The Spectral Method (MAPH 40260)

Part 3: Spherical Harmonics
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Eigenfunctions of the Laplacian

We now investigate the eigenfunctions of the
Laplacian operator, i.e., functions f that satisfy

V2f = \f
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Eigenfunctions of the Laplacian

We now investigate the eigenfunctions of the
Laplacian operator, i.e., functions f that satisfy

V2f = \f

First, consider Cartesian coordinates. Then
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Eigenfunctions of the Laplacian
We now investigate the eigenfunctions of the
Laplacian operator, i.e., functions f that satisfy

V2f = \f

First, consider Cartesian coordinates. Then
02f  O0°f

ox? T2 oy?

The trigonometric functions

sin sin
e = (cos) hx (cos) by

are clearly eigenfunctions of V2:
szkg = —(k2 = gz)fkg -_
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Vef =

with eigenvalues )\, = —(k? + (2).
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Note that f;, is an eigenfunction of V? for arbitrary
values of k and /.
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Note that f;, is an eigenfunction of V? for arbitrary
values of k and /.

Now we consider a bounded domain
0<x< Ly and 0<y<L,
with homogeneous boundary conditions:
f(0,y) = f(Lx, y) = f(x,0) = f(x, Ly) = 0
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Note that f;, is an eigenfunction of V? for arbitrary
values of k and /.

Now we consider a bounded domain
0<x< Ly and 0<y<L,
with homogeneous boundary conditions:
f(0,y) = f(Lx, y) = f(x,0) = f(x, Ly) = 0

This quantizes the wave numbers: eigensolutions are

e )—sinmxsinﬂ
mn 7y - LX Lyy

with eigenvalues

)\mn - - {m} 2 + {@} 2 . f’gg
L, L, v
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Now we consider Spherical coordinates. Then
1 0%f 1 0 of
2f — — — | = —«f
v (cos2 d ON? + CoS ¢ Do cos ¢6¢) "
(for simplicity we have taken a = 1).
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Now we consider Spherical coordinates. Then
1 0%f 1 0 of
2f — — — | = —«f
v (cos2 d ON? + CoS ¢ Do cos ¢8¢> "
(for simplicity we have taken a = 1).

We define ;. = sin ¢ and write this as

1 O?f 0 of
(e —90g) =~
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Now we consider Spherical coordinates. Then
1 0%f 1 0 of
2f — — — | = —«f
v (cos2 d ON? + CoS ¢ Do cos ¢8¢> "
(for simplicity we have taken a = 1).

We define ;. = sin ¢ and write this as

1 0°f 0 of
(1— 2% T ol M )au) .

We seek a solution by separating the variables:
(A, 1) = MA)P (1)

uuuuuu

Laplacian



Now we consider Spherical coordinates. Then
1 0%f 1 0 of
2f — — — | = —«f
v (oos2 d ON? + CoS ¢ Do cos ¢8¢> "
(for simplicity we have taken a = 1).

We define ;. = sin ¢ and write this as

1 ®f 9 5. Of
(T a0~ D) ==

We seek a solution by separating the variables:
(A, 1) = MA)P (1)

Then the eigenproblem is
il d do -

—— 0o o — 2_ — 2_:_ — 2\ Ad  UeP
e d+A-(1 M)du“ M)du (1 — p°)rAD. ¥
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Dividing by A®, the problem separates into two parts

1A 1—42[d do

— — - _ 2_
A d)2 o} d,u(1 - )d,u e
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Dividing by A®, the problem separates into two parts

1A 1—42[d do }

i — - — 2 -
A d)? O} d,u(1 - )d,u e

Since the l.h.s. depends only on )\ and the r.h.s. only
on ., they must both be constants:

18N o
ANdX2

uuuuuu

Laplacian



Dividing by A®, the problem separates into two parts

1 d?A 1—p2[d do
L s L
A d O} du du

+ l€¢:|

Since the l.h.s. depends only on )\ and the r.h.s. only
on ., they must both be constants:

1A e
A d)?
| ;“2 L;LU — )Z—Zntmd)} S-S
The zonal structure is given by
g + A =0 e

which is immediately solved: A = exp(im)\).
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The meridional structure is given by

d 5 d m?
=00+ (=7
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The meridional structure is given by
d ol m?
— (1 = 42— - ¢ =0.
du( M)d/ﬁ(ﬁ 1—u2)] °

This is called the associated Legendre equation. It
has solutions regular at the poles (1 = +1) for

x = n(n+ 1) where nis an integer. They are the
Legendre functions
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The meridional structure is given by

d 5 d m? B
el gtz =0

This is called the associated Legendre equation. It
has solutions regular at the poles (1 = +1) for

x = n(n+ 1) where nis an integer. They are the
Legendre functions

The complete eigensolutions are the spherical
harmonics

Y\, 1) = PT(1) exp(im)\) . o
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The derivation above is standard and may be found in
many books on Mathematical Methods of Physics.
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The derivation above is standard and may be found in
many books on Mathematical Methods of Physics.

The important result for us is the following:

VEYT(A 1) = =n(n+1) YT\ 1) -
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The derivation above is standard and may be found in
many books on Mathematical Methods of Physics.

The important result for us is the following:
VEYT(\ 1) = —=n(n+1)Y(\, ).

Allowing for a non-unit radius of the sphere, this
becomes

n(n+1)

vevaom = - |1

| oo,
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The derivation above is standard and may be found in
many books on Mathematical Methods of Physics.

The important result for us is the following:

VEYT(A 1) = =n(n+1) YT\ 1) -

Allowing for a non-unit radius of the sphere, this
becomes

n(n+1)

vevaom = - |1

| oo,

The spherical harmonics Y/'(\, ) are the
eigenfunctions of the Laplacian on the sphere, with
eigenvalues —n(n+1)/a.
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Alternating regions of positive and negative values.

Zonal ' Sectoral

Types of Spherical Harmonics

Zonal: m=0,n> 0.
Tesseral: 0 < m < n.
Sectoral: m = n.
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Alternating regions of positive and negative values.

Zonal ' Sectoral

Types of Spherical Harmonics

Zonal: m=0,n> 0.
Tesseral: 0 < m < n.
Sectoral: m = n.

m| zerosin 0 < \ < 27
n—|m| zerosin —1 < < +1. v
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Orthogonality & Completeness

The spherical harmonics are an orthogonal set:

1 2w +1 i}
= | RO VSO 10 0o = s
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Orthogonality & Completeness

The spherical harmonics are an orthogonal set:

1 2T +1 §
= | RO VSO 10 0o = s

Any (reasonable) function f(), u, t) on the sphere can
be expanded in spherical harmonics:

f(\ p, t) Zme (YN ).
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Orthogonality & Completeness

The spherical harmonics are an orthogonal set:

1 2T +1 §
= | RO VSO 10 0o = s

Any (reasonable) function f(), u, t) on the sphere can
be expanded in spherical harmonics:

f(\ p, t) Zme (YN ).

n=0 m=-—n

The coefficients f'(t) are given by

1 2 +1 - =
W= [ [ DEOrfamdudy B8
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Truncation
In practice, we have to replace the infinite summation

f(\ p, t) Zme (YT (N ).

n=0 m=—n

by a finite summation.

uuuuuu

Laplacian



Truncation
In practice, we have to replace the infinite summation

f(A, 1, 1) Zme ()Y (N p).

n=0 m=—n

by a finite summation.

There ae a number of ways to truncate the solution.
The most common is called triangular truncation:
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Truncation
In practice, we have to replace the infinite summation

f(A, 1, 1) Zme ()Y (N p).
n=0 m=—n

by a finite summation.

There ae a number of ways to truncate the solution.
The most common is called triangular truncation:

f(A, 1, 1) Zme (YN ).

=0 m=—n

It can be shown that this gives uniform resolution
throughout the sphere. sad
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The ECMWF model uses triangular truncation.
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Permissible vales of m and n for
triangular and rhomboidal truncation.

Triangular truncation Rhomboidal truncation

Note that m can be positive or negative, and |m| < n.
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End of Part 3
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