get zonal flow if ml�mj�mk¼ 0 and if �l� �j� �k¼ 0 in the

case of a resonant interaction. This is true if and only if m1¼�2m2 and �1¼�2�2 or

2m1¼�m2 and 2�1¼��2. In either case this implies n1¼ n2, which leads to ln1n2 ¼ 0

and  1 to be zero. Therefore we can see that zonal flow cannot be produced up to O(�2)

by starting out with two waves that do not interact resonantly.

4. Resonant zonal flow

The next option to be considered is to start out with two resonantly interacting waves.

Starting out with the superposition (12), which this time consists of two resonantly

interacting waves, we examine equation (11), i.e.,

@

@t
r2 1 þ 2

@ 1

@�
¼ ln1n2

�

X

n1þn2

n¼jn2�n1j

A1A2B
m1m2

n1n2n
ei½ðm1þm2Þ��ð�1þ�2Þt�Pm1þm2

n

þ ð�1Þm2

X

n1þn2

n¼jn2�n1j

A1
�A2B

m1�m2

n1n2n
ei½ðm1�m2Þ��ð�1��2Þt�Pm1�m2

n þ c:c:
�

: ð19Þ

The right-hand side of (19) will now contain a Rossby-Haurwitz wave because of the

resonant interactions. If the corresponding n is called n3 and if we set m1þm2¼m3 and

�1þ �2¼ �3, we have

m1

n1ðn1 þ 1Þ
þ

m2

n2ðn2 þ 1Þ
¼

m3

n3ðn3 þ 1Þ
: ð20Þ

Without loss of generality we have assumed that the Rossby-Haurwitz wave is one of

the terms in the first sum; if it is not, we simply replace m2 by �m2 in (12).

Since a Rossby-Haurwitz wave is present on the right-hand side of the equation,  1

contains a term of the form

tBm1m2

n1n2n
eiðm3���3tÞPm3

n3
: ð21Þ

Such a term grows linearly in time, indicating resonance. We now insist that the

expansion (7) is valid for times of O(1/�), in the sense that the O(�) term in (7) is much

smaller than the leading term, for time t of order 1/�. This means that we cannot

tolerate terms of the form (21) in  1. This third wave must be included in our original

leading order solution to ensure that the asymptotic approximation remains valid. The

amplitudes must also be made time-dependent to ensure the validity of the

approximation. Therefore the calculations now start with the triad

 0 ¼ A1ð
1Þe
iðm1���1tÞPm1

n1
ð	Þ þ �A1ð
1Þe

�iðm1���1tÞPm1

n1
ð	Þ

þ A2ð
1Þe
iðm2���2tÞPm2

n2
ð	Þ þ �A2ð
1Þe

�iðm2���2tÞPm2

n2
ð	Þ

þ A3ð
1Þe
iðm3���3tÞPm3

n3
ð	Þ þ �A3ð
1Þe

�iðm3���3tÞPm3

n3
ð	Þ: ð22Þ

The triad will, of course, interact to produce once again the unwanted terms similar to

(21) in  1. To avoid this problem it is assumed that the amplitudes A1, A2 and A3 are

slowly varying in time, such that their time derivatives are of O(�). We implement this
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idea by introducing a slow time 
1¼ �t. Note that this asymptotic scheme generalizes the

asymptotic expansion (7) since  0,  1, . . . themselves are now functions of �. As a

bookkeeping device the time derivative shall be rewritten as

@

@t
!

@

@t
þ �

@

@
1
:

Using these new slowly time dependent amplitudes, (11) is replaced by

@

@t
r2 1 þ 2

@ 1

@�
¼ Jðr2 0, 0Þ �

@

@
1
r2 0: ð23Þ

The term J(r2
 0,  0) will now generate three Rossby-Haurwitz waves. However, with

the assumption that the amplitudes are slowly time dependent, some extra terms are

also produced. These terms can cancel the unwanted terms on the right-hand side of

(23). To ensure they do, the amplitudes must satisfy the following set of ordinary

differential equations

dA1

d
1
¼

ln2n3
n1ðn1 þ 1Þ

Bm1m2

n1n2n3
�A2A3,

dA2

d
1
¼

ln3n1
n2ðn2 þ 1Þ

Bm1m2

n1n2n3
�A1A3,

dA3

d
1
¼

ln2n1
n3ðn3 þ 1Þ

Bm1m2

n1n2n3
A1A2:

ð24Þ

These equations have been studied as far back as 1969 (Newell 1969). Taking these

amplitude conditions into account, the O(�) equation is reexamined and it is found that

 1 ¼
X

3

j¼1

X

3

k¼jþ1

�

X

njþnk

n¼jnj�nk j

n 6¼njk

AjAkB
mjmk
njnkn

bmjmk
njnkn

ei½ðmjþmkÞ��ð�jþ�kÞt�Pmjþmk
n

þ ð�1Þmk

X

njþnk

n¼jnj�nk j

n 6¼ ~njk

Aj
�AkB

mj�mk

njnkn
bmj�mk

njnkn
ei½ðmj�mkÞ��ð�j��kÞt�Pmj�mk

n

�

þ c:c:,

ð25Þ

where

njk ¼
n3, j ¼ 1, k ¼ 2,

nj þ nk þ 1, otherwise,

�

~njk ¼

n1, j ¼ 2, k ¼ 3,

n2, j ¼ 1, k ¼ 3,

nj þ nk þ 1, otherwise:

8

<

:

All the conditions n 6¼ njk and n 6¼ ~njk do is take out the resonant term. Once again none

of these terms correspond to zonal flow so we examine the O(�2) equation.

We now use the replacement

@

@t
!

@

@t
þ �

@

@
1
þ �2

@

@
2
þ � � � ,

again purely as a bookkeeping device. Including the new slowly time dependent

amplitudes into the O(�2) equation it reads

@

@t
r2 2 þ 2

@ 2

@�
¼ Jðr2 1, 0Þ þ Jðr2 0, 1Þ �

@

@
1
r2 1 �

@

@
2
r2 0: ð26Þ
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Examining the first two terms on the right-hand side of (26) we see that zonal flow

is indeed produced at this order. Combining, for example, eiðm3���3tÞ from  0 with

e�i½ðm1þm2Þ��ð�1þ�2Þt� from  1 will produce zonal flow. These Rossby-Haurwitz

waves generated at O(�2) are now included in our leading order solution from

the outset, i.e.,

 0 ¼
X

N

j¼1

 
j
0, ð27Þ

where

 
j
0 ¼ ðAjð
1, 
2Þe

iðmj���jtÞ þ �Ajð
1, 
2Þe
�iðmj���jtÞÞPmj

nj
ð	Þ,

�j ¼
�2mj

njðnj þ 1Þ
,

mj ¼ 0, Aj ¼ �Aj, j ¼ 4, 5, . . . ,N:

Again we have to make sure that Rossby-Haurwitz waves do not occur on either the

right-hand side of (23) or on the right-hand side of (26). The conditions on the

amplitudes necessary to ensure this are

dA1

d
1
¼

ln2n3B
m1m2
n1n2n3

n1ðn1 þ 1Þ
�A2A3 þ 2

X

N

k¼4

lnkn1B
m10
n1nkn1

n1ðn1 þ 1Þ
A1Ak,

dA2

d
1
¼

ln3n1B
m1m2
n1n2n3

n2ðn2 þ 1Þ
�A1A3 þ 2

X

N

k¼4

lnkn2B
m20
n2nkn2

n2ðn2 þ 1Þ
A2Ak,

dA3

d
1
¼

ln2n1B
m1m2
n1n2n3

n3ðn3 þ 1Þ
A1A2 þ 2

X

N

k¼4

lnkn3B
m30
n3nkn3

n3ðn3 þ 1Þ
A3Ak,

dAk

d
1
¼ 0 for k ¼ 4, 5, . . . ,N:

ð28Þ

We see that the amplitudes of the zonal flow do not gain or lose energy at this time

scale. At this order the zonal flow actually acts as a catalyst, helping the other waves to

exchange energy between themselves. The next order of the equation must be studied to

establish conditions for the zonal flow amplitudes. Note that we do not treat t, 
1, 
2 as

independent variables, and therefore use ordinary derivatives in (28). The ordinary

differential equations (28) have to be solved to find the amplitudes as functions of


1¼ �t and N integration constants c1, c2, . . . , cN. Obviously, Ak¼ ck for k¼ 4, 5, . . . ,N.

To study the next order of the equation, an expression is required for  1. Taking into

account the above conditions, it can be deduced that

 1 ¼
X

3

j¼1

X

N

k¼jþ1

 

X

njþnk

n¼jnj�nk j

n 6¼njk

AjAkB
mjmk
njnkn

bmjmk
njnkn

ei½ðmjþmkÞ��ð�jþ�kÞt�Pmjþmk
n

þ ð�1Þmk

X

njþnk

n¼jnj�nk j

n 6¼ ~njk

Aj
�AkB

mj�mk

njnkn
bmj�mk

njnkn
ei½ðmj�mkÞ��ð�j��kÞt�Pmj�mk

n

�

þ c:c:, ð29Þ
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where

njk ¼

n3, j ¼ 1, k ¼ 2,

nj, j ¼ 1, 2, 3 and k ¼ 4, 5, . . . ,N,

nj þ nk þ 1, otherwise,

8

<

:

and

~njk ¼

n1, j ¼ 2, k ¼ 3,

n2, j ¼ 1, k ¼ 3,

nj, j ¼ 1, 2, 3 and k ¼ 4, 5, . . . ,N,

nj þ nk þ 1, otherwise:

8

>

>

<

>

>

:

When the O(�2) equation is now examined for these values of  0 and  1, it will once

again be found that resonance terms will be produced which invalidate our generalized

expansion, that is the expansion (7) where now  0,  1, . . . have become � dependent. To

overcome the same problem at order �, we imposed the conditions (28) on the

amplitudes. Solving these equations will make the amplitudes functions of the form

A(�, t, c1, c2, . . . , cN), where c1, c2, . . . , cN are the constants of integration. To overcome

the problem with resonances at O(�2), we now make the integration constants t

dependent, such that their t derivatives will first appear in the O(�2) equation. The

derivatives of the integration constants will always occur in the form

@Aj

@c1

dc1

dt
þ � � � þ

@Aj

@cN

dcN

dt
¼: �2

@Aj

@
2
: ð30Þ

It is important to note that in our asymptotic scheme 
1 and 
2 are not independent

variables, and therefore the right-hand side of (30) is just a shorthand notation for the

left-hand side. We will explain later that treating 
1 and 
2 as independent variables

leads to an inconsistent asymptotic scheme. Using the notation defined in (30), we

obtain the next set of amplitude equations,

@A1

@
2
¼

1

n1ðn1 þ 1Þ

"

� A1A3
�A3

 

X

n1þn3

n¼jn3�n1 j

n 6¼n2

lnn3 ðB
m1�m3

n1n3n
Þ2bm1�m3

n1n3n
þ

X

n1þn3

n¼jn3�n1j

lnn3ðB
m1m3

n1n3n
Þ2bm1m3

n1n3n

!

� A1A2
�A2

 

X

n1þn2

n¼jn2�n1j

lnn2ðB
m1�m2

n1n2n
Þ2bm1�m2

n1n2n
þ

X

n1þn2

n¼jn2�n1 j

n 6¼n3

lnn2 ðB
m1m2

n1n2n
Þ2bm1m2

n1n2n

!

�
X

N

k¼4

2 �A2A3Ak

 

X

n1þn3

n¼jn1�n3 j

n 6¼n2

lnn3 ð�1Þm3ð�1Þm2Bm1�m3

n1n3n
Bm20
n2nkn

bm20
n2nkn

þ
X

n1þn2

n¼jn2�n1 j

n 6¼n3

lnn2B
m1m2

n1n2n
Bm30
n3nkn

bm30
n3nkn

þ
X

n2þn3

n¼jn2�n3 j

n 6¼n1

lnnkð�1Þm3ð�1Þm1Bm10
n1nkn

Bm2�m3

n2n3n
bm2�m3

n2n3n

�

�
X

N

k¼4

X

N

l¼4

4A1AkAl

X

n2þn3

n¼jn2�n3 j

n 6¼n1

lnnkB
m10
n1nln

Bm10
n1nkn

bm10
n1nkn

#

: ð31Þ
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To determine the analogous equation for A2 apply the substitutions

m1 $ m2, n1 $ n2, A1 $ A2

to equation (31), and to produce the equation for A3 use

m1 $ �m3, n1 $ n3, A1 ! ð�1Þm3 �A3, A3 ! ð�1Þm1 �A1

The equations for Ak are given by

@Ak

@
2
¼ ðA1A2

�A3 � �A1
�A2A3Þ

1

nkðnk þ 1Þ

 

�
X

n2þn3

n¼jn2�n3 j

n 6¼n1

lnn1B
m10
n1nkn

Bm2�m3

n2n3n
bm2�m3

n2n3n
ð�1Þm3 ð�1Þm1

�
X

n1þn3

n¼jn1�n3 j

n 6¼n2

lnn2B
m20
n2nkn

Bm1�m3

n1n3n
bm1�m3

n1n3n
ð�1Þm3ð�1Þm2 þ

X

n1þn2

n¼jn1�n2 j

n 6¼n3

lnn3B
m30
n3nkn

Bm1m2

n1n2n
bm1m2

n1n2n

!

k ¼ 4, . . . ,N: ð32Þ

These are the ordinary differential equations the functions c1(t), . . . , cN (t) have to

satisfy. If we had treated 
1 and 
2 as independent variables, the two sets of partial

differential equations would be inconsistent. This is easy to see for the zonal flow

amplitudes, but it is also true for the amplitudes of the triad if the zonal flow amplitudes

are assumed to be of order �. In our asymptotic scheme, which is a variation of

parameter method, the integration constants at a certain order are made time dependent

to remove the secular terms at the next order. The questions of consistency of the usual

multi-time-scale method do not arise. Our scheme leads to the result that starting out

with two resonantly interacting waves, zonal flow is generated at O(�2) and the change

in the zonal flow amplitudes is given by the system (32) of ordinary differential

equations for A1(t)¼ c1(t), . . . ,AN(t)¼ cN(t).

5. Worked example

Applying all the required conditions necessary for the occurrence of a Rossby-Haurwitz

wave triad, the first thirteen triads for the lowest wavenumbers are given in table 1.

Table 1. The first 13 triads.

(m1, n1) (m2, n2) (m3, n3)

(1, 6) (2,14) (3, 9)
(1, 6) (11, 20) (12, 15)
(2, 6) (3, 8) (5, 7)
(2, 6) (4, 14) (6, 9)
(2, 7) (11, 20) (13, 14)
(2, 14) (17, 20) (19, 19)
(3, 6) (6, 14) (9, 9)
(3, 9) (8, 20) (11, 14)
(3, 14) (1, 20) (4, 15)
(4, 12) (5, 14) (9, 13)
(6, 14) (2, 20) (8, 15)
(6, 18) (7, 20) (13, 19)
(9, 14) (3, 20) (12, 15)
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In order to show the workings of this theory an example is explicitly studied to generate

numerical results. We take the first triad, namely, (1,6), (2,14) and (3,9). Therefore for

the rest of this section we have

ðm1, n1Þ ¼ ð1, 6Þ, ðm2, n2Þ ¼ ð2, 14Þ, ðm3, n3Þ ¼ ð3, 9Þ:

Firstly we examine the numbers involved for our  1 solution. From this we can examine

the O(�2) equation and determine how many zonal flow terms (if any) are created. Due

to the aforementioned problem with resonance all these terms will form part of the

leading order solution. Using this leading order solution the required amplitude

conditions are determined for these numbers.

To determine  1 it should be noted that Bm1m2
n1n2n

is only not zero for n between 9 and 19,

with n odd. Bm1�m3
n1n3n

is only not zero for n between 4 and 14, where n is even, and Bm2�m3
n2n3n

is only not zero for n between 6 and 22, with n also even. The numbers obtained for

these calculations are given in the following tables, table 2 for Bm1m2
n1n2n

, table 3 for Bm1�m3
n1n3n

and finally table 4 for Bm2�m3
n2n3n

.

Table 2. Coupling constants Bm1m2
n1n2n

and bm1m2
n1n2n

.

n Bm1m2
n1n2n

bm1m2
n1n2n

11 17.2301i �60i
13 12.4548i �27.3913i
15 8.29596i �16.8i
17 4.96375i �11.6667i
19 2.34338i �8.68966i

Table 3. Coupling constants Bm1�m3
n1n3n

and bm1�m3
n1n3n

.

n Bm1�m3
n1n3n

bm1�m3
n1n3n

4 �8.84799i �13.2632i
6 �9.22981i �15i
8 �6.00544i �18.2609i
10 1.35831i �25.2i
12 11.9378i �46.6667i

Table 4. Coupling constants Bm2�m3
n2n3n

and bm2�m3
n2n3n

.

n Bm2�m3
n2n3n

bm2�m3
n2n3n

8 14.5228i �84i
10 0.162338i �37.0588i
12 �15.9295i �22.1053i
14 �27.7451i �15i
16 �29.5888i �10.9565i
18 �17.2662i �8.4i
20 9.12981i �6.66667i
22 37.8582i �5.43103i
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With the coupling constants in  1 for the triad determined we must examine the O(�2)

equation to see what zonal flow terms are created. It is found that this example

produces zonal flow at O(�2) for n ranging between 3 and 27, n odd. Therefore the

solution which we must consider to examine the equation up to O(�2) is

 0 ¼
X

16

j¼1

 
j
0,

where

 
j
0 ¼ ðAjð
1, 
2Þe

iðmj���jtÞ þ �Ajð
1, 
2Þe
�iðmj���jtÞÞPmj

nj
ð	Þ,

�j ¼
�2mj

njðnj þ 1Þ
,

mj ¼ 0, Aj ¼ �Aj, j ¼ 4, 5, . . . , 16,

and

n4 ¼ 3, n5 ¼ 5, n6 ¼ 7, . . . n16 ¼ 27:

Using this new leading order solution we calculate the additional terms in  1. The

numbers produced for the j¼ 3 case are given in table 5. Band structures are similarly

produced for both Bm10
n1nkn

and Bm20
n2nkn

.

Using all these numbers we can calculate @Ak/@
2 from the equation

@Ak

@
2
¼ �kðA1A2

�A3 � �A1
�A2A3Þ, k ¼ 4, 5, . . . , 16, ð33Þ

where �k, k¼ 4, 5, . . . , 16, are given in table 6.

Table 5. Coupling constant Bm30
n3nkn

.

n

k 11 13 15 17 19

4 9.68024i 0 0 0 0
5 15.9894i 15.0291i 0 0 0
6 15.6375i 20.0493i 20.0394i 0 0
7 6.97454i 15.8943i 23.4323i 24.8466i 0
8 �7.92121i 3.19092i 15.6298i 26.4245i 29.5218i
9 �22.422i �14.0255i �0.611462i 15.0951i 29.17i

10 �26.0408i �27.9296i �19.6557i �4.36602i 14.4062i
11 �8.30671i �28.1223i �32.8054i �24.9489i �8.05991i
12 28.6664i �5.85785i �29.8404i �37.2756i �29.9979i
13 0 33.4367i �3.47309i �31.3437i �41.4713i
14 0 0 38.0873i �1.14539i �32.7115i
15 0 0 0 42.6545i 1.13458i
16 0 0 0 0 47.1613i

176 J. Burzlaff et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
u
r
z
l
a
f
f
,
 
J
.
]
 
A
t
:
 
1
6
:
3
6
 
1
8
 
A
u
g
u
s
t
 
2
0
0
8



6. Conclusions

This paper describes the generation of zonal flow through the resonant interactions of

Rossby-Haurwitz waves. We have proved that this generation cannot take place at

O(�). Furthermore, if we start out with two nonresonantly interacting Rossby-Haurwitz

waves then zonal flow will not be generated up to O(�2). However, two resonantly

interacting Rossby-Haurwitz waves will generate zonal flow at order O(�2). This effect

disappears in the �-plane approximation, i.e. in the limit of large wavenumbers for the

triad. In this limit, a quartet mechanism is required.
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13 �1009.82i
14 �2570.45i
15 �3481.92i
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