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Eigenfunctions of the Laplacian
We now investigate the eigenfunctions of the
Laplacian operator, i.e., functions f that satisfy

∇2f = λf

First, consider Cartesian coordinates. Then

∇2f =
∂2f
∂x2 +

∂2f
∂y2

The trigonometric functions

fk` =

(
sin
cos

)
kx
(

sin
cos

)
`y

are clearly eigenfunctions of ∇2:

∇2fk` = −(k2 + `2)fk`

with eigenvalues λk` = −(k2 + `2).
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Note that fk` is an eigenfunction of ∇2 for arbitrary
values of k and `.

Now we consider a bounded domain

0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly

with homogeneous boundary conditions:

f (0, y) = f (Lx , y) = f (x , 0) = f (x , Ly) = 0

This quantizes the wave numbers: eigensolutions are

fmn(x , y) = sin
mπ

Lx
x sin

nπ

Ly
y

with eigenvalues

λmn = −

([
mπ

Lx

]2

+

[
nπ

Ly

]2
)

.
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Now we consider Spherical coordinates. Then

∇2f =

(
1

cos2 φ

∂2f
∂λ2 +

1
cos φ

∂

∂φ
cos φ

∂f
∂φ

)
= −κf

(for simplicity we have taken a = 1).

We define µ = sin φ and write this as(
1

1− µ2

∂2f
∂λ2 +

∂

∂µ
(1− µ2)

∂f
∂µ

)
= −κf

We seek a solution by separating the variables:

f (λ, µ) = Λ(λ)Φ(µ)

Then the eigenproblem is

d2Λ

dλ2 · Φ + Λ · (1− µ2)
d

dµ
(1− µ2)

dΦ

dµ
= −(1− µ2)κΛΦ .
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Dividing by ΛΦ, the problem separates into two parts

1
Λ

d2Λ

dλ2 = −1− µ2

Φ

[
d

dµ
(1− µ2)

dΦ

dµ
+ κΦ

]
.

Since the l.h.s. depends only on λ and the r.h.s. only
on µ, they must both be constants:

1
Λ

d2Λ

dλ2 = −m2

−1− µ2

Φ

[
d

dµ
(1− µ2)

dΦ

dµ
+ κΦ

]
= −m2 .

The zonal structure is given by

d2Λ

dλ2 + m2Λ = 0

which is immediately solved: Λ = exp(imλ).
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The meridional structure is given by[
d

dµ
(1− µ2)

d
dµ

+

(
κ− m2

1− µ2

)]
Φ = 0 .

This is called the associated Legendre equation. It
has solutions regular at the poles (µ = ±1) for
κ = n(n + 1) where n is an integer. They are the
Legendre functions

Φ = Pm
n (µ)

The complete eigensolutions are the spherical
harmonics

Y m
n (λ, µ) = Pm

n (µ) exp(imλ) .
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The derivation above is standard and may be found in
many books on Mathematical Methods of Physics.

The important result for us is the following:

∇2Y m
n (λ, µ) = −n(n + 1)Y m

n (λ, µ) .

Allowing for a non-unit radius of the sphere, this
becomes

∇2Y m
n (λ, µ) = −

[
n(n + 1)

a2

]
Y m

n (λ, µ) .

The spherical harmonics Y m
n (λ, µ) are the

eigenfunctions of the Laplacian on the sphere, with
eigenvalues −n(n + 1)/a2.
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Alternating regions of positive and negative values.

Zonal: m = 0, n > 0.
Tesseral: 0 < m < n.

Sectoral: m = n.

|m| zeros in 0 ≤ λ < 2π
n − |m| zeros in −1 < µ < +1.
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Orthogonality & Completeness
The spherical harmonics are an orthogonal set:

1
4π

∫ 2π

0

∫ +1

−1
[Y p

q (λ, µ)]∗ · Y r
s (λ, µ) dµ dλ = δprδqs .

Any (reasonable) function f (λ, µ, t) on the sphere can
be expanded in spherical harmonics:

f (λ, µ, t) =
∞∑

n=0

n∑
m=−n

f m
n (t)Y m

n (λ, µ) .

The coefficients f m
n (t) are given by

f m
n (t) =

1
4π

∫ 2π

0

∫ +1

−1
[Y m

n (λ, µ)]∗ · f (λ, µ) dµ dλ
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Truncation
In practice, we have to replace the infinite summation

f (λ, µ, t) =
∞∑

n=0

n∑
m=−n

f m
n (t)Y m

n (λ, µ) .

by a finite summation.

There ae a number of ways to truncate the solution.
The most common is called triangular truncation:

f (λ, µ, t) =
N∑

n=0

n∑
m=−n

f m
n (t)Y m

n (λ, µ) .

It can be shown that this gives uniform resolution
throughout the sphere.

The ECMWF model uses triangular truncation.
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Note that m can be positive or negative, and |m| ≤ n.
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End of Part 3
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