The Spectral Method (MAPH 40260)
Part 3: Spherical Harmonics

Peter Lynch

Outline

Laplacian

School of Mathematical Sciences

Outline

Eigenfunctions of the Laplacian

We now investigate the eigenfunctions of the Laplacian operator, i.e., functions f that satisfy

$$
\nabla^{2} f=\lambda f
$$

First, consider Cartesian coordinates. Then

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

The trigonometric functions

$$
f_{k \ell}=\binom{\sin }{\cos } k x\binom{\sin }{\cos } \ell y
$$

are clearly eigenfunctions of ∇^{2} :

$$
\nabla^{2} f_{k \ell}=-\left(k^{2}+\ell^{2}\right) f_{k \ell}
$$

with eigenvalues $\lambda_{k \ell}=-\left(k^{2}+\ell^{2}\right)$.

Note that $f_{k e}$ is an eigenfunction of ∇^{2} for arbitrary values of k and ℓ.

Now we consider a bounded domain

$$
0 \leq x \leq L_{x} \quad \text { and } \quad 0 \leq y \leq L_{y}
$$

with homogeneous boundary conditions:

$$
f(0, y)=f\left(L_{x}, y\right)=f(x, 0)=f\left(x, L_{y}\right)=0
$$

This quantizes the wave numbers: eigensolutions are

$$
f_{m n}(x, y)=\sin \frac{m \pi}{L_{x}} x \sin \frac{n \pi}{L_{y}} y
$$

with eigenvalues

$$
\lambda_{m n}=-\left(\left[\frac{m \pi}{L_{x}}\right]^{2}+\left[\frac{n \pi}{L_{y}}\right]^{2}\right)
$$

Laplacian
Dividing by $\Lambda \Phi$, the problem separates into two parts

$$
\frac{1}{\Lambda} \frac{d^{2} \Lambda}{d \lambda^{2}}=-\frac{1-\mu^{2}}{\phi}\left[\frac{d}{d \mu}\left(1-\mu^{2}\right) \frac{d \Phi}{d \mu}+\kappa \Phi\right]
$$

Since the I.h.s. depends only on λ and the r.h.s. only on μ, they must both be constants:

$$
\begin{aligned}
\frac{1}{\Lambda} \frac{d^{2} \Lambda}{d \lambda^{2}} & =-m^{2} \\
-\frac{1-\mu^{2}}{\phi}\left[\frac{d}{d \mu}\left(1-\mu^{2}\right) \frac{d \Phi}{d \mu}+\kappa \Phi\right] & =-m^{2}
\end{aligned}
$$

The zonal structure is given by

$$
\frac{d^{2} \Lambda}{d \lambda^{2}}+m^{2} \Lambda=0
$$

which is immediately solved: $\Lambda=\exp (\operatorname{im} \lambda)$.
Now we consider Spherical coordinates. Then

$$
\nabla^{2} f=\left(\frac{1}{\cos ^{2} \phi} \frac{\partial^{2} f}{\partial \lambda^{2}}+\frac{1}{\cos \phi} \frac{\partial}{\partial \phi} \cos \phi \frac{\partial f}{\partial \phi}\right)=-\kappa f
$$

(for simplicity we have taken $a=1$).
We define $\mu=\sin \phi$ and write this as

$$
\left(\frac{1}{1-\mu^{2}} \frac{\partial^{2} f}{\partial \lambda^{2}}+\frac{\partial}{\partial \mu}\left(1-\mu^{2}\right) \frac{\partial f}{\partial \mu}\right)=-\kappa f
$$

We seek a solution by separating the variables:

$$
f(\lambda, \mu)=\Lambda(\lambda) \Phi(\mu)
$$

Then the eigenproblem is

$$
\frac{d^{2} \Lambda}{d \lambda^{2}} \cdot \Phi+\Lambda \cdot\left(1-\mu^{2}\right) \frac{d}{d \mu}\left(1-\mu^{2}\right) \frac{d \Phi}{d \mu}=-\left(1-\mu^{2}\right) \kappa \Lambda \Phi .
$$

Laplacian

The meridional structure is given by

$$
\left[\frac{d}{d \mu}\left(1-\mu^{2}\right) \frac{d}{d \mu}+\left(\kappa-\frac{m^{2}}{1-\mu^{2}}\right)\right] \Phi=0 .
$$

This is called the associated Legendre equation. It has solutions regular at the poles ($\mu= \pm 1$) for $\kappa=n(n+1)$ where n is an integer. They are the Legendre functions

$$
\Phi=P_{n}^{m}(\mu)
$$

The complete eigensolutions are the spherical harmonics

$$
Y_{n}^{m}(\lambda, \mu)=P_{n}^{m}(\mu) \exp (i m \lambda) .
$$

The derivation above is standard and may be found in many books on Mathematical Methods of Physics.

The important result for us is the following:

$$
\nabla^{2} Y_{n}^{m}(\lambda, \mu)=-n(n+1) Y_{n}^{m}(\lambda, \mu)
$$

Allowing for a non-unit radius of the sphere, this becomes

$$
\nabla^{2} Y_{n}^{m}(\lambda, \mu)=-\left[\frac{n(n+1)}{a^{2}}\right] Y_{n}^{m}(\lambda, \mu) .
$$

The spherical harmonics $Y_{n}^{m}(\lambda, \mu)$ are the eigenfunctions of the Laplacian on the sphere, with eigenvalues $-n(n+1) / a^{2}$.

Alternating regions of positive and negative values.

Zonal: $m=0, n>0$.
Tesseral: $0<m<n$.
Sectoral: $m=n$.
$|m|$ zeros in $0 \leq \lambda<2 \pi$

$$
n-|m| \text { zeros in }-1<\mu<+1 .
$$

Orthogonality \& Completeness

The spherical harmonics are an orthogonal set:

$$
\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{-1}^{+1}\left[Y_{q}^{p}(\lambda, \mu)\right]^{*} \cdot Y_{s}^{r}(\lambda, \mu) d \mu d \lambda=\delta_{p r} \delta_{q s} .
$$

Any (reasonable) function $f(\lambda, \mu, t)$ on the sphere can be expanded in spherical harmonics:

$$
f(\lambda, \mu, t)=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} f_{n}^{m}(t) Y_{n}^{m}(\lambda, \mu)
$$

The coefficients $f_{n}^{m}(t)$ are given by

$$
f_{n}^{m}(t)=\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{-1}^{+1}\left[Y_{n}^{m}(\lambda, \mu)\right]^{*} \cdot f(\lambda, \mu) d \mu d \lambda
$$

Truncation

In practice, we have to replace the infinite summation

$$
f(\lambda, \mu, t)=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} f_{n}^{m}(t) Y_{n}^{m}(\lambda, \mu) .
$$

by a finite summation.
There ae a number of ways to truncate the solution. The most common is called triangular truncation:

$$
f(\lambda, \mu, t)=\sum_{n=0}^{N} \sum_{m=-n}^{n} f_{n}^{m}(t) Y_{n}^{m}(\lambda, \mu) .
$$

It can be shown that this gives uniform resolution throughout the sphere.

The ECMWF model uses triangular truncation.

Permissible vales of m and n for triangular and rhomboidal truncation.

Triangular truncation

Rhomboldal truncation

End of Part 3

