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4D-Var Data Assimilation (§5.6)

In OI and 3D-Var, the background error covariance matrix
is estimated once and for all, as if the forecast errors were
statistically stationary.

The errors are estimated from the difference between the
forecast and the analysis ...

. that is, from the analysis increments.
We can evaluate if this is indeed a good approximation.

The following figure shows the 6-h forecast errors over the
USA from the NCEP/INCAR reanalysis.
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The NCEP/NCAR reanalysis used a 3D-Var data assimila-
tion system which did not change during the period.

Thus, the difference between the figures is due only to the
changes in the observing system.

Over these four decades the improvements in the observing
system in the Northern Hemisphere show a positive impact.

The 6-h forecast errors decrease by about 20%, with the
average analysis increment reduced from about 10 m to 8 m.
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The most striking result apparent in the error statistics is
that the day-to-day variability in the forecast error is about
as large as the average error.

The figures emphasize the importance of the errors of the
day which are dominated by baroclinic instabilities of syn-
optic time scales

These errors are ignored when the forecast error covariance
is assumed to be constant.

The Kalman Filter technique predicts both the model state
and 1ts error covariance.

However, it is computationally very demanding, and is not
practical for use in its complete form.

We will now consider four-dimensional variational assimila-
tion (4D-Var), which has some of the advantages of Kalman
Filtering.

It includes, at least implicitly, the evolution of the forecast
error covariance.



Model Error Covariance

Let us represent the (nonlinear) model forecast that ad-
vances from time ¢,_; to time ¢, by

x! () = M;_1 [x%(t;_1)]

Since the model is imperfect, we write

X! (t) = My (1)

X (t;) = Mi—1[x"(ti—1)] — n(ti—1)

() = x!(t3) + n(ti-1)
The model error 7 is assumed to have zero mean, and co-
variance matrix Q; = E (nsz)

In other words, starting from perfect initial conditions, the
forecast error is given by n;.

(In reality model errors have significant biases, which must
be taken into account.)



Note: T am covering the following material in §5.6 of
Eugenia Kalnay’s book:

e Introductory paragraphs (pp. 175-177)
® §5.6.1, to the bottom of page 178
® 35.6.3, on 4D-Var

I am not discussing Kalman Filtering in this course.

As this a topic of growing importance, you should read the
remaining part of §5.6.1 (pages 179-180) and §5.6.2.
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Tangent Linear Model

Consider the solution on the time interval ¢; to ;..

If we introduce a perturbation in the initial conditions, the
final perturbation is given by

X(tj11) + 0x(tiy1) = M; [x(t;) + 0x(2;)]

= M; [x(t;)] + L;ox(t;) + O<‘5X|2)

The matrix L; is the linear tangent model operator
OIM(x(t;)];

Ll = 5 ()

That is, it is the Jacobian of M (x) with respect to x.

We have
(5 < Z—I—l) L 5X( ) —+ HOT
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The Adjoint Model

The linear tangent model L; is a matrix that transforms an
initial perturbation at time ¢, to the final perturbation at
time t7;_|_1.

0x(t;11) = L;ox(t;) + H.O.T.

The transpose of the linear tangent model is
called the adjoint model.

* * *

The linear tangent model L; and the adjoint model L;-r can
be constructed by a systematic procedure.

For a description of how to develop the computer codes,
read Appendix B of Eugenia Kalnay’s book.
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If there are several steps in a time interval ¢y —¢;, the linear
tangent model that advances a perturbation from ¢, to ¢; is
given by the product of the linear tangent model matrices.

Each one advance the solution over a single step.
0

L(to, t; H Ltj tjs1) = ]| Lj=TLimiLi—a---LiL
=p—1l =p—1l

(note the order of application, from right to left).

Therefore, the adjoint model is given by
1—1

L(t;, to) HL it =T]Lf =LiL{ -+ Li,Li
7=0

Note that the order of the terms is reversed.

The adjoint model advances a perturbation backwards in
time, from the final to the initial time.
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Simple Case:
X9 = My(x1) = M71(My(xp))

Suppose x) — X[ + 0X.
Then x; — x1 + dx; with
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Now x9 — X9 + 0x9 with
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Simple Case:
x9 = Mj(x1) = M;(Mo(x0))

Suppose xX) — X[ + 0X.
Then x; — x1 + dx; with
x1 + 0x1 = My(xg + dxg) = My(xq) + Lgdxg

Now x9 — X9 + 0X9 with
X9 + 0x9 = Mi(x] + 0x1)
= Ml(Xl) + Lqioxq
= M;(My(xp)) + LiLooxg
x9 + L1Lgoxg

Therefore,
0x9 = LiLgox

The adjoint of LiL is L{ LY

The reversal of the order of the terms corresponds to a
reversal of time: the operations are preformed backwards.
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(Kalnay, §5.6.3)

Four-dimensional variational assimilation (4D-Var) is an ex-
tension of 3D-Var to allow for observations distributed within
a time interval (¢, t,).

The cost function includes a term measuring the distance
to the background at the beginning of the interval.

It also includes a summation over time of the cost function
for each observational increment computed with respect to
the model integrated to the time of the observation.

T[x(to)] = =[x(to) — x(to)] Byt [x(te) — x°(t0))
1N T —1
i H(x;) —y{| R, H(x;) — y?]
i—0

The control variable is the initial state of the model x ().



Observations

Model
variable

Schematic diagram of four dimensional variational assimilation.
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The analysis at the end of the interval is given by the model
integration from the solution

X(tn) = Mo—n [x(t0)] = Mp—1 [My—2- -~ [ M [Mo [x(o)]] - - - ]]
Thus, the model is used as a strong constraint. That is, the
analysis solution has to satisfy the model equations.

4D-Var thus seeks an initial condition such that the forecast
best fits the observations within the assimilation interval.

* * *

The fact that the 4D-Var method assumes a perfect model
is a disadvantage.

For example, it will give the same weight to older observa-
tions as to newer observations.

Methods of correcting for a constant model error have been
proposed (see references in Kalnay).
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Let us consider the variation in the cost function when the
control variable x () is changed by a small amount x(t().

It is given by
T

L 0X (1)

0x (1)

5 = Jix(to) + dx(o)] - Jlxtto)] ~ |

Here the gradient of the cost function
0J
V.. .J=
<o) lax(to)]

is a column vector (of course, ¢/ is a scalar).

Its j-th component is
[ 9. ] CaJ
0x(to)];  Oz;j(to)

We need this because iterative minimization schemes re-
quire the estimation of the gradient of the cost function.
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In the simplest scheme, the steepest descent method, the
change in the control variable after each iteration is chosen
to be opposite to the gradient

0x(tg) = —aVX(tO)J = —a 0J/0x(t) -

where a is chosen empirically.

More efficient methods, such as the conjugate gradient or
quasi-Newton method, also require the use of the gradient.

Thus, in order to solve this minimization problem efliciently,
we need to be able to compute the gradient of J with respect
to the elements of the control variable.

* * *
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Lemma I:

Given a symmetric matrix A and a functional J = %XTAX,
the gradient is given by
aJ
e
(we proved this already).

Ax.

Lemma 11:
If J =y! Ay, and y = y(x), then
0J _[oy) 0J _ [dy
0x ox| OJy 0x
where [0y /0x|}.; = Oy, /Ox; is a matrix.

T
Ay
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Consider J = J(yi,...,yn) Where y; = y;(x1,...,Tn).

Then
Z y; 0J

But we have

0
lﬁ_y] ) Thus
O] ;1 &Ek

ay]‘
k.j Ox},

ox
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Consider J = J(yi,...,yn) Where y; = y;(x1,...,Tn).

Then
Z y; 0J

But we have
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Proof of Lemma II:

Consider J = J(yi,...,yn) Where y; = y;(x1,...,Tn).

Then
Z y; 0J

But we have

0 F oy,
lﬁ_y] 995 Thus dy _ 99
O] ;1 &’Ek x| Oxy
Thus, in vector form, the result is
0 _ [0y]" 9J
ox |0x| Oy

Q.E.D.
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We can write the cost function J as a sum of the background
error term and the observation error term

First, we require the gradient, with respect to x (#3), of the
background component of the cost function

1

Ty = 5lx(to) — x"(to)]' By t[x(to) — x(to))
This is given by
ot = By xito) = x(t0)

We are half-way there (but it is the easy half).

The gradient of the term J, is more complicated.
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The gradient of the second term,

1N

Tp—1

Jo=75 ) JH(x) =y R [H(x;) — ]
1=0

is more complicated because x; = M;_;[x(ty)] depends on x(t()

through the model.

If we perturb the initial state, then dx; = L(t, t;)0x(.
Therefore,

0(H(x;) —y]) 0OH 0x,

0X 0x; 0%,

= H;L(%), ;) .

The matrices H; and L(Z(, ;) are the linearized Jacobians:

OH oM
= a_XZ and L(to, t2> = aXO

H;



The gradient of the second term,

1N

T'p—1

Jo=75 D JH(x) = y{I R [H(x;) — ]
1=0

is more complicated because x; = M_;|x(ty)] depends on x(%)

through the model.
If we perturb the initial state, then dx; = L(¢(,t;)0xq.

Therefore,
O(H(x;) —y?) 0H 0x;
6XO aXZ 8X0 [/ < 0> Z>
The matrices H; and L(#(,t;) are the linearized Jacobians:
OH oM
H, = d L(to,t;) =
ox; an (t0, %) 0,

Expanding the lmear tangent model operator step by step,

H;L(ty, t;) = H; H L(tj,tj41) = Hy[L; 1L;_9---LiLg] .
g=g—1l
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Recall that

N
1 1
Jo= 5D [H(x) — ¥ RH(x;) — ¥]

1=0
and its gradient w.r.t. x( is

Oxg | 0% 0H (x;)
But we have shown that
OH (x;) OH(x;)]" _ L7 7

aXOZ = H,L(t, t;) so that [ aXOZ = L" (to,t;) H;

Therefore, the gradient of the observation cost function is

0J,
0X

N
= L(t; to) H R, [H(x;) — y!]
i=0



Recall that

1N

Jo =5 > H(xi) =y R H(x;) — y]

1=0
and its gradient w.r.t. x( is

oxy | 0xg 0H (x;)
But we have shown that
OH (x;) OH(x,)|" .1 T
aXOZ = H,L(t, t;) so that [ (?XOZ = L* (to,t;) H;

Therefore, the gradient of the observation cost function is

9o _ %L(t- to)  HI R H(x;) — y9]
Ix( — 00 6 R
Defining the innovation d; = |y — H(x;)|, this is
0Jo T T T | vln-!
9% = —Z {Lo Li-- Lz’—J H; R; d;

1=0



Again,
0Jo
0x

N
{LoTLlT x L;‘F—J H/R;'d,
0

(



Again,

N
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Every iteration of the 4D-Var minimization requires the
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Every iteration of the 4D-Var minimization requires the
computation of the gradient. It involves

e Computing the increments d; = —|H(x;) —y;| at the obser-
vation times t; during a forward integration

¢ Multiplying them by H/ R

e Integrating these weighted increments backward to the
initial time using the adjoint model.
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for 0J,/0x) can be arranged more conveniently.

For example, suppose the interval of assimilation is from
00 Z to 12 Z, with observations every 3 hours.
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Schematic of the computation of the gradient of the observational cost

function for a period of 12 h, with observations every 3 hours.
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Recall the equation
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This can be written
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0X
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We compute, during the forward integration, the weighted
negative observation increments

d;=H/R 'H(x;) -y = -H/R;d;.

The adjoint model L (¢;,t;_1) = L;-r_l applied to a vector d;
“converts” it from time t; to time %,_;.

Recall the equation

d.J al
5 == {LoTLlT s Lz’T—J H/ R, 'd;
X() _
1=0

This can be written

0Jo = 7= _
> — |dg+ Lid; + L{L{dy +
90.4)

L,LTLTd; + LOLlLQTLng}

Thus, we can write the gradient of J as

gio —d, +L{ {Hl +Ld [dy+ L (d3 + Lidy)] }
0
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The minimization algorithm is now applied, modifying the
control variable x(¢;) at each stage.

After this change, a new forward integration and new
observational increments are computed and the process
is repeated until convergence is satisfactory.

e Integrate the full model forward, computing and storing
the increments d; at the observation times ¢,.

e Integrate the adjoint model backwards, accumulating the
terms d; = —HTR 1dz, using the adjoint model.

e Iterate these forward-backward cycles until convergence.
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Reduced Inner Loops

4D-Var can also be written in an incremental form.

We define the cost function as

1 _
J(0x0) = 5(5X0)TBO (o)
1 al T
+5 > [HiL(to, t)ox — df] R '[H;L(ty, t;)0x0 — d?] .
1=0
With the incremental formulation, we introduce a “simpli-

fication operator” S.

This converts the variables to a lower dimensional space
than that of the original model variables x:

ow = Sox

Typically, S is a projection to a lower dimensional subspace
of the total model space.
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A number of iterations are now executed in the reduced
space. These are called the ‘“inner loops”.

Normally, the inverse of S doesn’t exist: If we project to a
lower-dimensional space, we cannot transform back unam-
biguously; information is lost.

To return to the full space, we have to use a generalized
inverse S~/ = [SST]7187,

We compute dx = S~ {fw and use this to modify x.

At this stage, a new “outer iteration” at the full model
resolution can be carried out.

* * *

Note that the complete documentation of the ECMWEF
variational assimilation system is available at:
http://www.ecmwf.int
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Pre-conditioning

The iteration process can be accelerated through the use of
pre-conditioning.

This involves a change of control variables that makes the
cost function more spherical.

An example of a change of variables might be to use the
vorticity and divergence instead of the wind components.

After pre-conditioning, each iteration gets closer to the min-

imum of the cost function, reducing computation time.

Cost Function for Correlated Errors Cost Function for
Uncorrelated Errors

X, / e Scaled Variables
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Advantages of 4D-Var

The most important advantage of 4D-Var is this:
We assume that:

e (a) the model is perfect, and

e (b) the a priori error covariance B at the initial time is
known exactly.

Then it can be shown that the 4D-Var analysis at the final
time is identical to that of the extended Kalman filter.

This means that implicitly, 4D-Var is able to evolve the
forecast error covariance from B to the final time.

Unfortunately, this implicit covariance is not available at
the end of the cycle, and neither is the new analysis error
covariance.
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4D-Var i1s able to find the best linear unbiased estimation
but not its error covariance.

4D-Var has been successfully implemented at ECMWF,
Météo France, the Met Office, JMA and CMC.

(3D-Var is used now in most other centres).

Intensive research is under way in the HIRLAM Project to
develop a limited-area 4D-Var system.

The following figure shows that implementation of 4D-Var
has resulted in improved forecast scores.
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ECMWEF Forecast Verification




WGNE List of Operational Global Numerical Weather Prediction Systems (as of January 2006)

Forecast Centre Computer High resolution Model Ensemble Model ——
(Country) (Peak in THop/s) (FC Range in days) (FC Range in days) | 1 YPe 0f Dala Assimilation
ECMWF IBM pB30, 2268 nodes T 511 L60 T 255 L40; M5
(Europe) (20} 0] Rh Rl
Met Office NEC S¥B, 34 nodes ~40km L50 ~a0km L35, W24 o
(UK) NEC SX616 nodes (4) (6 (3 4D-var(~120km)
M&te0 France Fujitsu YPP5000 T 358 (C2.4) L4 T 356(C2.4) LT, M1 TS
{FBHU?[[;E} =T 5?5|:122}52 d a0 kmum 22 s
i i No EPS 3001
{ Germany ) fex31) 6
HMC itanium 4w Xeon 2 T85 L31 (10},
(Russia) 0.10: 0.028) 0.72°00.9° LZ8 {10) No EPS 300l
NCEP I pB55 (Cluster 1600) T362 L64 (7.5) T126 L26 WA5
(USA) (7.8) T190 L64 (16) (15) ARV
HavyMRL 5GI 03000 (1024 proc) T239 L0 T179 Lan: W10 v
(USA) (1125 (5 (103
CMC IBM pB30, 108 nodes 0.9°w0.9° L25 SEF (T_149), GEM (1 27); Det 4D-var(1 5°, 0.9%
(Canada) (4.3) (10) M15 (18] EFS: EnKF M3 (1.2°)
CPTEC/NPE NEC 576,12 nodes TIZ6L28, 1213 Lz T126 L2f: W15 e
(Brazl) (0.76E) (15. 7) (151
JMA Hitachi SRA000ET, T 319 L40 T106 La0: Mz5 :
¢Japan) 80 nodes (0.768) (@) (9 SEERAREED]
CMA SW1. IEM PESS/PEI0 T2 3 Lo 106 L19. W33 -
{ China) (0.584: 7] (1) (103
KMA Cray ®1EBA024L THE6 L0 T106 Lao: W17 -
(Korea) (15.4) (10 (&)
MCMBWE Cray %1 24 processor T170 L2d
s e o Mo EPS 3D-VAR
BMRC NEC 56, 28 nodes T.239 L29 TAT9019, M33 oo
(Australia) (1.797) (1 (103

Operational global NWP systems (January, 2006)




WGNE Overview of Plans at NWP Centres with Global Forecasting Systems
Part ll: Global Modelling
c) Global Data Assimilation Scheme (Type, resolution, number of layers)

Forecast Centre

{ Country) 2006 2007 2006 2009 2o 2011

E CMWE 40-var T, 793 with | 40-Var; T, 733 with | 4D-Var, T 735 with | 4D-Var, T 733 with

(Ewrope) TZasfinal inner TEasfinal inner TEasfinal inner TEasfinal inner ) 7

P loop; L31 loop; L31 loop; L31 loop; L31
KMet Office 40 ar, 40 ar; 40 ar 40 ar; 40-Yar 4D ar;
{UE) 120 km; Lad 120 km: L70 120km: L70 7o km; Lan Ta km; Lan Fakm: Lan
Météo France 40-var; 40w ar; 40w ar 40w ar; 40-var 4D-var;

{ France} T1549 T250 T250 T250 T3a0 T.350
DY D il J0-var; JO-Yar,

{Genmany ) 40 km; L40 40 km; L40 40 km; L40 ETKF? ETKF? ETKF?
HMC Ql; ol; 30-Var B 5 ;

{ Russia) 09072 L5 09072 L5 09072 L5 ' ' '
MCEP J0-var Sdvanced-var; advanced-var; Sy or 40V ar; Sy or 40-Var; 40 ar;
{USA) T3g2 T311 T311 20 km 20 km 20 km

Mavy MBL J0-Yar; J0-Yar; J0-Yar;

(USA) T239; L30 T239; L30 T319; L36 ap-var an-var An-var
CHC 40-Var, 40-V ar; 40-Yar;
: A : = 7 ! 7 2 7

(Canada) 15° 35 km: LS8 | 1.5°.35km:L58 | 0.9°35km; Lo | 4DVAvENKF? | 4DVarEnkF? | 4D-VarEnkr:

CPTEC/INPE J0-var J0-var; LEMEF; LEMEF; LEMEF; LEMEF;

(Brazi} 100 km A0 km 40 km 40 km 40 km &0 km
JHA 40-Yar; 40-Yar; 4D0-%ar; 4D0-%ar;

(Japan) 120 km; L4D 80 km; LBD B0 km: LBD B0 ki LBD iy EHE
CHA
( China) MO RESPOMSE
KA J0-Yar; J0-Yar; J0-Yar;

(Korea) 426, L4D 426, L4D 426, L70 AD-Var? EnKF? | 4D-Var? EnKF? | 4D-Var? EnkKF?

HCHMRWF
{India)

BHMRC Met Office 4D-\AR
(Australia) 300l under ACCESS (7) ? ? ¥ ¥

Planned future global data assimilation systems.



End of §5.6



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

