The Spectral Method (MAPH 40260)

Part 1: Spectral Analysis

Peter Lynch

School of Mathematical Sciences

Outline

Introduction

Fourier Analysis

Vibrating String

Outline

Introduction

Fourier Analysis

Vibrating String

The Gridpoint Method

Suppose we have a function of one space coordinate.
For example: the temperature on a line from Galway to Dublin; the pressure around the equator.

This is an infinite amount of information.
How do we specify the function in a finite way?
There are several answers to this question.

Continuous function of position.

Spectral Analysis

As an alternative to grid point values, we can break the function into different scales.

These are called the spectral components.
The procedure is called spectral analysis.
It is somewhat like splitting sunlight into the various colours of the spectrum.

Grid point values.

Continuous function of position.

The first and second spectral components.

Gridpoint Method

The original function and its three components.
> Discrete representation

- Values at geographical locations
- Easy to understand
- No computation necessary
- Easy to represent graphically.
- Derivatives evaluated by finite differences.

Big drawback: Evaluation of derivatives involves errors.

Spectral Method

- Discrete representation
- Values NOT at geogaphical locations
> Less easy to understand
- Computation of coeficients necessary
- Derivatives evaluated exactly, by analysis.

Big advantage: Evaluation of derivatives is exact.

Grid point values. We have to get derivatives from this set of values.

The most popular spectral components are trigonometric functions.

These functions are easy to evaluate, and to manipulate.

They are also easily differentiated analytically.

$$
\begin{gathered}
\frac{d}{d x} \sin x=\cos x \quad \frac{d}{d x} \cos x=-\sin x \\
\exp (i x)=\cos x+i \sin x \\
\frac{d}{d x} \exp (i x)=i \exp (i x)
\end{gathered}
$$

Fourier Analysis

We consider a function $f(x)$ on an interval $[0, \ell]$.

For simplicity, we assume that f vanishes at the ends:

$$
f(0)=f(\ell)=0
$$

We note that sinusoidal functions with certain wavelengths also vanish at $x=0$ and at $x=\ell$:

$$
\sin \pi x / \ell, \sin 2 \pi x / \ell, \ldots, \sin n \pi x / \ell
$$

for all integer values of n.

wavelength also vanish at $x=0$ and $x=\ell:$

Outline

Introduction

Fourier Analysis

Vibrating String

Orthogonality

We denote the spectral components by

$$
\Psi_{n}(x)=\sin (n \pi x / \ell)
$$

We easily show that

$$
\begin{aligned}
\int_{0}^{\ell}\left[\Psi_{n}(x)\right]^{2} d x & =\int_{0}^{\ell} \sin ^{2}\left(\frac{n \pi}{\ell} x\right) d x \\
& =\frac{1}{2} \int_{0}^{\ell}\left[1-\cos \left(\frac{2 n \pi}{\ell} x\right)\right] d x \\
& =\left[\frac{x}{2}\right]_{0}^{\ell}-\left[\frac{\ell}{4 \pi n} \sin \left(\frac{2 n \pi}{\ell} x\right)\right]_{0}^{\ell} \\
& =\frac{\ell}{2}
\end{aligned}
$$

Orthogonality

Suppose $m \neq n$.

$$
\begin{aligned}
& \int_{0}^{\ell} \Psi_{n}(x) \cdot \Psi_{m}(x) d x \\
= & \int_{0}^{\ell} \sin \left(\frac{n \pi}{\ell} x\right) \cdot \sin \left(\frac{m \pi}{\ell} x\right) d x \\
= & \frac{1}{2} \int_{0}^{\ell}\left[\cos \left(\frac{n-m}{\ell} \pi x\right)-\cos \left(\frac{n+m}{\ell} \pi x\right)\right] d x \\
= & \frac{1}{2 \pi}\left[\frac{\ell}{n-m} \sin \left(\frac{n-m}{\ell} \pi x\right)-\frac{\ell}{n+m} \sin \left(\frac{n+m}{\ell} \pi x\right)\right]_{0}^{\ell} \\
= & 0 .
\end{aligned}
$$

Orthonormality

We thus have:

$$
\int_{0}^{\ell} \psi_{n}(x) \cdot \psi_{m}(x) d x=\delta_{m n} \frac{\ell}{2}
$$

Now define

$$
\tilde{\Psi}_{n}(x)=\sqrt{\frac{2}{\ell}} \sin (n \pi x / \ell)
$$

We obtain an orthonormal set of functions:

$$
\int_{0}^{\ell} \tilde{\Psi}_{n}(x) \cdot \tilde{\Psi}_{m}(x) d x=\delta_{m n}
$$

Example: Vibrating String

Imagine a string, stretched between $x=0$ and $x=\ell$. Let the sideways displacement be $\Phi(x)$.
We suppose the string is fixed at the ends:

$$
\Phi(0)=0 \quad \Phi(\ell)=0 .
$$

The displacement is governed by the wave equation

$$
\frac{\partial^{2} \Phi}{\partial t^{2}}=c^{2} \frac{\partial^{2} \Phi}{\partial x^{2}}
$$

We first consider a single component, of frequency ω :

$$
\Phi(x, t)=\psi(x) \exp (i \omega t) .
$$

We might also choose $\Phi(x, t)=\Psi(x) \cos (\omega t)$ or $\Phi(x, t)=\Psi(x) \sin (\omega t)$.

Then the wave equation reduces to an o.d.e:

$$
\frac{d^{2} \Psi}{d x^{2}}+\left(\frac{\omega^{2}}{c^{2}}\right) \Psi=0
$$

We define the wavenumber k as

$$
k=\frac{\omega}{c}
$$

Then the o.d.e. may be written

$$
\frac{d^{2} \psi}{d x^{2}}+k^{2} \psi=0
$$

Introduction

Wave speed is wavelength divided by period

$$
c=\frac{\lambda}{\tau}
$$

Period τ is reciprocal of frequency $\nu=2 \pi \omega$, or

$$
\tau=\frac{1}{\nu}, \quad \text { so that } \quad c=\lambda \nu
$$

Hence

$$
k=\frac{\omega}{c}=\frac{2 \pi \nu}{c}=\frac{2 \pi}{\lambda}
$$

k is the inverse of the wavelength, with a 2π factor.

The function

$$
\Psi(x)=A \sin k x
$$

is a solution of the o.d.e., and satisfies the boundary conditions if

$$
k \ell=n \pi \quad \text { or } \quad k=k_{n}=n \frac{\pi}{\ell}
$$

We thus define the components as

$$
\Psi_{n}(x)=A_{n} \sin \frac{n \pi}{\ell} x
$$

where A_{n} is the amplitude of the n-th component.
$\Psi_{n}(x)$ is an eigenfunction of the o.d.e. with eigenvalue $k_{n}=n_{\pi} / \ell$.

We now seek a solution expanded in eigenfunctions

$$
\Psi=\sum_{n=1}^{\infty} A_{n} \Psi_{n}(x)
$$

We can find the coefficients by integration

$$
\begin{aligned}
\int_{0}^{\ell} \Psi_{m}(x) \Psi(x) d x & =\int_{0}^{\ell} \Psi_{m}(x)\left(\sum_{n=1}^{\infty} A_{n} \Psi_{n}(x)\right) d x \\
& =\sum_{n=1}^{\infty} A_{n}\left(\int_{0}^{\ell} \Psi_{m}(x) \Psi_{n}(x) d x\right) \\
& =\sum_{n=1}^{\infty} A_{n} \frac{\ell}{2} \delta_{m n} d x=\frac{\ell}{2} A_{m}
\end{aligned}
$$

Thus,

$$
A_{m}=\frac{2}{\ell} \int_{0}^{\ell} \Psi_{m}(x) \Psi(x) d x
$$

Duality of the Fourier Transform

The function ψ can be obtained from the expansion

$$
\Psi=\sum_{n=1}^{\infty} A_{n} \Psi_{n}(x) .
$$

if the coeficients A_{n} are known.
The coefficients can be found by integration

$$
A_{m}=\frac{2}{\ell} \int_{0}^{\ell} \Psi_{m}(x) \Psi(x) d x
$$

if the function is known.
There is a duality between $\Psi(x)$, a function in physical space and $\left\{A_{n}\right\}$, the coefficients in wavenumber space. Given either representation, we can obtain the other.

Fourier Analysis

Example: Analysis of a Square Wave

Let

$$
\Psi(x)=+1, \text { for } x \in\left[0, \frac{\ell}{2}\right] \quad \Psi(x)=-1, \text { for } x \in\left[\frac{\ell}{2}, \ell\right] .
$$

The Fourier coeffients are easily calculated.

$$
A_{n}=\frac{2}{\ell} \int_{0}^{\ell} \psi \cdot \Psi_{n} d x=\frac{2}{\ell}\left(\int_{0}^{\ell / 2} \sin \frac{n \pi}{\ell} x d x-\int_{\ell / 2}^{\ell} \sin \frac{n \pi}{\ell} x d x\right)
$$

When we work these out, we find that only every fourth coefficient has a nonzero value:

$$
A_{2}=\frac{1}{2}\left(\frac{8}{\pi}\right), \quad A_{6}=\frac{1}{6}\left(\frac{8}{\pi}\right), \quad A_{10}=\frac{1}{10}\left(\frac{8}{\pi}\right)
$$

The square wave function. First coefficient.

The square wave function. First two coefficients.

[^0]

The square wave function. First four coefficients.

The square wave function. First five coefficients.

Exercise: Analysis of a Sawtooth Wave

First six coefficients. Note Gibbs Phenomenon.

Solution of Wave Equation

We assume simple initial conditions:

$$
\Phi(x, 0)=\Phi_{0}(x), \quad \phi_{t}(x, 0)=0 .
$$

We seek a solution of the form

$$
\Phi(x, t)=\sum_{n=1}^{\infty} A_{n} \psi_{n}(x) \cos \omega_{n} t .
$$

At the initial time,

$$
\Phi(x, t)=\Phi_{0}(x)=\sum_{n=1}^{\infty} A_{n} \psi_{n}(x) .
$$

Also, because of the chosen form of solution,

$$
\Phi_{t}(x, 0)=0
$$

Again,

$$
\Phi(x, t)=\Phi_{0}(x)=\sum_{n=1}^{\infty} A_{n} \psi_{n}(x) .
$$

This gives us the values of the coefficients:

$$
A_{n}=\frac{2}{\ell} \int_{0}^{\ell} \Psi_{n}(x) \Phi_{0}(x) d x
$$

The problem is now completely solved:

$$
\Phi(x, t)=\sum_{n=1}^{\infty} A_{n} \Psi_{n}(x) \cos \omega_{n} t,
$$

with coefficients that are now known.
The eigenfunctions and eigenvalues are defined by

$$
\Psi_{n}(x) \equiv \sin k_{n} x, \quad k_{n}=n \pi / l, \quad \omega_{n}=c k_{n} .
$$

[^0]: The square wave function. First three coefficients.

