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In OI and 3D-Var, the background error covariance matrix
is estimated once and for all, as if the forecast errors were
statistically stationary.

The errors are estimated from the difference between the
forecast and the analysis . . .

. . . that is, from the analysis increments.

We can evaluate if this is indeed a good approximation.

The following figure shows the 6-h forecast errors over the
USA from the NCEP/NCAR reanalysis.
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forecast and the analysis (NCEP-NCAR reanalysis).
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1996: σ ≈ 8 m
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The NCEP/NCAR reanalysis used a 3D-Var data assimila-
tion system which did not change during the period.

Thus, the difference between the figures is due only to the
changes in the observing system.

Over these four decades the improvements in the observing
system in the Northern Hemisphere show a positive impact.

The 6-h forecast errors decrease by about 20%, with the
average analysis increment reduced from about 10 m to 8 m.
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is assumed to be constant.

The Kalman Filter technique predicts both the model state
and its error covariance.

However, it is computationally very demanding, and is not
practical for use in its complete form.

We will now consider four-dimensional variational assimila-
tion (4D-Var), which has some of the advantages of Kalman
Filtering.

It includes, at least implicitly, the evolution of the forecast
error covariance.
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Model Error Covariance (Skip)
Let us represent the (nonlinear) model forecast that ad-
vances from time ti−1 to time ti by

xf (ti) = Mi−1 [xa(ti−1)]

Since the model is imperfect, we write

xf (ti) = Mi−1[x
t(ti−1)]

xt(ti) = Mi−1[x
t(ti−1)]− η(ti−1)

xf (ti) = xt(ti) + η(ti−1)

The model error η is assumed to have zero mean, and co-
variance matrix Qi = E(ηiη

T
i ).

In other words, starting from perfect initial conditions, the
forecast error is given by ηi.

(In reality model errors have significant biases, which must
be taken into account.)
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Note: I am covering the following material in §5.6 of
Eugenia Kalnay’s book:

• Introductory paragraphs (pp. 175–177)

• §5.6.1, to the bottom of page 178

• §5.6.3, on 4D-Var

I am not discussing Kalman Filtering in this course.

As this a topic of growing importance, you should read the
remaining part of §5.6.1 (pages 179–180) and §5.6.2.
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If we introduce a perturbation in the initial conditions, the
final perturbation is given by

x(ti+1) + δx(ti+1) = Mi [x(ti) + δx(ti)]

= Mi [x(ti)] + Liδx(ti) + O(|δx|2)

The matrix Li is the linear tangent model operator

[Li]j,k =
∂[M(x(ti)]j

∂xk(ti)

That is, it is the Jacobian of M(x) with respect to x.

We have
δx(ti+1) = Liδx(ti) + H.O.T.

8



The Adjoint Model
The linear tangent model Li is a matrix that transforms an
initial perturbation at time ti to the final perturbation at
time ti+1.

δx(ti+1) = Liδx(ti) + H.O.T.

9



The Adjoint Model
The linear tangent model Li is a matrix that transforms an
initial perturbation at time ti to the final perturbation at
time ti+1.

δx(ti+1) = Liδx(ti) + H.O.T.

The transpose of the linear tangent model is
called the adjoint model.

? ? ?

9



The Adjoint Model
The linear tangent model Li is a matrix that transforms an
initial perturbation at time ti to the final perturbation at
time ti+1.

δx(ti+1) = Liδx(ti) + H.O.T.

The transpose of the linear tangent model is
called the adjoint model.

? ? ?

The linear tangent model Li and the adjoint model LT
i can

be constructed by a systematic procedure.

9



The Adjoint Model
The linear tangent model Li is a matrix that transforms an
initial perturbation at time ti to the final perturbation at
time ti+1.

δx(ti+1) = Liδx(ti) + H.O.T.

The transpose of the linear tangent model is
called the adjoint model.

? ? ?

The linear tangent model Li and the adjoint model LT
i can

be constructed by a systematic procedure.

For a description of how to develop the computer codes,
read Appendix B of Eugenia Kalnay’s book.
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j=0

L(tj+1, tj)
T =

i−1∏
j=0

LT
j = LT

0 LT
1 · · ·L

T
i−2L

T
i−1

Note that the order of the terms is reversed.

The adjoint model advances a perturbation backwards in
time, from the final to the initial time.
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Simple Case:
x2 = M1(x1) = M1(M0(x0))

Suppose x0 −→ x0 + δx0.

Then x1 −→ x1 + δx1 with

x1 + δx1 = M0(x0 + δx0) = M0(x0) + L0δx0

Now x2 −→ x2 + δx2 with

x2 + δx2 = M1(x1 + δx1)

= M1(x1) + L1δx1

= M1(M0(x0)) + L1L0δx0

= x2 + L1L0δx0

Therefore,
δx2 = L1L0δx0

The adjoint of L1L0 is LT
0 LT

1

The reversal of the order of the terms corresponds to a
reversal of time: the operations are preformed backwards.
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a time interval (t0, tn).
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Four-dimensional variational assimilation (4D-Var) is an ex-
tension of 3D-Var to allow for observations distributed within
a time interval (t0, tn).

The cost function includes a term measuring the distance
to the background at the beginning of the interval.

It also includes a summation over time of the cost function
for each observational increment computed with respect to
the model integrated to the time of the observation.

J [x(t0)] =
1

2
[x(t0)− xb(t0)]

TB−1
0 [x(t0)− xb(t0)]

+
1

2

N∑
i=0

[
H(xi)− yo

i

]T
R−1

i

[
H(xi)− yo

i

]
The control variable is the initial state of the model x (t0).

12



Schematic diagram of four dimensional variational assimilation.
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The analysis at the end of the interval is given by the model
integration from the solution

x(tn) = M0−n [x(t0)] = Mn−1 [Mn−2 · · · [M1 [M0 [x(t0)]] · · · ]]
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Thus, the model is used as a strong constraint. That is, the
analysis solution has to satisfy the model equations.

4D-Var thus seeks an initial condition such that the forecast
best fits the observations within the assimilation interval.

? ? ?

The fact that the 4D-Var method assumes a perfect model
is a disadvantage.

For example, it will give the same weight to older observa-
tions as to newer observations.

Methods of correcting for a constant model error have been
proposed (see references in Kalnay).
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· δx(t0)

Here the gradient of the cost function

∇
x(t0)

J =

[
∂J

∂x(t0)

]
is a column vector (of course, δJ is a scalar).

Its j-th component is[
∂J

∂x(t0)

]
j

=
∂J

∂xj(t0)

We need this because iterative minimization schemes re-
quire the estimation of the gradient of the cost function.
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In the simplest scheme, the steepest descent method, the
change in the control variable after each iteration is chosen
to be opposite to the gradient

δx(t0) = −a∇
x(t0)

J = −a ∂J/∂x(t0) .

where a is chosen empirically.

17



In the simplest scheme, the steepest descent method, the
change in the control variable after each iteration is chosen
to be opposite to the gradient

δx(t0) = −a∇
x(t0)

J = −a ∂J/∂x(t0) .

where a is chosen empirically.

More efficient methods, such as the conjugate gradient or
quasi-Newton method, also require the use of the gradient.

17



In the simplest scheme, the steepest descent method, the
change in the control variable after each iteration is chosen
to be opposite to the gradient

δx(t0) = −a∇
x(t0)

J = −a ∂J/∂x(t0) .

where a is chosen empirically.

More efficient methods, such as the conjugate gradient or
quasi-Newton method, also require the use of the gradient.

Thus, in order to solve this minimization problem efficiently,
we need to be able to compute the gradient of J with respect
to the elements of the control variable.

? ? ?
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Lemma I:

Given a symmetric matrix A and a functional J = 1
2x

TAx,
the gradient is given by

∂J

∂x
= Ax .

(we proved this already).
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Lemma I:

Given a symmetric matrix A and a functional J = 1
2x

TAx,
the gradient is given by

∂J

∂x
= Ax .

(we proved this already).

Lemma II:

If J = yTAy, and y = y(x), then

∂J

∂x
=

[
∂y

∂x

]T ∂J

∂y
=

[
∂y

∂x

]T

Ay

where [∂y/∂x]k,l = ∂yk/∂xl is a matrix.

18



Proof of Lemma II:

Consider J = J(y1, . . . , yn) where yi = yi(x1, . . . , xn).
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Thus, in vector form, the result is

∂J

∂x
=

[
∂y
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]T ∂J

∂y

Q.E.D.
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Conclusion of the foregoing
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J = Jb + Jo
We can write the cost function J as a sum of the background
error term and the observation error term

J = Jb + Jo .
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We can write the cost function J as a sum of the background
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J = Jb + Jo .

First, we require the gradient, with respect to x (t0), of the
background component of the cost function

Jb =
1

2
[x(t0)− xb(t0)]

TB−1
0 [x(t0)− xb(t0)]

This is given by

∂Jb

∂x(t0)
= B−1

0 [x(t0)− xb(t0)]

We are half-way there (but it is the easy half).

The gradient of the term Jo is more complicated.
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The gradient of the second term,

Jo =
1

2

N∑
i=0

[H(xi)− yo
i ]

TR−1
i [H(xi)− yo

i ]

is more complicated because xi = M0−i[x(t0)] depends on x(t0)
through the model.
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i ]
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∂xi

∂xo
= HiL(t0, ti) .

The matrices Hi and L(t0, ti) are the linearized Jacobians:

Hi =
∂H

∂xi
and L(t0, ti) =

∂M

∂xo

Expanding the linear tangent model operator step by step,

HiL(t0, ti) = Hi

0∏
j=i−1

L(tj, tj+1) = Hi [Li−1Li−2 · · ·L1L0] .
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∂Jo

∂x0
=

[
∂H(xi)

∂x0

]T ∂Jo

∂H(xi)
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]
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i di

Every iteration of the 4D-Var minimization requires the
computation of the gradient. It involves

• Computing the increments di = −[H(xi)−yo
i ] at the obser-

vation times ti during a forward integration

• Multiplying them by HT
i R−1

i

• Integrating these weighted increments backward to the
initial time using the adjoint model.
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Since parts of the backward adjoint integration are common
to several time intervals, the summation

N∑
i=0

L(ti, t0)
THT

i R−1
i

[
H(xi)− yo

i

]
for ∂Jo/∂x0 can be arranged more conveniently.
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For example, suppose the interval of assimilation is from
00 Z to 12 Z, with observations every 3 hours.

Schematic of the computation of the gradient of the observational cost

function for a period of 12 h, with observations every 3 hours.
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We compute, during the forward integration, the weighted
negative observation increments

di = HT
i R−1

i [H(xi)− yo
i ] = −HT

i R−1
i di .
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Thus, we can write the gradient of J as
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d1 + LT
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[
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(
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)]}
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The minimization algorithm is now applied, modifying the
control variable x(t0) at each stage.
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The minimization algorithm is now applied, modifying the
control variable x(t0) at each stage.

After this change, a new forward integration and new
observational increments are computed and the process
is repeated until convergence is satisfactory.

• Integrate the full model forward, computing and storing
the increments di at the observation times ti.

• Integrate the adjoint model backwards, accumulating the
terms di = −HT

i R−1
i di, using the adjoint model.

• Iterate these forward-backward cycles until convergence.
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4D-Var can also be written in an incremental form.
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i

]T
R−1

i

[
HiL(t0, ti)δx0 − do

i

]
.

28



Reduced Inner Loops
4D-Var can also be written in an incremental form.

We define the cost function as

J(δx0) =
1

2
(δx0)

TB−1
0 (δx0)

+
1

2

N∑
i=0

[
HiL(t0, ti)δx0 − do

i

]T
R−1

i

[
HiL(t0, ti)δx0 − do

i

]
.

With the incremental formulation, we introduce a “simpli-
fication operator” S.

This converts the variables to a lower dimensional space
than that of the original model variables x:
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i

]T
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[
HiL(t0, ti)δx0 − do

i

]
.

With the incremental formulation, we introduce a “simpli-
fication operator” S.

This converts the variables to a lower dimensional space
than that of the original model variables x:

δw = Sδx

Typically, S is a projection to a lower dimensional subspace
of the total model space.
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A number of iterations are now executed in the reduced
space. These are called the “inner loops”.
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Normally, the inverse of S doesn’t exist: If we project to a
lower-dimensional space, we cannot transform back unam-
biguously; information is lost.

To return to the full space, we have to use a generalized
inverse S−I = [SST ]−1ST .

We compute δx = S−Iδw and use this to modify x.

At this stage, a new “outer iteration” at the full model
resolution can be carried out.

? ? ?

Note that the complete documentation of the ECMWF
variational assimilation system is available at:

http://www.ecmwf.int
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Pre-conditioning
The iteration process can be accelerated through the use of
pre-conditioning.
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Advantages of 4D-Var
The most important advantage of 4D-Var is this:
We assume that:

• (a) the model is perfect, and

• (b) the a priori error covariance B0 at the initial time is
known exactly.
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The most important advantage of 4D-Var is this:
We assume that:

• (a) the model is perfect, and

• (b) the a priori error covariance B0 at the initial time is
known exactly.

Then it can be shown that the 4D-Var analysis at the final
time is identical to that of the extended Kalman filter.

This means that implicitly, 4D-Var is able to evolve the
forecast error covariance from B0 to the final time.

Unfortunately, this implicit covariance is not available at
the end of the cycle, and neither is the new analysis error
covariance.
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but not its error covariance.
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4D-Var is able to find the best linear unbiased estimation
but not its error covariance.

4D-Var has been successfully implemented at ECMWF,
Météo France, the Met Office, JMA and CMC.

(3D-Var is used now in most other centres).

Intensive research is under way in the Hirlam Project to
develop a limited-area 4D-Var system.

The following figure shows that implementation of 4D-Var
has resulted in improved forecast scores.
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ECMWF Forecast Verification
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Operational global NWP systems (January, 2006)
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Planned future global data assimilation systems.
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End of §5.6
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