The Spectral Method (MAPH 40260)

 Part 3: Spherical HarmonicsPeter Lynch

School of Mathematical Sciences

Outline

Laplacian

Outline

Laplacian

Eigenfunctions of the Laplacian

We now investigate the eigenfunctions of the Laplacian operator, i.e., functions f that satisfy

$$
\nabla^{2} f=\lambda f
$$

Eigenfunctions of the Laplacian

We now investigate the eigenfunctions of the Laplacian operator, i.e., functions f that satisfy

$$
\nabla^{2} f=\lambda f
$$

First, consider Cartesian coordinates. Then

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

Eigenfunctions of the Laplacian

We now investigate the eigenfunctions of the Laplacian operator, i.e., functions f that satisfy

$$
\nabla^{2} f=\lambda f
$$

First, consider Cartesian coordinates. Then

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

The trigonometric functions

$$
f_{k \ell}=\binom{\sin }{\cos } k x\binom{\sin }{\cos } \ell y
$$

are clearly eigenfunctions of ∇^{2} :

$$
\nabla^{2} f_{k \ell}=-\left(k^{2}+\ell^{2}\right) f_{k \ell}
$$

with eigenvalues $\lambda_{k \ell}=-\left(k^{2}+\ell^{2}\right)$.

Note that $f_{k e}$ is an eigenfunction of ∇^{2} for arbitrary values of k and ℓ.

Note that $f_{k e}$ is an eigenfunction of ∇^{2} for arbitrary values of k and ℓ.

Now we consider a bounded domain

$$
0 \leq x \leq L_{x} \quad \text { and } \quad 0 \leq y \leq L_{y}
$$

with homogeneous boundary conditions:

$$
f(0, y)=f\left(L_{x}, y\right)=f(x, 0)=f\left(x, L_{y}\right)=0
$$

Note that $f_{k e}$ is an eigenfunction of ∇^{2} for arbitrary values of k and ℓ.

Now we consider a bounded domain

$$
0 \leq x \leq L_{x} \quad \text { and } \quad 0 \leq y \leq L_{y}
$$

with homogeneous boundary conditions:

$$
f(0, y)=f\left(L_{x}, y\right)=f(x, 0)=f\left(x, L_{y}\right)=0
$$

This quantizes the wave numbers: eigensolutions are

$$
f_{m n}(x, y)=\sin \frac{m \pi}{L_{x}} x \sin \frac{n \pi}{L_{y}} y
$$

with eigenvalues

$$
\lambda_{m n}=-\left(\left[\frac{m \pi}{L_{x}}\right]^{2}+\left[\frac{n \pi}{L_{y}}\right]^{2}\right) .
$$

Now we consider Spherical coordinates. Then

$$
\nabla^{2} f=\left(\frac{1}{\cos ^{2} \phi} \frac{\partial^{2} f}{\partial \lambda^{2}}+\frac{1}{\cos \phi} \frac{\partial}{\partial \phi} \cos \phi \frac{\partial f}{\partial \phi}\right)=-\kappa f
$$

(for simplicity we have taken $a=1$).

Now we consider Spherical coordinates. Then

$$
\nabla^{2} f=\left(\frac{1}{\cos ^{2} \phi} \frac{\partial^{2} f}{\partial \lambda^{2}}+\frac{1}{\cos \phi} \frac{\partial}{\partial \phi} \cos \phi \frac{\partial f}{\partial \phi}\right)=-\kappa f
$$

(for simplicity we have taken $a=1$).
We define $\mu=\sin \phi$ and write this as

$$
\left(\frac{1}{1-\mu^{2}} \frac{\partial^{2} f}{\partial \lambda^{2}}+\frac{\partial}{\partial \mu}\left(1-\mu^{2}\right) \frac{\partial f}{\partial \mu}\right)=-\kappa f
$$

Now we consider Spherical coordinates. Then

$$
\nabla^{2} f=\left(\frac{1}{\cos ^{2} \phi} \frac{\partial^{2} f}{\partial \lambda^{2}}+\frac{1}{\cos \phi} \frac{\partial}{\partial \phi} \cos \phi \frac{\partial f}{\partial \phi}\right)=-\kappa f
$$

(for simplicity we have taken $a=1$).
We define $\mu=\sin \phi$ and write this as

$$
\left(\frac{1}{1-\mu^{2}} \frac{\partial^{2} f}{\partial \lambda^{2}}+\frac{\partial}{\partial \mu}\left(1-\mu^{2}\right) \frac{\partial f}{\partial \mu}\right)=-\kappa f
$$

We seek a solution by separating the variables:

$$
f(\lambda, \mu)=\Lambda(\lambda) \Phi(\mu)
$$

Now we consider Spherical coordinates. Then

$$
\nabla^{2} f=\left(\frac{1}{\cos ^{2} \phi} \frac{\partial^{2} f}{\partial \lambda^{2}}+\frac{1}{\cos \phi} \frac{\partial}{\partial \phi} \cos \phi \frac{\partial f}{\partial \phi}\right)=-\kappa f
$$

(for simplicity we have taken $a=1$).
We define $\mu=\sin \phi$ and write this as

$$
\left(\frac{1}{1-\mu^{2}} \frac{\partial^{2} f}{\partial \lambda^{2}}+\frac{\partial}{\partial \mu}\left(1-\mu^{2}\right) \frac{\partial f}{\partial \mu}\right)=-\kappa f
$$

We seek a solution by separating the variables:

$$
f(\lambda, \mu)=\Lambda(\lambda) \Phi(\mu)
$$

Then the eigenproblem is

$$
\frac{d^{2} \Lambda}{d \lambda^{2}} \cdot \Phi+\Lambda \cdot\left(1-\mu^{2}\right) \frac{d}{d \mu}\left(1-\mu^{2}\right) \frac{d \Phi}{d \mu}=-\left(1-\mu^{2}\right) \kappa \Lambda \Phi .
$$

Dividing by $\wedge \Phi$, the problem separates into two parts

$$
\frac{1}{\Lambda} \frac{d^{2} \Lambda}{d \lambda^{2}}=-\frac{1-\mu^{2}}{\phi}\left[\frac{d}{d \mu}\left(1-\mu^{2}\right) \frac{d \Phi}{d \mu}+\kappa \Phi\right] .
$$

Dividing by $\Lambda \Phi$, the problem separates into two parts

$$
\frac{1}{\Lambda} \frac{d^{2} \Lambda}{d \lambda^{2}}=-\frac{1-\mu^{2}}{\phi}\left[\frac{d}{d \mu}\left(1-\mu^{2}\right) \frac{d \Phi}{d \mu}+\kappa \Phi\right] .
$$

Since the l.h.s. depends only on λ and the r.h.s. only on μ, they must both be constants:

$$
\begin{aligned}
\frac{1}{\Lambda} \frac{d^{2} \Lambda}{d \lambda^{2}} & =-m^{2} \\
-\frac{1-\mu^{2}}{\phi}\left[\frac{d}{d \mu}\left(1-\mu^{2}\right) \frac{d \Phi}{d \mu}+\kappa \Phi\right] & =-m^{2} .
\end{aligned}
$$

Dividing by $\Lambda \Phi$, the problem separates into two parts

$$
\frac{1}{\Lambda} \frac{d^{2} \Lambda}{d \lambda^{2}}=-\frac{1-\mu^{2}}{\phi}\left[\frac{d}{d \mu}\left(1-\mu^{2}\right) \frac{d \Phi}{d \mu}+\kappa \Phi\right] .
$$

Since the l.h.s. depends only on λ and the r.h.s. only on μ, they must both be constants:

$$
\begin{aligned}
\frac{1}{\Lambda} \frac{d^{2} \Lambda}{d \lambda^{2}} & =-m^{2} \\
-\frac{1-\mu^{2}}{\Phi}\left[\frac{d}{d \mu}\left(1-\mu^{2}\right) \frac{d \Phi}{d \mu}+\kappa \Phi\right] & =-m^{2} .
\end{aligned}
$$

The zonal structure is given by

$$
\frac{d^{2} \Lambda}{d \lambda^{2}}+m^{2} \Lambda=0
$$

which is immediately solved: $\Lambda=\exp (\operatorname{im} \lambda)$.

The meridional structure is given by

$$
\left[\frac{d}{d \mu}\left(1-\mu^{2}\right) \frac{d}{d \mu}+\left(\kappa-\frac{m^{2}}{1-\mu^{2}}\right)\right] \Phi=0 .
$$

The meridional structure is given by

$$
\left[\frac{d}{d \mu}\left(1-\mu^{2}\right) \frac{d}{d \mu}+\left(\kappa-\frac{m^{2}}{1-\mu^{2}}\right)\right] \Phi=0 .
$$

This is called the associated Legendre equation. It has solutions regular at the poles ($\mu= \pm 1$) for $\kappa=n(n+1)$ where n is an integer. They are the Legendre functions

$$
\Phi=P_{n}^{m}(\mu)
$$

The meridional structure is given by

$$
\left[\frac{d}{d \mu}\left(1-\mu^{2}\right) \frac{d}{d \mu}+\left(\kappa-\frac{m^{2}}{1-\mu^{2}}\right)\right] \Phi=0 .
$$

This is called the associated Legendre equation. It has solutions regular at the poles ($\mu= \pm 1$) for $\kappa=n(n+1)$ where n is an integer. They are the Legendre functions

$$
\Phi=P_{n}^{m}(\mu)
$$

The complete eigensolutions are the spherical harmonics

$$
Y_{n}^{m}(\lambda, \mu)=P_{n}^{m}(\mu) \exp (i m \lambda) .
$$

The derivation above is standard and may be found in many books on Mathematical Methods of Physics.

The derivation above is standard and may be found in many books on Mathematical Methods of Physics.

The important result for us is the following:

$$
\nabla^{2} Y_{n}^{m}(\lambda, \mu)=-n(n+1) Y_{n}^{m}(\lambda, \mu)
$$

The derivation above is standard and may be found in many books on Mathematical Methods of Physics.

The important result for us is the following:

$$
\nabla^{2} Y_{n}^{m}(\lambda, \mu)=-n(n+1) Y_{n}^{m}(\lambda, \mu) .
$$

Allowing for a non-unit radius of the sphere, this becomes

$$
\nabla^{2} Y_{n}^{m}(\lambda, \mu)=-\left[\frac{n(n+1)}{a^{2}}\right] Y_{n}^{m}(\lambda, \mu) .
$$

The derivation above is standard and may be found in many books on Mathematical Methods of Physics.

The important result for us is the following:

$$
\nabla^{2} Y_{n}^{m}(\lambda, \mu)=-n(n+1) Y_{n}^{m}(\lambda, \mu) .
$$

Allowing for a non-unit radius of the sphere, this becomes

$$
\nabla^{2} Y_{n}^{m}(\lambda, \mu)=-\left[\frac{n(n+1)}{a^{2}}\right] Y_{n}^{m}(\lambda, \mu) .
$$

The spherical harmonics $Y_{n}^{m}(\lambda, \mu)$ are the eigenfunctions of the Laplacian on the sphere, with eigenvalues $-n(n+1) / a^{2}$.

Alternating regions of positive and negative values.

Zonal: $m=0, n>0$.
Tesseral: $0<m<n$. Sectoral: $m=n$.

Alternating regions of positive and negative values.

Zonal: $m=0, n>0$.
Tesseral: $0<m<n$.
Sectoral: $m=n$.
$|m|$ zeros in $0 \leq \lambda<2 \pi$
$n-|m|$ zeros in $-1<\mu<+1$.

Orthogonality \& Completeness

The spherical harmonics are an orthogonal set:

$$
\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{-1}^{+1}\left[Y_{q}^{p}(\lambda, \mu)\right]^{*} \cdot Y_{s}^{r}(\lambda, \mu) d \mu d \lambda=\delta_{p r} \delta_{q s} .
$$

Orthogonality \& Completeness

The spherical harmonics are an orthogonal set:

$$
\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{-1}^{+1}\left[Y_{q}^{p}(\lambda, \mu)\right]^{*} \cdot Y_{s}^{r}(\lambda, \mu) d \mu d \lambda=\delta_{p r} \delta_{q s} .
$$

Any (reasonable) function $f(\lambda, \mu, t)$ on the sphere can be expanded in spherical harmonics:

$$
f(\lambda, \mu, t)=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} f_{n}^{m}(t) Y_{n}^{m}(\lambda, \mu) .
$$

Orthogonality \& Completeness

The spherical harmonics are an orthogonal set:

$$
\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{-1}^{+1}\left[Y_{q}^{p}(\lambda, \mu)\right]^{*} \cdot Y_{s}^{r}(\lambda, \mu) d \mu d \lambda=\delta_{p r} \delta_{q s} .
$$

Any (reasonable) function $f(\lambda, \mu, t)$ on the sphere can be expanded in spherical harmonics:

$$
f(\lambda, \mu, t)=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} f_{n}^{m}(t) Y_{n}^{m}(\lambda, \mu) .
$$

The coefficients $f_{n}^{m}(t)$ are given by

$$
f_{n}^{m}(t)=\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{-1}^{+1}\left[Y_{n}^{m}(\lambda, \mu)\right]^{*} \cdot f(\lambda, \mu) d \mu d \lambda
$$

Truncation

In practice, we have to replace the infinite summation

$$
f(\lambda, \mu, t)=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} f_{n}^{m}(t) Y_{n}^{m}(\lambda, \mu) .
$$

by a finite summation.

Truncation

In practice, we have to replace the infinite summation

$$
f(\lambda, \mu, t)=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} f_{n}^{m}(t) Y_{n}^{m}(\lambda, \mu) .
$$

by a finite summation.
There ae a number of ways to truncate the solution. The most common is called triangular truncation:

$$
f(\lambda, \mu, t)=\sum_{n=0}^{N} \sum_{m=-n}^{n} f_{n}^{m}(t) Y_{n}^{m}(\lambda, \mu) .
$$

Truncation

In practice, we have to replace the infinite summation

$$
f(\lambda, \mu, t)=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} f_{n}^{m}(t) Y_{n}^{m}(\lambda, \mu) .
$$

by a finite summation.
There ae a number of ways to truncate the solution. The most common is called triangular truncation:

$$
f(\lambda, \mu, t)=\sum_{n=0}^{N} \sum_{m=-n}^{n} f_{n}^{m}(t) Y_{n}^{m}(\lambda, \mu) .
$$

It can be shown that this gives uniform resolution throughout the sphere.

The ECMWF model uses triangular truncation.

Permissible vales of m and n for triangular and rhomboidal truncation.

Note that m can be positive or negative, and $|m| \leq n$.

End of Part 3

