The Spectral Method (MAPH 40260)

Part 2: The Advection Equation

Peter Lynch

School of Mathematical Sciences

Outline

Advection Equation

Finite Difference Approximation

Spectral Approximation

Solution of Advection Equation

Solution of Burgers' Equation

Outline

Advection Equation

Finite Difference Approximation

Spectral Approximation

Solution of Advection Equation

Solution of Burgers' Equation

The Advection Equation

We consider the simple advection equation in one dimension:

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0 .
$$

The Advection Equation

We consider the simple advection equation in one dimension:

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0 .
$$

We will retain the continuous representation in time.

The Advection Equation

We consider the simple advection equation in one dimension:

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0 .
$$

We will retain the continuous representation in time.
We will compare the grid point and spectral representation in space.

The Advection Equation

We consider the simple advection equation in one dimension:

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0 .
$$

We will retain the continuous representation in time.
We will compare the grid point and spectral representation in space.

The contrast in the results is of great practical importance.

Outline

Advection Equation

Finite Difference Approximation

Spectral Approximation

Solution of Advection Equation

Solution of Burgers' Equation

Grid Point Approximation

We evaluate the solution on a finite difference grid

$$
u(m \Delta x, t)=U_{m}(t)
$$

Grid Point Approximation

We evaluate the solution on a finite difference grid

$$
u(m \Delta x, t)=U_{m}(t)
$$

The equation becomes

$$
\frac{\partial U_{m}}{\partial t}+c\left(\frac{U_{m+1}-U_{m-1}}{2 \Delta x}\right)=0 .
$$

Grid Point Approximation

We evaluate the solution on a finite difference grid

$$
u(m \Delta x, t)=U_{m}(t)
$$

The equation becomes

$$
\frac{\partial U_{m}}{\partial t}+c\left(\frac{U_{m+1}-U_{m-1}}{2 \Delta x}\right)=0 .
$$

We look for a solution of the form

$$
U_{m}(t)=\exp [i k(m \Delta x-C t)]
$$

Grid Point Approximation

We evaluate the solution on a finite difference grid

$$
u(m \Delta x, t)=U_{m}(t)
$$

The equation becomes

$$
\frac{\partial U_{m}}{\partial t}+c\left(\frac{U_{m+1}-U_{m-1}}{2 \Delta x}\right)=0 .
$$

We look for a solution of the form

$$
U_{m}(t)=\exp [i k(m \Delta x-C t)]
$$

Substituting this into the equation, we have

$$
-i k C U_{m}+\frac{i c}{\Delta x}\left(\frac{e^{i k \Delta x}-e^{-i k \Delta x}}{2 i}\right) U_{m}=0
$$

That is,

$$
-i k C U_{m}+\frac{i c}{\Delta x}(\sin k \Delta x) U_{m}=0
$$

That is,

$$
-i k C U_{m}+\frac{i c}{\Delta x}(\sin k \Delta x) U_{m}=0
$$

This immediately leads to the result

$$
C=\left(\frac{\sin k \Delta x}{k \Delta x}\right) c .
$$

That is,

$$
-i k C U_{m}+\frac{i c}{\Delta x}(\sin k \Delta x) U_{m}=0
$$

This immediately leads to the result

$$
C=\left(\frac{\sin k \Delta x}{k \Delta x}\right) c .
$$

Clearly

$$
C<c \quad \text { for } \quad k>0 .
$$

For long waves, λ is large and k is small, so

$C \approx c$

For long waves, λ is large and k is small, so

$$
C \approx c
$$

For the shortest wave, $\lambda=2 \Delta x$ and $k \Delta x=\pi$, so

$$
C=\left(\frac{\sin \pi}{\pi}\right) c=0
$$

so the shortest wave is stationary.

For long waves, λ is large and k is small, so

$$
C \approx c
$$

For the shortest wave, $\lambda=2 \Delta x$ and $k \Delta x=\pi$, so

$$
C=\left(\frac{\sin \pi}{\pi}\right) c=0
$$

so the shortest wave is stationary.
For the $4 \Delta x$-wave, $k \Delta x=\pi / 2$, so

$$
C=\left(\frac{\sin \pi / 2}{\pi / 2}\right) c=\left(\frac{2}{\pi}\right) c \approx \frac{2}{3} c,
$$

so the wave is slowed down by about one third.

Outline

Advection Equation

Finite Difference Approximation

Spectral Approximation

Solution of Advection Equation

Solution of Burgers' Equation

Spectral Approximation

Now consider the spectral approximation to

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0 .
$$

Spectral Approximation

Now consider the spectral approximation to

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0 .
$$

We look for a solution

$$
U(t)=\sum_{k} U_{k}(x, t)=\sum_{k} \exp [i k(x-C t)]
$$

Spectral Approximation

Now consider the spectral approximation to

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0 .
$$

We look for a solution

$$
U(t)=\sum_{k} U_{k}(x, t)=\sum_{k} \exp [i k(x-C t)]
$$

Since the equation is linear, we can consider the individual components separately.

Spectral Approximation

Now consider the spectral approximation to

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0 .
$$

We look for a solution

$$
U(t)=\sum_{k} U_{k}(x, t)=\sum_{k} \exp [i k(x-C t)]
$$

Since the equation is linear, we can consider the individual components separately.

Substituting the solution in the equation, we get

$$
-i k C U_{k}+i k c U_{k}=0 \quad \text { or } \quad C=c .
$$

Spectral Approximation

Now consider the spectral approximation to

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0 .
$$

We look for a solution

$$
U(t)=\sum_{k} U_{k}(x, t)=\sum_{k} \exp [i k(x-C t)]
$$

Since the equation is linear, we can consider the individual components separately.

Substituting the solution in the equation, we get

$$
-i k C U_{k}+i k c U_{k}=0 \quad \text { or } \quad C=c .
$$

The phase speed is represented exactly.

Outline

Advection Equation

Finite Difference Approximation

Spectral Approximation

Solution of Advection Equation

Solution of Burgers' Equation

Solution of Linear Advection Equation

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0
$$

Solution of Linear Advection Equation

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0 .
$$

Expand the solution in spectral components:

$$
u(x, t)=\sum_{n=-N}^{+N} U_{n}(t) \exp (2 \pi i n x / \ell) .
$$

Solution of Linear Advection Equation

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0 .
$$

Expand the solution in spectral components:

$$
u(x, t)=\sum_{n=-N}^{+N} U_{n}(t) \exp (2 \pi i n x / \ell) .
$$

Note that we must truncate the expansion.
The truncation level N determines accuracy, just as the grid interval Δx does for the finite difference method.

Solution of Linear Advection Equation

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0 .
$$

Expand the solution in spectral components:

$$
u(x, t)=\sum_{n=-N}^{+N} U_{n}(t) \exp (2 \pi i n x / \ell) .
$$

Note that we must truncate the expansion.
The truncation level N determines accuracy, just as the grid interval Δx does for the finite difference method.

Substituting in the expansion, the equation becomes

$$
\sum_{n=-N}^{+N}\left[\frac{d U_{n}}{d t}+\frac{2 \pi i c n}{\ell} U_{n}\right] \exp (2 \pi i n x / \ell)=0
$$

$$
\sum_{n=-N}^{+N}\left[\frac{d U_{n}}{d t}+\frac{2 \pi i c n}{\ell} U_{n}\right] \exp (2 \pi i n x / \ell)=0
$$

Now recall the orthogonality relationship

$$
\frac{1}{\ell} \int_{0}^{\ell} \exp (-2 \pi i m x / \ell) \cdot \exp (+2 \pi i n x / \ell) d x=\delta_{m n}
$$

$$
\sum_{n=-N}^{+N}\left[\frac{d U_{n}}{d t}+\frac{2 \pi i c n}{\ell} U_{n}\right] \exp (2 \pi i n x / \ell)=0 .
$$

Now recall the orthogonality relationship

$$
\frac{1}{\ell} \int_{0}^{\ell} \exp (-2 \pi i m x / \ell) \cdot \exp (+2 \pi i n x / \ell) d x=\delta_{m n} .
$$

Multiply the equation by $\exp (-2 \pi i m x / \ell)$ and integrate:

$$
\sum_{n=-N}^{+N}\left[\frac{d U_{n}}{d t}+\frac{2 \pi i c n}{\ell} U_{n}\right] \ell \delta_{m n}=0, \quad \text { or }
$$

$\frac{d U_{m}}{d t}+\frac{2 \pi i c m}{\ell} U_{m}=0, \quad m=-N,-(N-1) \ldots N-1, N$.

$$
\sum_{n=-N}^{+N}\left[\frac{d U_{n}}{d t}+\frac{2 \pi i c n}{\ell} U_{n}\right] \exp (2 \pi i n x / \ell)=0 .
$$

Now recall the orthogonality relationship

$$
\frac{1}{\ell} \int_{0}^{\ell} \exp (-2 \pi i m x / \ell) \cdot \exp (+2 \pi i n x / \ell) d x=\delta_{m n} .
$$

Multiply the equation by $\exp (-2 \pi i m x / \ell)$ and integrate:

$$
\sum_{n=-N}^{+N}\left[\frac{d U_{n}}{d t}+\frac{2 \pi i c n}{\ell} U_{n}\right] \ell \delta_{m n}=0, \quad \text { or }
$$

$\frac{d U_{m}}{d t}+\frac{2 \pi i c m}{\ell} U_{m}=0, \quad m=-N,-(N-1) \ldots N-1, N$.
The PDE has been reduced to a set of (independent) ODEs, which can easily be integrated.

Outline

Advection Equation

Finite Difference Approximation

Spectral Approximation

Solution of Advection Equation

Solution of Burgers' Equation

Solution of Burgers' Equation

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}} .
$$

Solution of Burgers' Equation

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}} .
$$

This is the nonlinear advection equation with diffusion added to regularize the solution.

Solution of Burgers' Equation

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}} .
$$

This is the nonlinear advection equation with diffusion added to regularize the solution.

Expand the solution in spectral components:

$$
u(x, t)=\sum_{n=-N}^{+N} U_{n}(t) \exp (2 \pi i n x / \ell) .
$$

Solution of Burgers' Equation

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}} .
$$

This is the nonlinear advection equation with diffusion added to regularize the solution.

Expand the solution in spectral components:

$$
u(x, t)=\sum_{n=-N}^{+N} U_{n}(t) \exp (2 \pi i n x / \ell) .
$$

Substituting into the equation, expanding all terms and evaluating spatial derivatives analytically ...

$$
\begin{aligned}
& \sum_{n=-N}^{+N} \frac{d U_{n}}{d t} e^{\frac{2 \pi i n x}{\ell}}+\sum_{p=-N}^{+N} \sum_{q=-N}^{+N} U_{p}\left(\frac{2 \pi i q}{\ell}\right) U_{q} \cdot e^{\frac{2 \pi i p x}{\ell}} e^{\frac{2 \pi i q x}{\ell}} \\
&= \nu \sum_{n=-N}^{+N}\left(\frac{2 \pi i n}{\ell}\right)^{2} U_{n} e^{\frac{2 \pi i n x}{\ell}} .
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=-N}^{+N} \frac{d U_{n}}{d t} e^{\frac{2 \pi i n x}{\ell}} & +\sum_{p=-N}^{+N} \sum_{q=-N}^{+N} U_{p}\left(\frac{2 \pi i q}{\ell}\right) U_{q} \cdot e^{\frac{2 \pi i \rho x}{\ell}} e^{\frac{2 \pi i q x}{\ell}} \\
& =\nu \sum_{n=-N}^{+N}\left(\frac{2 \pi i n}{\ell}\right)^{2} U_{n} e^{\frac{2 \pi i n x}{\ell}}
\end{aligned}
$$

For simplicity, let us take $\ell=2 \pi$. Then
$\sum_{n=-N}^{+N} \frac{d U_{n}}{d t} e^{i n x}+\sum_{p=-N}^{+N} \sum_{q=-N}^{+N} i q U_{p} U_{q} e^{i(p+q) x}=-\nu \sum_{n=-N}^{+N} n^{2} U_{n} e^{i n x}$.

$$
\begin{aligned}
\sum_{n=-N}^{+N} \frac{d U_{n}}{d t} e^{\frac{2 \pi i n x}{\ell}} & +\sum_{p=-N}^{+N} \sum_{q=-N}^{+N} U_{p}\left(\frac{2 \pi i q}{\ell}\right) U_{q} \cdot e^{\frac{2 \pi i \rho x}{\ell}} e^{\frac{2 \pi i q x}{\ell}} \\
& =\nu \sum_{n=-N}^{+N}\left(\frac{2 \pi i n}{\ell}\right)^{2} U_{n} e^{\frac{2 \pi i n x}{\ell}}
\end{aligned}
$$

For simplicity, let us take $\ell=2 \pi$. Then
$\sum_{n=-N}^{+N} \frac{d U_{n}}{d t} e^{i n x}+\sum_{p=-N}^{+N} \sum_{q=-N}^{+N} i q U_{p} U_{q} e^{j(p+q) x}=-\nu \sum_{n=-N}^{+N} n^{2} U_{n} e^{i n x}$.

We multiply by $\exp (-i m x)$ and integrate. The first and last sums reduce to single terms. The double sum reduces to a single sum.

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\sum_{n=-N}^{+N} \frac{d U_{n}}{d t} e^{i n x}\right) e^{-i m x} d x=\sum_{n=-N}^{+N} \frac{d U_{n}}{d t} \delta_{m n}=\frac{d U_{m}}{d t}
$$

$$
\begin{gathered}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\sum_{n=-N}^{+N} \frac{d U_{n}}{d t} e^{i n x}\right) e^{-i m x} d x=\sum_{n=-N}^{+N} \frac{d U_{n}}{d t} \delta_{m n}=\frac{d U_{m}}{d t} . \\
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(-\nu \sum_{n=-N}^{+N} n^{2} U_{n} e^{i n x}\right) e^{-i m x} d x=-\nu m^{2} U_{m}
\end{gathered}
$$

$$
\begin{gathered}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\sum_{n=-N}^{+N} \frac{d U_{n}}{d t} e^{i n x}\right) e^{-i m x} d x=\sum_{n=-N}^{+N} \frac{d U_{n}}{d t} \delta_{m n}=\frac{d U_{m}}{d t} . \\
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(-\nu \sum_{n=-N}^{+N} n^{2} U_{n} e^{i n x}\right) e^{-i m x} d x=-\nu m^{2} U_{m} \\
\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{p=-N}^{+N} \sum_{q=-N}^{+N} i q U_{p} U_{q} e^{i(p+q) x} e^{-i m x} d x=\sum_{p=-N}^{+N} i(m-p) U_{p} U_{m-p}
\end{gathered}
$$

UCLD
© IV

Lemma:

$$
\sum_{p=-N}^{+N} i(m-p) U_{p} U_{m-p}=\frac{1}{2} i m \sum_{p=-N}^{+N} U_{p} U_{m-p}
$$

Lemma:

$$
\sum_{p=-N}^{+N} i(m-p) U_{p} U_{m-p}=\frac{1}{2} i m \sum_{p=-N}^{+N} U_{p} U_{m-p}
$$

Proof:

$$
\begin{aligned}
\sum_{p=-N}^{+N}(m-p) U_{p} U_{m-p}= & m \sum_{p=-N}^{+N} U_{p} U_{m-p}-\sum_{p=-N}^{+N} p U_{p} U_{m-p} \\
= & m \sum_{p=-N}^{+N} U_{p} U_{m-p}-\sum_{q=-N}^{+N} q U_{q} U_{m-q} \\
= & m \sum_{p=-N}^{+N} U_{p} U_{m-p}-\sum_{q=-N}^{+N}(m-p) U_{m-p} U_{p} \\
\text { FD. Approx } & \text { Spectral Approx }
\end{aligned}
$$

Lemma:

$$
\sum_{p=-N}^{+N} i(m-p) U_{p} U_{m-p}=\frac{1}{2} i m \sum_{p=-N}^{+N} U_{p} U_{m-p}
$$

Proof:

$$
\begin{aligned}
\sum_{p=-N}^{+N}(m-p) U_{p} U_{m-p} & =m \sum_{p=-N}^{+N} U_{p} U_{m-p}-\sum_{p=-N}^{+N} p U_{p} U_{m-p} \\
& =m \sum_{p=-N}^{+N} U_{p} U_{m-p}-\sum_{q=-N}^{+N} q U_{q} U_{m-q} \\
& =m \sum_{p=-N}^{+N} U_{p} U_{m-p}-\sum_{q=-N}^{+N}(m-p) U_{m-p} U_{p}
\end{aligned}
$$

Taking the last term to the left, the lemma follows,

Burgers' Equation may now be written

$$
\frac{d U_{m}}{d t}+\frac{1}{2} i m \sum_{p=-N}^{+N} U_{p} U_{m-p}=-\nu m^{2} U_{m} .
$$

Burgers' Equation may now be written

$$
\frac{d U_{m}}{d t}+\frac{1}{2} i m \sum_{p=-N}^{+N} U_{p} U_{m-p}=-\nu m^{2} U_{m} .
$$

Ignoring the nonlinear terms, we have

$$
\frac{d U_{m}}{d t}=-\nu m^{2} U_{m} .
$$

This means that each term gradually decays. The larger the wavenumber (the smaller the scale) the faster the decay rate. Viscosity acts most strongly on the smallest scales.

Burgers' Equation may now be written

$$
\frac{d U_{m}}{d t}+\frac{1}{2} i m \sum_{p=-N}^{+N} U_{p} U_{m-p}=-\nu m^{2} U_{m} .
$$

Ignoring the nonlinear terms, we have

$$
\frac{d U_{m}}{d t}=-\nu m^{2} U_{m} .
$$

This means that each term gradually decays. The larger the wavenumber (the smaller the scale) the faster the decay rate. Viscosity acts most strongly on the smallest scales.

If we omit viscosity, we get the inviscid Burgers Equation:

$$
\frac{d U_{m}}{d t}+\frac{1}{2} i m \sum_{p=-N}^{+N} U_{p} U_{m-p}=0 .
$$

Again, Burgers' Equation in spectral form is:

$$
\frac{d U_{m}}{d t}+\frac{1}{2} i m \sum_{p=-N}^{+N} U_{p} U_{m-p}=-\nu m^{2} U_{m} .
$$

Again, Burgers' Equation in spectral form is:

$$
\frac{d U_{m}}{d t}+\frac{1}{2} i m \sum_{p=-N}^{+N} U_{p} U_{m-p}=-\nu m^{2} U_{m} .
$$

We see that components interact in groups of three, called triads:

$$
\left\{\begin{array}{lll}
U_{m} & U_{p} & U_{m-p}
\end{array}\right\}
$$

Again, Burgers' Equation in spectral form is:

$$
\frac{d U_{m}}{d t}+\frac{1}{2} i m \sum_{p=-N}^{+N} U_{p} U_{m-p}=-\nu m^{2} U_{m} .
$$

We see that components interact in groups of three, called triads:

$$
\left\{\begin{array}{lll}
U_{m} & U_{p} & U_{m-p}
\end{array}\right\}
$$

We see that all scales interact. For any mode U_{m}, any other mode U_{p} can change it by interacting with U_{m-p}. Energy can move from any scale to any other scale.

Again, Burgers' Equation in spectral form is:

$$
\frac{d U_{m}}{d t}+\frac{1}{2} i m \sum_{p=-N}^{+N} U_{p} U_{m-p}=-\nu m^{2} U_{m} .
$$

We see that components interact in groups of three, called triads:

$$
\left\{\begin{array}{lll}
U_{m} & U_{p} & U_{m-p}
\end{array}\right\}
$$

We see that all scales interact. For any mode U_{m}, any other mode U_{p} can change it by interacting with U_{m-p}. Energy can move from any scale to any other scale.
We may start with all the energy in the largest scale:

$$
u(x, 0)=U_{1}\left(\frac{e^{i x}-e^{-i x}}{2 i}\right)=U_{1} \sin x,
$$

and the energy will quickly spread to other modes.

Initial conditions for Burgers' Equation. Initial state is a pure sine-wave.

Final spectrum for Burgers' Equation. Energy has spread to all modes.

Solution of Burgers' Equation. Shock has developed. Initial state is a pure sine-wave.

Evolution of energy in time. Dissipation increases when energy reaches small scales.

End of Part 2

