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The Gridpoint Method

Suppose we have a function of one space coordinate.

For example: the temperature on a line from Galway
to Dublin; the pressure around the equator.

This is an infinite amount of information.

How do we specify the function in a finite way?

There are several answers to this question.
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Continuous function of position.
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Evalution on a set of grid points.
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Grid point values.
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Spectral Analysis

As an alternative to grid point values, we can break
the function into different scales.

These are called the spectral components.

The procedure is called spectral analysis.

It is somewhat like splitting sunlight into the various
colours of the spectrum.
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Continuous function of position.
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The first spectral component.
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The first and second spectral components.
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The first, second and third spectral components.
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The original function and its three components.
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Gridpoint Method

I Discrete representation
I Values at geographical locations
I Easy to understand
I No computation necessary
I Easy to represent graphically.
I Derivatives evaluated by finite differences.

Big drawback: Evaluation of derivatives involves
errors.

Introduction Fourier Analysis Vibrating String



Gridpoint Method

I Discrete representation

I Values at geographical locations
I Easy to understand
I No computation necessary
I Easy to represent graphically.
I Derivatives evaluated by finite differences.

Big drawback: Evaluation of derivatives involves
errors.

Introduction Fourier Analysis Vibrating String



Gridpoint Method

I Discrete representation
I Values at geographical locations

I Easy to understand
I No computation necessary
I Easy to represent graphically.
I Derivatives evaluated by finite differences.

Big drawback: Evaluation of derivatives involves
errors.

Introduction Fourier Analysis Vibrating String



Gridpoint Method

I Discrete representation
I Values at geographical locations
I Easy to understand

I No computation necessary
I Easy to represent graphically.
I Derivatives evaluated by finite differences.

Big drawback: Evaluation of derivatives involves
errors.

Introduction Fourier Analysis Vibrating String



Gridpoint Method

I Discrete representation
I Values at geographical locations
I Easy to understand
I No computation necessary

I Easy to represent graphically.
I Derivatives evaluated by finite differences.

Big drawback: Evaluation of derivatives involves
errors.

Introduction Fourier Analysis Vibrating String



Gridpoint Method

I Discrete representation
I Values at geographical locations
I Easy to understand
I No computation necessary
I Easy to represent graphically.

I Derivatives evaluated by finite differences.

Big drawback: Evaluation of derivatives involves
errors.

Introduction Fourier Analysis Vibrating String



Gridpoint Method

I Discrete representation
I Values at geographical locations
I Easy to understand
I No computation necessary
I Easy to represent graphically.
I Derivatives evaluated by finite differences.

Big drawback: Evaluation of derivatives involves
errors.

Introduction Fourier Analysis Vibrating String



Gridpoint Method

I Discrete representation
I Values at geographical locations
I Easy to understand
I No computation necessary
I Easy to represent graphically.
I Derivatives evaluated by finite differences.

Big drawback: Evaluation of derivatives involves
errors.

Introduction Fourier Analysis Vibrating String



Grid point values. We have to get derivatives from
this set of values.
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Spectral Method

I Discrete representation
I Values NOT at geogaphical locations
I Less easy to understand
I Computation of coeficients necessary
I Derivatives evaluated exactly, by analysis.

Big advantage: Evaluation of derivatives is exact.
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The most popular spectral components are
trigonometric functions.

These functions are easy to evaluate, and to
manipulate.

They are also easily differentiated analytically.

d
dx

sin x = cos x
d
dx

cos x = − sin x .

exp(ix) = cos x + i sin x

d
dx

exp(ix) = i exp(ix) .
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Fourier Analysis

We consider a function f (x) on an interval [0, `].

For simplicity, we assume that f vanishes at the ends:

f (0) = f (`) = 0

We note that sinusoidal functions with certain
wavelengths also vanish at x = 0 and at x = `:

sin πx/` , sin 2πx/` , . . . , sin nπx/` ,

for all integer values of n.
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The first six harmonic components (` = 10).
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Orthogonality
We denote the spectral components by

Ψn(x) = sin(nπx/`)

We easily show that∫ `

0
[Ψn(x)]2 dx =

∫ `

0
sin2

(nπ

`
x
)

dx

=
1
2

∫ `

0

[
1 − cos

(
2nπ

`
x
)]

dx

=
[x

2

]`
0
−
[

`

4πn
sin
(

2nπ

`
x
)]`

0

=
`

2
.
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Orthogonality

Suppose m 6= n.

∫ `

0
Ψn(x) ·Ψm(x) dx

=

∫ `

0
sin
(nπ

`
x
)
· sin

(mπ

`
x
)

dx

=
1
2

∫ `

0

[
cos

(
n − m

`
πx
)
− cos

(
n + m

`
πx
)]

dx

=
1

2π

[
`

n − m
sin
(

n − m
`

πx
)
− `

n + m
sin
(

n + m
`

πx
)]`

0

= 0 .
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Orthonormality

We thus have:∫ `

0
Ψn(x) ·Ψm(x) dx = δmn

`

2

Now define

Ψ̃n(x) =

√
2
`

sin(nπx/`)

We obtain an orthonormal set of functions:∫ `

0
Ψ̃n(x) · Ψ̃m(x) dx = δmn .
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Example: Vibrating String
Imagine a string, stretched between x = 0 and x = `.
Let the sideways displacement be Φ(x).

We suppose the string is fixed at the ends:

Φ(0) = 0 Φ(`) = 0 .

The displacement is governed by the wave equation

∂2Φ

∂t2 = c2 ∂2Φ

∂x2 .

We first consider a single component, of frequency ω:

Φ(x , t) = Ψ(x) exp(iωt) .

We might also choose Φ(x , t) = Ψ(x) cos(ωt) or Φ(x , t) = Ψ(x) sin(ωt).
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Then the wave equation reduces to an o.d.e:

d2Ψ

dx2 +

(
ω2

c2

)
Ψ = 0 .

We define the wavenumber k as

k =
ω

c

Then the o.d.e. may be written

d2Ψ

dx2 + k2Ψ = 0 .
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Wave speed is wavelength divided by period

c =
λ

τ

Period τ is reciprocal of frequency ν = 2πω, or

τ =
1
ν

, so that c = λν .

Hence
k =

ω

c
=

2πν

c
=

2π

λ
.

k is the inverse of the wavelength, with a 2π factor.
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The function
Ψ(x) = A sin kx

is a solution of the o.d.e., and satisfies the boundary
conditions if

k` = nπ or k = kn = n
π

`

We thus define the components as

Ψn(x) = An sin
nπ

`
x

where An is the amplitude of the n-th component.

Ψn(x) is an eigenfunction of the o.d.e. with eigenvalue
kn = nπ/`.
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We now seek a solution expanded in eigenfunctions

Ψ =
∞∑

n=1

AnΨn(x) .

We can find the coefficients by integration∫ `

0
Ψm(x)Ψ(x) dx =

∫ `

0
Ψm(x)

(
∞∑

n=1

AnΨn(x)

)
dx

=
∞∑

n=1

An

(∫ `

0
Ψm(x)Ψn(x) dx

)

=
∞∑

n=1

An
`

2
δmn dx =

`

2
Am .

Thus,

Am =
2
`

∫ `

0
Ψm(x)Ψ(x) dx
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Duality of the Fourier Transform
The function Ψ can be obtained from the expansion

Ψ =
∞∑

n=1

AnΨn(x) .

if the coeficients An are known.

The coefficients can be found by integration

Am =
2
`

∫ `

0
Ψm(x)Ψ(x) dx

if the function is known.

There is a duality between Ψ(x), a function in physical
space and {An}, the coefficients in wavenumber
space. Given either representation, we can obtain the
other.
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Example: Analysis of a Square Wave
Let

Ψ(x) = +1 , for x ∈ [0,
`

2
] Ψ(x) = −1 , for x ∈ [

`

2
, `] .

The Fourier coeffients are easily calculated.

An =
2
`

∫ `

0
Ψ·Ψn dx =

2
`

(∫ `/2

0
sin

nπ

`
x dx −

∫ `

`/2
sin

nπ

`
x dx

)
.

When we work these out, we find that only every
fourth coefficient has a nonzero value:

A2 =
1
2

(
8
π

)
, A6 =

1
6

(
8
π

)
, A10 =

1
10

(
8
π

)
, etc.
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, etc.
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The square wave function (` = 10).
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The square wave function. First coefficient.
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The square wave function. First two coefficients.
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The square wave function. First three coefficients.
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The square wave function. First four coefficients.
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The square wave function. First five coefficients.
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The square wave function. First six coefficients.
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First six coefficients. Note Gibbs Phenomenon.
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Exercise: Analysis of a Sawtooth Wave

Find the Fourier coefficients of the sawtooth function.

Introduction Fourier Analysis Vibrating String



Solution of Wave Equation
We assume simple initial conditions:

Φ(x , 0) = Φ0(x) , Φt(x , 0) = 0 .

We seek a solution of the form

Φ(x , t) =
∞∑

n=1

AnΨn(x) cos ωnt .

At the initial time,

Φ(x , t) = Φ0(x) =
∞∑

n=1

AnΨn(x) .

Also, because of the chosen form of solution,

Φt(x , 0) = 0 .
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Again,

Φ(x , t) = Φ0(x) =
∞∑

n=1

AnΨn(x) .

This gives us the values of the coefficients:

An =
2
`

∫ `

0
Ψn(x)Φ0(x) dx

The problem is now completely solved:

Φ(x , t) =
∞∑

n=1

AnΨn(x) cos ωnt ,

with coefficients that are now known.

The eigenfunctions and eigenvalues are defined by

Ψn(x) ≡ sin knx , kn = nπ/` , ωn = c kn .
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End of Part 1
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