
The Spectral Method (MAPH 40260)
Part 4: Barotropic Vorticity Equation

Peter Lynch

School of Mathematical Sciences

Outline

Background

Rossby-Haurwitz Waves

Interaction Coefficients

Transform Method

The ECMWF Model

Background RH Waves Interaction Coefficients Transform Method ECMWF Model

Outline

Background

Rossby-Haurwitz Waves

Interaction Coefficients

Transform Method

The ECMWF Model

Background RH Waves Interaction Coefficients Transform Method ECMWF Model

The dynamics of non-divergent flow on a rotating

sphere are described by the conservation of absolute

vorticity.

The analytical study of the nonlinear barotropic

vorticity equation is greatly facilitated by the

expansion of the solution in spherical harmonics.

The normal modes are the well-known

Rossby-Haurwitz (RH) waves which represent the

natural oscillations of the system.

Triads of RH waves that satisfy conditions for

resonance are of critical importance for the

distribution of energy in the atmosphere.
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The dynamical behaviour of planetary waves in the

atmosphere is modelled by the barotropic vorticity

equation (BVE):
d(ζ + f )

dt
= 0 .

Rossby (1939) used a simplified (linear) form of this

equation for his study of atmospheric waves.

This was generalized to spherical geometry by

Haurwitz (1940). The linear wave solutions are now

called Rossby-Haurwitz waves.

Charney, Fjørtoft & von Neumann (1950) integrated

the BVE to produce the earliest numerical weather

predictions on the ENIAC.

They integrated the equation on a rectangular

domain, in planar geometry.
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Silberman(1954) devised a numerical solution method

in which the streamfunction is expanded in spherical

surface harmonics.

The nonlinear terms introduced interaction

coefficients between the components.

A more efficient spectral technique, the transform

method, was later devised by Eliasen, Machenhauer

and Rasmussen (1970) and by Orszag (1970).

Highly truncated versions of the spectral BVE have

been analysed to gain understanding of atmospheric

phenomena.

Edward Lorenz (1960) introduced what he called the

maximum simplification of the system, reducing it to

three nonlinear ODEs.

Background RH Waves Interaction Coefficients Transform Method ECMWF Model

In a series of papers, George Platzman undertook a

systematic study of the truncated spectral vorticity

equation (Platzman, 1960, 1962).

He showed that a three-component system has

periodic solutions: the equations are integrable and

the solutions are expressible in terms of Jacobi

elliptic functions.

Interactions are particularly effective when the

component parameters are related by resonance

conditions.

Background RH Waves Interaction Coefficients Transform Method ECMWF Model

The nonlinear interactions between different scales

play a critical role in establishing the statistical

energy spectrum of the atmosphere.

The phenomenon of vacillation in the stratospheric

flow was first examined by Holton & Mass (1976).

They found that, for wave forcing beyond a critical

amplitude, the response to a steady forcing is not

steady, but the mean zonal flow and eddy

components oscillate quasi-periodically.

Such oscillatory response to steady forcing is

consistent with forced resonant triads (Lynch, 2009).
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In this section, we review the spectral analysis of the

BVE, and the normal mode solutions of the equation.

We consider a shallow layer of incompressible fluid

on a rotating sphere, assuming the horizontal velocity

to be non-divergent.

The radius of the sphere is a, the rotation rate is Ω
and longitude/latitude coordinates (λ, φ) will be used.

The dynamics of the fluid are governed by

conservation of absolute vorticity

d

dt
(ζ + f ) = 0 ,

where f = 2Ω sinφ is the planetary vorticity, and

ζ = k · ∇ × V is the vorticity of the flow.
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The time derivative is

dζ

dt
=
∂ζ

∂t
+

u

a cosφ

∂ζ

∂λ
+

v

a

∂ζ

∂φ
.

We assume nondivergent flow and introduce a

stream-function ψ such that V = k×∇ψ and ζ = ∇2ψ.

The advection term now becomes

dζ

dt
=
∂ζ

∂t
−

1

a

∂ψ

∂φ

1

a cosφ

∂ζ

∂λ
+

1

a cosφ

∂ψ

∂λ

1

a

∂ζ

∂φ
.

Defining µ = sinφ, this may be expressed as

dζ

dt
=

∂ζ

∂t
+

1

a2

[

−
∂ψ

∂µ

∂ζ

∂λ
+
∂ψ

∂λ

∂ζ

∂µ

]

=
∂ζ

∂t
+

1

a2

∂(ψ, ζ)

∂(λ, µ)

=
∂ζ

∂t
+

1

a2
J(ψ, ζ) .
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Since f = 2Ω sinφ, the “β-term” may be expressed

df

dt
=

v

a

∂f

∂φ

=
1

a cosφ

∂ψ

∂λ

1

a

∂f

∂φ

=
1

a cosφ

∂ψ

∂λ

1

a
2Ω cosφ =

2Ω

a2

∂ψ

∂λ

The barotropic vorticity equation may now be written

∂ζ

∂t
+

2Ω

a2

∂ψ

∂λ
+

1

a2

∂(ψ, ζ)

∂(λ, µ)
= 0

This is the (non-divergent) BVE.
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The non-linear advection is represented by the

Jacobian term.

Temporarily omitting this, we see that the BVE has

solutions of the form

ψ = ψ0Y m
n (λ, µ) exp(−iσt)

where ψ0 is the constant amplitude and the frequency

σ is given by the dispersion formula

σ = σm
n ≡ −

2Ωm

n(n + 1)
.

Here, m is the zonal wavenumber, n is the total

wavenumber (both are integers) and Y m
n (λ, µ) are the

spherical harmonics, eigenfunctions of ∇2:

∇2Y m
n = −

n(n + 1)

a2
Y m

n .
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We assume the functions Y m
n to be normalized so that

1

4π

∫∫

(Y m1
n1

)∗Y m2
n2

dλdµ = δm1
m2
δn1

n2
.

These solutions are called Rossby-Haurwitz waves,

or RH waves.

It is remarkable that, for a single RH wave, the

nonlinear Jacobian term vanishes identically, so that

such a wave is a solution of the nonlinear BVE.
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The spherical harmonics form an orthonormal basis

on the sphere: any sufficiently smooth function may

be expressed as a sum of such components.

Thus, the streamfunction has an expansion

ψ(λ, µ, t) =
∞

∑

n=0

n
∑

m=−n

ψm
n (t)Y m

n (λ, µ) .

The vorticity has a similar expansion, with

coefficients

ζm
n = −

n(n + 1)

a2
ψm

n .

The coefficients ψm
n and ζm

n are functions of time.
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Flows governed by the BVE conserve the total energy

and total enstrophy, defined by

E =
1

4πa2

∫∫

1
2
V · Vdλ dµ = −

1

4πa2

∫∫

1
2
ψζ dλ dµ

S =
1

4πa2

∫∫

1
2
ζ2dλ dµ = −

1

4πa2

∫∫

1
2
∇ψ·∇ζ dλ dµ

In terms of the spectral coefficients, the constrained

quantities may be written

E = 1
2

∑

mn

1

n(n + 1)
|ζm

n |
2 , S = 1

2

∑

mn

|ζmn|
2 .

The constancy of energy and enstrophy profoundly

influences the energetics of solutions of the BVE.
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For brevity we define a vector wavenumber γ = (m,n)
and denote its conjugate by γ̄ = (−m,n).

We can then write the expansions

ψ =
∑

γ

ψγ(t)Yγ(λ, µ) exp(−iσγt)

and

ζ =
∑

γ

ζγ(t)Yγ(λ, µ) exp(−iσγt)

with

ψγ = −a2κγζγ , where κγ =
1

n(n + 1)

For a pure RH wave, or a collection of non-interacting

waves, the coefficients ψγ and ζγ are constants.

Their variation is due to nonlinear interactions

between the components.
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If the expansion

ζ =
∑

γ

ζγ(t)Yγ(λ, µ) exp(−iσγt)

is substituted into the BVE and the orthogonality

condition is used, we obtain equations for the

evolution of the spectral coefficients in time:

dζγ
dt

= 1
2
i
∑

α,β

Iγβαζβζα exp(−iσt) ,

Here σ = σα + σβ − σγ and the interaction coefficients

are given by

Iγβα = (κβ − κα)Kγβα .
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The coupling integrals Kγβα vanish unless

mα + mβ = mγ; this follows from the separability of the

spherical harmonics and the orthogonality of the

exponential components for different m.

In case mα + mβ = mγ, they are given by

Kγβα = 1
2

∫

+1

−1

Pγ

(

mβPβ

dPα

dµ
−mαPα

dPβ

dµ

)

dµ .

The interaction coefficients vanish in most cases. For

non-vanishing interaction, selection rules must be

satisfied . . .
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Selection Rules

mα + mβ = mγ

m2
α + m2

β 6= 0

nγnβnα 6= 0

nα 6= nβ

nα + nβ + nγ is odd

(nβ − |mβ|)
2 + (nα − |mα|)

2 6= 0

|nα − nβ| < nγ < nα + nβ

(mβ,nβ) 6= (−mγ,nγ) and (mα,nα) 6= (−mγ,nγ)
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It is obvious that the following symmetries hold:

Iγαβ = Iγβα and Kγαβ = −Kγβα .

The following redundancy rules are easily proved by

integration by parts:

Kαβ̄γ = Kγβα and Kβγᾱ = Kγβα ,

where ᾱ = (−m,n) when α = (m,n).
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The Transform Method

The interaction coefficients grow rapidly in number

with increasing truncation. Thus, this method is not

normally used to solve the spectral equations.

A more efficient spectral technique, the transform

method, was devised by Eliasen, Machenhauer and

Rasmussen (1970) and, independently, by Orszag

(1970).

In this approach, the fields are transformed, at each

time step, back to the physical domain, the nonlinear

terms are calculated, and the result is transformed to

spectral space.
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Pros and Cons of Spectral Method

Pros:

◮ Spatial derivatives evaluated exactly.

◮ Energy and enstrophy exactly conserved.

◮ Uniform resolution throughout sphere.

Cons:

◮ Less direct than finite difference method.

◮ Interaction coefficient method expensive.

The transform method addresses the last point.
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Derivatives are evaluated exactly in spectral space.

The nonlinear terms involve products of derivatives,

e.g.,

u
∂ζ

∂x
= −

1

a

∂ψ

∂µ

∂ζ

∂x
.

The essence of the transform method is this:

◮ The spatial derivatives are evaluated in spectral

space.

◮ These are then transformed to gridpoint space.

◮ The multiplications etc. are done in gridpoint

space.

◮ The resulting nonlinear terms are transformed

back to spectral space.
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To make this concrete, consider the term

∂ζ

∂x

We have the vorticity in spectral space

ζ =
N

∑

n=0

+n
∑

m=−n

Z m
n Y m

n (λµ)

The x-derivative of this is

∂ζ

∂x
=

N
∑

n=0

+n
∑

m=−n

(im)Z m
n Y m

n (λµ)

i.e. the coefficients are (im)Z m
n .

This transform gives the values in gridpoint space.

We do this for all the terms, do the multiplications,

and transform back to spectral space.
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The “invention” of the transform method

revolutionized the use of the spectral method.

From being a method primarily of theoretical interest,

it became a method of great practical interest.

The method is at the heart of most global models of

the atmosphere, for example, the ECMWF model

known as the IFS code.
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Perhaps the most important event in European

meteorology over the last half-century was the

establishment of the European Centre for

Medium-Range Weather Forecasts (ECMWF).

The mission of ‘the Centre’ is to deliver weather

forecasts of increasingly high quality and scope from

a few days to a few seasons ahead.

The Centre has been spectacularly successful in

fulfilling its mission, and continues to develop

forecasts and other products of steadily increasing

accuracy and value, maintaining its position as a

world leader.

Background RH Waves Interaction Coefficients Transform Method ECMWF Model

ECMWF produces a wide range of global atmospheric

and marine forecasts and disseminates them on a

regular schedule to its Member States.

◮ Forecasts for the atmosphere out to ten days

ahead, based on a T799 (25 km) 91-level (L91)

deterministic model are disseminated twice per

day.

◮ Forecasts from the Ensemble Prediction System

(EPS) using a T399 (50 km) L62 version of the

model and an ensemble of fifty-one members are

computed and disseminated twice per day.

◮ Forecasts out to one month ahead, based on

ensembles using a resolution of T255 (78 km) and

62 levels are distributed once per week.

◮ Seasonal Forecasts out to six months ahead,

based on ensembles with a T159 (125 km) L40

model are disseminated once per month.
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The Integrated Forecast System
The basis of the NWP operations at ECMWF is the

Integrated Forecast System (IFS).

The IFS uses a spectral representation of the

meteorological fields. Each field is expanded in

series of spherical harmonics; for example,

u(λ, φ, t) =
∞

∑

n=0

n
∑

m=−n

Um
n (t)Y m

n (λ, φ)

where the coefficients Um
n (t) depend only on time, and

the spherical harmonics Y m
n (λ, φ) are as introduced

above.

The coefficients Um
n of the harmonics provide an

alternative to specifying the field values u(λ, φ) in the

spatial domain.
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It is straightforward to transform back and forth

between physical space and spectral space.

When the model equations are transformed to

spectral space, they become a set of equations for

the spectral coefficients Um
n .

These are used to advance the coefficients in time,

after which the new physical fields may be computed.
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Triangular Truncation

A continuous field in space requires an infinite series

expansion. The series expansion must be truncated

at some point.

In the IFS model, the expansion is truncated at a fixed

total wavenumber N:

u(λi , φj , t) =
N

∑

n=0

n
∑

m=−n

Um
n (t)Y m

n (λi , φj)

This is called triangular truncation, and the value of N

indicates the resolution of the model.

E.g., if N = 512, the resolution is denoted T 512.

Background RH Waves Interaction Coefficients Transform Method ECMWF Model

There is a computational grid, called the Gaussian

grid, corresponding to the spectral truncation.

Since truncation at wavenumber N implies a

maximum of N wavelengths around the globe, and

since at least two points per wavelength are required,

the resolution of the equivalent Gaussian grid is

given by the circumference of the Earth divided by

twice the truncation N, that is, ∆ = (2πa)/2N.

Since 2πa = 4× 107 m, we get the simple rule

∆ =

(

20,000

N

)

km .
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Table: Upgrade to the ECMWF Integrated Forecast System in

Spring, 2006 (IFS cycle 29r3).

Deterministic Ensemble Prediction Monthly Forecast

Model System (EPS) (MOFC)

Previous Upgrade Previous Upgrade Previous Upgrade

Spectral
Truncation

T511 T799 T255 T399 T159 T255

Gaussian
Grid N256 N400 N128 N200 N80 N128

Model
Levels L60 L91 L40 L62 L40 L62
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The IFS system underwent a major upgrade in Spring,

2006.

The horizontal and vertical resolution of its

deterministic, ensemble prediction (EPS) and monthly

forecasting systems were substantially increased.

The truncation of the deterministic model is now

T 799, which is equivalent to a spatial resolution of

25 km (it was previously 40 km).

The number of model levels in the vertical has been

increased by 50%, from 60 to 91.

The EPS system runs with a horizontal resolution half

that of the deterministic model.
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The new Gaussian grid for IFS has about 8× 105

points.

With 91 levels and five primary prognostic variables

at each point, about 3× 108 numbers are required to

specify the atmospheric state at a given time.

Thus, the model has about three hundred million

degrees of freedom. The computational task of

computing foreasts with such high resolution is truly

formidable.

The Centre carries out its operational programme

using an IBM High Performance Computing Facility

(HPCF). The peak performance is 16.5 TeraFlops for

each cluster,

so the complete system has a peak performance of

33 TeraFlops or 33 trillion calculations per second.
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End of Part 4
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