4D-Var Data Assimilation (§5.6)

In OI and 3D-Var, the background error covariance matrix is estimated once and for all, as if the forecast errors were statistically stationary.

The errors are estimated from the difference between the forecast and the analysis ...
... that is, from the analysis increments.
We can evaluate if this is indeed a good approximation.
The following figure shows the 6 -h forecast errors over the USA from the NCEP/NCAR reanalysis.

Daily variation of the rms increment between the 6-h forecast and the analysis (NCEP-NCAR reanalysis).

```
1958: }\sigma\approx10\textrm{m
```

The NCEP/NCAR reanalysis used a 3D-Var data assimilation system which did not change during the period.
Thus, the difference between the figures is due only to the changes in the observing system.

Over these four decades the improvements in the observing system in the Northern Hemisphere show a positive impact.

The 6 -h forecast errors decrease by about 20%, with the average analysis increment reduced from about 10 m to 8 m .

The most striking result apparent in the error statistics is that the day-to-day variability in the forecast error is about as large as the average error.

The figures emphasize the importance of the errors of the day which are dominated by baroclinic instabilities of synoptic time scales

These errors are ignored when the forecast error covariance is assumed to be constant.
The Kalman Filter technique predicts both the model state and its error covariance.
However, it is computationally very demanding, and is not practical for use in its complete form.
We will now consider four-dimensional variational assimilation (4D-Var), which has some of the advantages of Kalman Filtering.
It includes, at least implicitly, the evolution of the forecast error covariance.

Model Error Covariance

Let us represent the (nonlinear) model forecast that advances from time t_{i-1} to time t_{i} by

$$
\mathbf{x}^{f}\left(t_{i}\right)=M_{i-1}\left[\mathbf{x}^{a}\left(t_{i-1}\right)\right]
$$

Since the model is imperfect, we write

$$
\begin{aligned}
\mathbf{x}^{f}\left(t_{i}\right) & =M_{i-1}\left[\mathbf{x}^{t}\left(t_{i-1}\right)\right] \\
\mathbf{x}^{t}\left(t_{i}\right) & =M_{i-1}\left[\mathbf{x}^{t}\left(t_{i-1}\right)\right]-\eta\left(t_{i-1}\right) \\
\mathbf{x}^{f}\left(t_{i}\right) & =\mathbf{x}^{t}\left(t_{i}\right)+\eta\left(t_{i-1}\right)
\end{aligned}
$$

The model error η is assumed to have zero mean, and covariance matrix $\mathbf{Q}_{i}=E\left(\eta_{i} \eta_{i}^{T}\right)$.
In other words, starting from perfect initial conditions, the forecast error is given by η_{i}.
(In reality model errors have significant biases, which must be taken into account.)

Tangent Linear Model

Consider the solution on the time interval t_{i} to t_{i+1}.
If we introduce a perturbation in the initial conditions, the final perturbation is given by

$$
\begin{aligned}
\mathbf{x}\left(t_{i+1}\right)+\delta \mathbf{x}\left(t_{i+1}\right) & =M_{i}\left[\mathbf{x}\left(t_{i}\right)+\delta \mathbf{x}\left(t_{i}\right)\right] \\
& =M_{i}\left[\mathbf{x}\left(t_{i}\right)\right]+\mathbf{L}_{i} \delta \mathbf{x}\left(t_{i}\right)+O\left(|\delta \mathbf{x}|^{2}\right)
\end{aligned}
$$

The matrix L_{i} is the linear tangent model operator

$$
\left[\mathbf{L}_{i}\right]_{j, k}=\frac{\partial\left[M\left(\mathbf{x}\left(t_{i}\right)\right]_{j}\right.}{\partial x_{k}\left(t_{i}\right)}
$$

That is, it is the Jacobian of $M(\mathrm{x})$ with respect to x .
We have

$$
\delta \mathbf{x}\left(t_{i+1}\right)=\mathbf{L}_{i} \delta \mathbf{x}\left(t_{i}\right)+\text { H.O.T. }
$$

The Adjoint Model

The linear tangent model L_{i} is a matrix that transforms an initial perturbation at time t_{i} to the final perturbation at time t_{i+1}.

$$
\delta \mathbf{x}\left(t_{i+1}\right)=\mathbf{L}_{i} \delta \mathbf{x}\left(t_{i}\right)+\text { H.O.T. }
$$

The transpose of the linear tangent model is called the adjoint model.

The linear tangent model \mathbf{L}_{i} and the adjoint model \mathbf{L}_{i}^{T} can be constructed by a systematic procedure.
For a description of how to develop the computer codes, read Appendix B of Eugenia Kalnay's book.

Simple Case:

$$
\mathbf{x}_{2}=M_{1}\left(\mathbf{x}_{1}\right)=M_{1}\left(M_{0}\left(\mathbf{x}_{0}\right)\right)
$$

Suppose $\mathbf{x}_{0} \longrightarrow \mathbf{x}_{0}+\delta \mathbf{x}_{0}$.
Then $\mathbf{x}_{1} \longrightarrow \mathbf{x}_{1}+\delta \mathbf{x}_{1}$ with

$$
\mathbf{x}_{1}+\delta \mathbf{x}_{1}=M_{0}\left(\mathbf{x}_{0}+\delta \mathbf{x}_{0}\right)=M_{0}\left(\mathbf{x}_{0}\right)+\mathbf{L}_{0} \delta \mathbf{x}_{0}
$$

Now $\mathbf{x}_{2} \longrightarrow \mathbf{x}_{2}+\delta \mathbf{x}_{2}$ with

$$
\begin{aligned}
\mathbf{x}_{2}+\delta \mathbf{x}_{2} & =M_{1}\left(\mathbf{x}_{1}+\delta \mathbf{x}_{1}\right) \\
& =M_{1}\left(\mathbf{x}_{1}\right)+\mathbf{L}_{1} \delta \mathbf{x}_{1} \\
& =M_{1}\left(M_{0}\left(\mathbf{x}_{0}\right)\right)+\mathbf{L}_{1} \mathbf{L}_{0} \delta \mathbf{x}_{0} \\
& =\mathbf{x}_{2}+\mathbf{L}_{1} \mathbf{L}_{0} \delta \mathbf{x}_{0}
\end{aligned}
$$

Therefore,

$$
\delta \mathbf{x}_{2}=\mathbf{L}_{1} \mathbf{L}_{0} \delta \mathbf{x}_{0}
$$

The adjoint of $\mathbf{L}_{1} \mathbf{L}_{0}$ is $\mathbf{L}_{0}^{T} \mathbf{L}_{1}^{T}$
The reversal of the order of the terms corresponds to a reversal of time: the operations are preformed backwards.

If there are several steps in a time interval $t_{0}-t_{i}$, the linear tangent model that advances a perturbation from t_{0} to t_{i} is given by the product of the linear tangent model matrices.

Each one advance the solution over a single step.

$$
\mathbf{L}\left(t_{0}, t_{i}\right)=\prod_{j=i-1}^{0} \mathbf{L}\left(t_{j}, t_{j+1}\right)=\prod_{j=i-1}^{0} \mathbf{L}_{j}=\mathbf{L}_{i-1} \mathbf{L}_{i-2} \cdots \mathbf{L}_{1} \mathbf{L}_{0}
$$

(note the order of application, from right to left).
Therefore, the adjoint model is given by

$$
\mathbf{L}\left(t_{i}, t_{0}\right)^{T}=\prod_{j=0}^{i-1} \mathbf{L}\left(t_{j+1}, t_{j}\right)^{T}=\prod_{j=0}^{i-1} \mathbf{L}_{j}^{T}=\mathbf{L}_{0}^{T} \mathbf{L}_{1}^{T} \cdots \mathbf{L}_{i-2}^{T} \mathbf{L}_{i-1}^{T}
$$

Note that the order of the terms is reversed.
The adjoint model advances a perturbation backwards in time, from the final to the initial time.

4D-Var

(Kalnay, §5.6.3)

Four-dimensional variational assimilation (4D-Var) is an extension of 3D-Var to allow for observations distributed within a time interval $\left(t_{0}, t_{n}\right)$.

The cost function includes a term measuring the distance to the background at the beginning of the interval.
It also includes a summation over time of the cost function for each observational increment computed with respect to the model integrated to the time of the observation.

$$
\begin{aligned}
J\left[\mathbf{x}\left(t_{0}\right)\right]= & \frac{1}{2}\left[\mathbf{x}\left(\mathrm{t}_{0}\right)-\mathbf{x}^{b}\left(t_{0}\right)\right]^{T} \mathbf{B}_{0}^{-1}\left[\mathbf{x}\left(\mathrm{t}_{0}\right)-\mathbf{x}^{b}\left(t_{0}\right)\right] \\
& +\frac{1}{2} \sum_{i=0}^{N}\left[H\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}^{o}\right]^{T} \mathbf{R}_{i}^{-1}\left[H\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}^{o}\right]
\end{aligned}
$$

The control variable is the initial state of the model $\mathbf{x}\left(t_{0}\right)$.

Schematic diagram of four dimensional variational assimilation.

The analysis at the end of the interval is given by the model integration from the solution

$$
\mathbf{x}\left(t_{n}\right)=M_{0-n}\left[\mathbf{x}\left(t_{0}\right)\right]=M_{n-1}\left[M_{n-2} \cdots\left[M_{1}\left[M_{0}\left[\mathbf{x}\left(t_{0}\right)\right]\right] \cdots\right]\right]
$$

Thus, the model is used as a strong constraint. That is, the analysis solution has to satisfy the model equations.

4D-Var thus seeks an initial condition such that the forecast best fits the observations within the assimilation interval.

The fact that the 4D-Var method assumes a perfect model is a disadvantage.
For example, it will give the same weight to older observations as to newer observations.
Methods of correcting for a constant model error have been proposed (see references in Kalnay).

Let us consider the variation in the cost function when the control variable $\mathbf{x}\left(t_{0}\right)$ is changed by a small amount $\delta \mathbf{x}\left(t_{0}\right)$. It is given by

$$
\delta J=J\left[\mathbf{x}\left(t_{0}\right)+\delta \mathbf{x}\left(t_{0}\right)\right]-J\left[\mathbf{x}\left(t_{0}\right)\right] \approx\left[\frac{\partial J}{\partial \mathbf{x}\left(t_{0}\right)}\right]^{T} \cdot \delta \mathbf{x}\left(t_{0}\right)
$$

Here the gradient of the cost function

$$
\nabla_{\mathrm{x}\left(t_{0}\right)} J=\left[\frac{\partial J}{\partial \mathbf{x}\left(t_{0}\right)}\right]
$$

is a column vector (of course, δJ is a scalar).
Its j-th component is

$$
\left[\frac{\partial J}{\partial \mathbf{x}\left(t_{0}\right)}\right]_{j}=\frac{\partial J}{\partial x_{j}\left(t_{0}\right)}
$$

We need this because iterative minimization schemes require the estimation of the gradient of the cost function.

In the simplest scheme, the steepest descent method, the change in the control variable after each iteration is chosen to be opposite to the gradient

$$
\delta \mathbf{x}\left(t_{0}\right)=-a \nabla_{\mathbf{x}\left(t_{0}\right)} J=-a \partial J / \partial \mathbf{x}\left(t_{0}\right)
$$

where a is chosen empirically.
More efficient methods, such as the conjugate gradient or quasi-Newton method, also require the use of the gradient.
Thus, in order to solve this minimization problem efficiently, we need to be able to compute the gradient of J with respect to the elements of the control variable.

Proof of Lemma II:

Consider $J=J\left(y_{1}, \ldots, y_{n}\right)$ where $y_{i}=y_{i}\left(x_{1}, \ldots, x_{n}\right)$.
Then

$$
\frac{\partial J}{\partial x_{k}}=\sum_{j} \frac{\partial y_{j}}{\partial x_{k}} \frac{\partial J}{\partial y_{j}}
$$

But we have

$$
\left[\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right]_{j, k}=\frac{\partial y_{j}}{\partial x_{k}} \quad \text { Thus } \quad\left[\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right]_{k, j}^{T}=\frac{\partial y_{j}}{\partial x_{k}}
$$

Thus, in vector form, the result is

$$
\frac{\partial J}{\partial \mathbf{x}}=\left[\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right]^{T} \frac{\partial J}{\partial \mathbf{y}}
$$

Q.E.D.

Lemma I:

Given a symmetric matrix \mathbf{A} and a functional $J=\frac{1}{2} \mathbf{x}^{T} \mathbf{A x}$, the gradient is given by

$$
\frac{\partial J}{\partial \mathbf{x}}=\mathbf{A} \mathbf{x}
$$

(we proved this already).

Lemma II:

If $J=\mathbf{y}^{T} \mathbf{A y}$, and $\mathbf{y}=\mathbf{y}(\mathbf{x})$, then

$$
\frac{\partial J}{\partial \mathbf{x}}=\left[\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right]^{T} \frac{\partial J}{\partial \mathbf{y}}=\left[\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right]^{T} \mathbf{A y}
$$

where $[\partial \mathbf{y} / \partial \mathbf{x}]_{k, l}=\partial y_{k} / \partial x_{l}$ is a matrix.

Conclusion of the foregoing

$J=J_{b}+J_{o}$

We can write the cost function J as a sum of the background error term and the observation error term

$$
J=J_{b}+J_{o}
$$

First, we require the gradient, with respect to $\mathrm{x}\left(t_{0}\right)$, of the background component of the cost function

$$
J_{b}=\frac{1}{2}\left[\mathbf{x}\left(t_{0}\right)-\mathbf{x}^{b}\left(t_{0}\right)\right]^{T} \mathbf{B}_{0}^{-1}\left[\mathbf{x}\left(t_{0}\right)-\mathbf{x}^{b}\left(t_{0}\right)\right]
$$

This is given by

$$
\frac{\partial J_{b}}{\partial \mathbf{x}\left(t_{0}\right)}=\mathbf{B}_{0}^{-1}\left[\mathbf{x}\left(t_{0}\right)-\mathbf{x}^{b}\left(t_{0}\right)\right]
$$

We are half-way there (but it is the easy half).
The gradient of the term J_{O} is more complicated.

Recall that

$$
J_{o}=\frac{1}{2} \sum_{i=0}^{N}\left[H\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}^{o}\right]^{T} \mathbf{R}_{i}^{-1}\left[H\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}^{o}\right]
$$

and its gradient w.r.t. x_{0} is

$$
\frac{\partial J_{o}}{\partial \mathbf{x}_{0}}=\left[\frac{\partial H\left(\mathbf{x}_{i}\right)}{\partial \mathbf{x}_{0}}\right]^{T} \frac{\partial J_{o}}{\partial H\left(\mathbf{x}_{i}\right)}
$$

But we have shown that

$$
\frac{\partial H\left(\mathbf{x}_{i}\right)}{\partial \mathbf{x}_{0}}=\mathbf{H}_{i} \mathbf{L}\left(t_{0}, t_{i}\right) \quad \text { so that } \quad\left[\frac{\partial H\left(\mathbf{x}_{i}\right)}{\partial \mathbf{x}_{0}}\right]^{T}=\mathbf{L}^{T}\left(t_{0}, t_{i}\right) \mathbf{H}_{i}^{T}
$$

Therefore, the gradient of the observation cost function is

$$
\frac{\partial J_{o}}{\partial \mathbf{x}_{0}}=\sum_{i=0}^{N} \mathbf{L}\left(t_{i}, t_{0}\right)^{T} \mathbf{H}_{i}^{T} \mathbf{R}_{i}^{-1}\left[H\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}^{o}\right]
$$

Defining the innovation $\mathbf{d}_{i}=\left[\mathbf{y}_{i}^{o}-H\left(\mathbf{x}_{i}\right)\right]$, this is

$$
\frac{\partial J_{o}}{\partial \mathbf{x}_{0}}=-\sum_{i=0}^{N}\left[\mathbf{L}_{0}^{T} \mathbf{L}_{1}^{T} \cdots \mathbf{L}_{i-1}^{T}\right] \mathbf{H}_{i}^{T} \mathbf{R}_{i}^{-1} \mathbf{d}_{i}
$$

The gradient of the second term,

$$
J_{o}=\frac{1}{2} \sum_{i=0}^{N}\left[H\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}^{o}\right]^{T} \mathbf{R}_{i}^{-1}\left[H\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}^{o}\right]
$$

is more complicated because $\mathbf{x}_{i}=M_{0-i}\left[\mathbf{x}\left(t_{0}\right)\right]$ depends on $\mathbf{x}\left(t_{0}\right)$ through the model.
If we perturb the initial state, then $\delta \mathbf{x}_{i}=\mathbf{L}\left(t_{0}, t_{i}\right) \delta \mathbf{x}_{0}$.
Therefore,

$$
\frac{\partial\left(H\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}^{o}\right)}{\partial \mathbf{x}_{0}}=\frac{\partial H}{\partial \mathbf{x}_{i}} \frac{\partial \mathbf{x}_{i}}{\partial \mathbf{x}_{o}}=\mathbf{H}_{i} \mathbf{L}\left(t_{0}, t_{i}\right) .
$$

The matrices \mathbf{H}_{i} and $\mathbf{L}\left(t_{0}, t_{i}\right)$ are the linearized Jacobians:

$$
\mathbf{H}_{i}=\frac{\partial H}{\partial \mathbf{x}_{i}} \quad \text { and } \quad \mathbf{L}\left(t_{0}, t_{i}\right)=\frac{\partial M}{\partial \mathbf{x}_{o}}
$$

Expanding the linear tangent model operator step by step,

$$
\mathbf{H}_{i} \mathbf{L}\left(t_{0}, t_{i}\right)=\mathbf{H}_{i} \prod_{j=i-1}^{0} \mathbf{L}\left(t_{j}, t_{j+1}\right)=\mathbf{H}_{i}\left[\mathbf{L}_{i-1} \mathbf{L}_{i-2} \cdots \mathbf{L}_{1} \mathbf{L}_{0}\right]
$$

Again,

$$
\frac{\partial J_{o}}{\partial \mathbf{x}_{0}}=-\sum_{i=0}^{N}\left[\mathbf{L}_{0}^{T} \mathbf{L}_{1}^{T} \cdots \mathbf{L}_{i-1}^{T}\right] \mathbf{H}_{i}^{T} \mathbf{R}_{i}^{-1} \mathbf{d}_{i}
$$

Every iteration of the 4D-Var minimization requires the computation of the gradient. It involves

- Computing the increments $\mathbf{d}_{i}=-\left[H\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}^{o}\right]$ at the observation times t_{i} during a forward integration
- Multiplying them by $\mathbf{H}_{i}^{T} \mathbf{R}_{i}^{-1}$
- Integrating these weighted increments backward to the initial time using the adjoint model.

Since parts of the backward adjoint integration are common to several time intervals, the summation

$$
\sum_{i=0}^{N} \mathbf{L}\left(t_{i}, t_{0}\right)^{T} \mathbf{H}_{i}^{T} \mathbf{R}_{i}^{-1}\left[H\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}^{o}\right]
$$

for $\partial J_{o} / \partial \mathbf{x}_{0}$ can be arranged more conveniently.
For example, suppose the interval of assimilation is from 00 Z to 12 Z , with observations every 3 hours.

Schematic of the computation of the gradient of the observational cost function for a period of 12 h , with observations every 3 hours.

The minimization algorithm is now applied, modifying the control variable $\mathbf{x}\left(t_{0}\right)$ at each stage.
After this change, a new forward integration and new observational increments are computed and the process is repeated until convergence is satisfactory.

- Integrate the full model forward, computing and storing the increments d_{i} at the observation times t_{i}.
- Integrate the adjoint model backwards, accumulating the terms $\overline{\mathbf{d}}_{i}=-\mathbf{H}_{i}^{T} \mathbf{R}_{i}^{-1} \mathbf{d}_{i}$, using the adjoint model.
- Iterate these forward-backward cycles until convergence.

We compute, during the forward integration, the weighted negative observation increments

$$
\overline{\mathbf{d}}_{i}=\mathbf{H}_{i}^{T} \mathbf{R}_{i}^{-1}\left[H\left(\mathbf{x}_{i}\right)-\mathbf{y}_{i}^{o}\right]=-\mathbf{H}_{i}^{T} \mathbf{R}_{i}^{-1} \mathbf{d}_{i}
$$

The adjoint model $\mathbf{L}^{T}\left(t_{i}, t_{i-1}\right)=\mathbf{L}_{i-1}^{T}$ applied to a vector $\overline{\mathbf{d}}_{\mathbf{i}}$ "converts" it from time t_{i} to time t_{i-1}.
Recall the equation

$$
\frac{\partial J_{o}}{\partial \mathbf{x}_{0}}=-\sum_{i=0}^{N}\left[\mathbf{L}_{0}^{T} \mathbf{L}_{1}^{T} \cdots \mathbf{L}_{i-1}^{T}\right] \mathbf{H}_{i}^{T} \mathbf{R}_{i}^{-1} \mathbf{d}_{i}
$$

This can be written

$$
\begin{aligned}
& \frac{\partial J_{0}}{\partial \mathbf{x}_{0}}=\left[\overline{\mathbf{d}}_{0}+\mathbf{L}_{0}^{T} \overline{\mathbf{d}}_{1}+\mathbf{L}_{0}^{T} \mathbf{L}_{1}^{T} \overline{\mathbf{d}}_{2}+\right. \\
& \left.\quad \mathbf{L}_{0} \mathbf{L}_{1}^{T} \mathbf{L}_{2}^{T} \overline{\mathbf{d}}_{3}+\mathbf{L}_{0} \mathbf{L}_{1} \mathbf{L}_{2}^{T} \mathbf{L}_{3}^{T} \overline{\mathbf{d}}_{4}\right]
\end{aligned}
$$

Thus, we can write the gradient of J as

$$
\frac{\partial J_{o}}{\partial \mathbf{x}_{o}}=\overline{\mathbf{d}}_{o}+\mathbf{L}_{0}^{T}\left\{\overline{\mathbf{d}}_{1}+\mathbf{L}_{1}^{T}\left[\overline{\mathbf{d}}_{2}+\mathbf{L}_{2}^{T}\left(\overline{\mathbf{d}}_{3}+\mathbf{L}_{3}^{T} \overline{\mathbf{d}}_{4}\right)\right]\right\}
$$

Reduced Inner Loops

4D-Var can also be written in an incremental form.
We define the cost function as

$$
\begin{aligned}
J\left(\delta \mathbf{x}_{0}\right)= & \frac{1}{2}\left(\delta \mathbf{x}_{0}\right)^{T} \mathbf{B}_{0}^{-1}\left(\delta \mathbf{x}_{0}\right) \\
& +\frac{1}{2} \sum_{i=0}^{N}\left[\mathbf{H}_{i} \mathbf{L}\left(t_{0}, t_{i}\right) \delta \mathbf{x}_{0}-\mathbf{d}_{i}^{o}\right]^{T} \mathbf{R}_{i}^{-1}\left[\mathbf{H}_{i} \mathbf{L}\left(t_{0}, t_{i}\right) \delta \mathbf{x}_{0}-\mathbf{d}_{i}^{o}\right]
\end{aligned}
$$

With the incremental formulation, we introduce a "simplification operator" S.
This converts the variables to a lower dimensional space than that of the original model variables x :

$$
\delta \mathbf{w}=\mathbf{S} \delta \mathbf{x}
$$

Typically, S is a projection to a lower dimensional subspace of the total model space.

A number of iterations are now executed in the reduced space. These are called the "inner loops".

Normally, the inverse of S doesn't exist: If we project to a lower-dimensional space, we cannot transform back unambiguously; information is lost.
To return to the full space, we have to use a generalized inverse $\mathbf{S}^{-I}=\left[\mathbf{S S}^{T}\right]^{-1} \mathbf{S}^{T}$.
We compute $\delta \mathrm{x}=\mathbf{S}^{-I} \delta \mathrm{w}$ and use this to modify x .
At this stage, a new "outer iteration" at the full model resolution can be carried out.

Note that the complete documentation of the ECMWF variational assimilation system is available at:
http://www.ecmwf.int

Pre-conditioning

The iteration process can be accelerated through the use of pre-conditioning.
This involves a change of control variables that makes the cost function more spherical.
An example of a change of variables might be to use the vorticity and divergence instead of the wind components.

After pre-conditioning, each iteration gets closer to the minimum of the cost function, reducing computation time.

4D-Var is able to find the best linear unbiased estimation but not its error covariance.

4D-Var has been successfully implemented at ECMWF, Météo France, the Met Office, JMA and CMC.
(3D-Var is used now in most other centres).
Intensive research is under way in the Hirlam Project to develop a limited-area 4D-Var system.
The following figure shows that implementation of 4D-Var has resulted in improved forecast scores.

ECMWF FORECAST VERIFICATION 12UTC

500hPa GEOPOTENTIAL

ANOMALY CORRELATION FORECAST
N.HEM LAT $\mathbf{2 0 . 0 0 0}$ TO 90.000 LON-180.000 TO 180.000

ECMWF Forecast Verification

WGNE List of Operational Global Numerical Weather Prediction Systems (as of January 2006)

$\begin{gathered} \text { Forecast Centre } \\ \text { (Country) } \end{gathered}$	$\begin{gathered} \text { Computer } \\ \text { (Peak in THop/s) } \end{gathered}$	High resolution Mode ($F C$ Range in days)	Ensemble Model (FC Range in days)	Type of Data Assimilation
ECMWF (Europe)	1BM p690, 2×68 nodes (20)	$\mathrm{T}_{\mathrm{L}} 511 \mathrm{~L} 60$	$\mathrm{T}_{\mathrm{L}} 255 \mathrm{~L} 40 ; \mathrm{M} 51$	4D-VAR ($\mathrm{T}_{1} 159$)
Met office (UK)	NEC SX6, 34 nodes NEC S 8816 nodes (4)	$\underset{(6)}{\sim 40 \mathrm{~km}} \mathrm{L50}$	$\sim 90 \mathrm{~km}$ L38; M24	$4 \mathrm{D}-\mathrm{Var}(\sim 120 \mathrm{~km})$
Météo France (France)	Fujitsu VPP5000	$\begin{aligned} & \left.\mathrm{T}_{2} 358(\mathrm{C} 2.4) \mathrm{C}\right) \\ & \hline 141 \end{aligned}$	$\left.\mathrm{T}_{\mathrm{L}} 358(\mathrm{C} 2.4) \mathrm{L}\right) \mathrm{L} 41 ; \mathrm{M} 11$	$4 \mathrm{D}-\mathrm{Var}\left(\mathrm{T}_{2} 149\right)$
	IBM p575; 2×52 nodes	$\begin{gathered} 40 \mathrm{~km} \text { L40 } \\ (7) \end{gathered}$	No EPS	D-01
HMC (Russia)	Itanium $4 \times 4 ;$ Xeon 2×4 $(0.10 ; 0.028)$	$\begin{gathered} \text { T85L31(10); } \\ 0.72^{\circ} \times 0.9^{\circ} \mathrm{L} 28(10) \\ \hline \end{gathered}$	No EPS	3D-01
NCEP (USA)	IBM p655 (Cluster 1600)	$T 382 L 64(7.5)$ T190 L64 (16)	T126 L28; M45	3D-var(T382)
NavyNRL	$\underset{(1.125)}{\text { SGI }} \mathbf{0 3 0 0 0 (1 0 2 4 \text { proc) }}$	$\begin{gathered} \text { T239 L30 } \\ \text { (6) } \\ \hline \end{gathered}$	$\underset{\text { (10) }}{\mathrm{T} 119 \mathrm{~L} 30}$	3D-Var
$\begin{gathered} \text { CMC } \\ \text { (Canata) } \end{gathered}$	$\begin{gathered} \text { 18M p690, } 108 \text { nodes } \\ (4.3) \end{gathered}$	$0.9^{\circ} \times 0.9^{\circ} \mathrm{L} 28$	$\begin{aligned} & \text { SEF } \left.\begin{array}{c} \left(\mathrm{T}_{\mathrm{L}}^{1} 149\right) ; \text { GEM } \\ \mathrm{M} 16\left(162^{\circ}\right) ; \end{array}\right) \end{aligned}$	Det: 4D-Var ($1.5^{\circ}, 0.9^{9}$) EPS: EnKF M96 (1.20)
CPTECAINPE	NEC SX6, 12 nodes	T126L28, T213 L42	T126 L28; M15 (15)	3D-var
$\begin{aligned} & \text { JMA } \\ & \text { (Japan) } \end{aligned}$	Hitachi SR8000-E1, 80 nodes (0.768)		T106 L40; M25	4D-Var (T63)
$\begin{gathered} \text { CMA } \\ \text { (China) } \end{gathered}$	SW1; 18MP655/P690	$\begin{gathered} \text { T213 } 1031 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} \text { T106 L19; M33 } \\ (10) \end{gathered}$	$3 \mathrm{D}-\mathrm{Ol}$
$\begin{gathered} \text { KMA } \\ \text { (KMrea) } \end{gathered}$	$\begin{gathered} \text { Cray } \times 1 \mathrm{E}-8 / 1024 \mathrm{~L} \\ (18.4) \end{gathered}$	$\begin{gathered} \text { T426L40 } \\ (10) \end{gathered}$	T106 L30; M17 (8)	3D-Var
NCMRWF (India)	$\begin{gathered} \text { Cray SV1 } 24 \text { processor } \\ (0.028) \\ \hline \end{gathered}$	$\begin{gathered} T 170 L 28 \\ (5) \\ \hline \end{gathered}$	No EPS	3D-VAR
BMRC (Australia)	NECSX6, 28 nodes (1.792)	$\mathrm{T}_{\mathrm{L}} 239 \mathrm{Cl29}$	$\begin{aligned} & \mathrm{T}_{\mathrm{L}} 119 \mathrm{~L} 19 ; \text { M33 } \\ & (10) \end{aligned}$	$3 \mathrm{D}-\mathrm{Ol}$

Operational global NWP systems (January, 2006)

WGNE Overview of Plans at NWP Centres with Global Forecasting Systems c) Global Data Assimilation Scheme (Type, resolution, number of layers)

Forecast Centre (Country)	2006	2007	2008	2009	2010	2011
ECMWF (Europe)	4D-var; $\mathrm{T}_{\mathrm{L}} 799$ with T255 final inner loop; L91	4D-Var; T, 799 with T255 final inner loop; L91	4D-Var; $\mathrm{T}_{\mathrm{L}} 799$ with T255 final inner loop; L91	4D-var; T, 799 with T255 final inner loop; L91	?	?
Met Office	$\begin{gathered} 4 \mathrm{C}-\mathrm{var} \\ 120 \mathrm{~km} ; \mathrm{L} 50 \end{gathered}$	$\begin{gathered} 4 \mathrm{D}-\mathrm{Var} ; \\ 120 \mathrm{~km} ; \mathrm{L} 70 \\ \hline \end{gathered}$	$\begin{gathered} \text { 4D-var, } \\ 120 \mathrm{~km} ; \mathrm{L} 70 \\ \hline \end{gathered}$	$\begin{aligned} & \text { 4D-var; } \\ & 75 \mathrm{~km} ; \text { L90 } \end{aligned}$	4D-var, 75 km : L90	4D-Var; 75 km ; L90
Météo France (France)	$\begin{aligned} & 40 \mathrm{Varar}, \\ & \mathrm{~T} 159 \end{aligned}$	$\begin{aligned} & 4 \mathrm{D}-\mathrm{var} \\ & \mathrm{~T} 250 \end{aligned}$	$\begin{gathered} 40 \mathrm{Varar}, \\ \mathrm{~T} 250 \end{gathered}$	4D-var;	$\begin{gathered} 4 \mathrm{D}-\mathrm{var}, \\ \mathrm{~T} 350 \end{gathered}$	$\begin{aligned} & 4 \mathrm{D}-\mathrm{var} ; \\ & \text { T350 } \end{aligned}$
DWD (Germany)	$\begin{gathered} \mathrm{Oj} ; \\ 40 \mathrm{~km} ; \mathrm{L} 40 \end{gathered}$	$3 \mathrm{D}-\mathrm{Var} ;$ $40 \mathrm{~km} ; \mathrm{L} 40$	3D-Var, 40 km : L 40	ETKF?	ETKF?	ETKF?
HMC (Pussia)	$\begin{gathered} \mathrm{Ol} ; \\ 0.9 \times 0.72 ; \mathrm{L} 28 \end{gathered}$	$\begin{gathered} 0 ; \\ 0.9 \times 0.72 ; \mathrm{L} 28 \end{gathered}$	$\begin{gathered} 3 \mathrm{D}-\mathrm{var} \\ 0.9 \times 0.72 ; \mathrm{L} 28 \end{gathered}$?	?	?
NCEP (USA)	$\begin{gathered} 3 \mathrm{D}-\mathrm{Var}, \\ \mathrm{~T} 382 \end{gathered}$	Advanced-Var; T511	Advanced-Var; T511	Adv or 4 D-Var; 20 km	$\begin{gathered} \text { Advor } 4 \mathrm{D}-\mathrm{Var} ; \\ 20 \mathrm{~km} ; \end{gathered}$	$\begin{aligned} & \text { 4D-var; } \\ & 20 \mathrm{~km} \end{aligned}$
Nary ANRL (USA)	$\begin{aligned} & \text { 3D-var; } \\ & \text { T239; L30 } \end{aligned}$	$\begin{gathered} \text { 3D-var; } \\ \text { T239; L30 } \\ \hline \end{gathered}$	$\begin{gathered} \text { 3D-Var; } \\ \text { T } 319 ; \mathrm{L} 36 \\ \hline \end{gathered}$	4D-Var	4D-Var	4D-Var
$\begin{gathered} \text { CMC } \\ \text { (Canata) } \end{gathered}$	$\begin{gathered} 4 \mathrm{D}-\mathrm{Var}, \\ 1.5^{\circ}, 35 \mathrm{~km} ; \mathrm{L} 58 \\ \hline \end{gathered}$	$\begin{gathered} \text { 4D-var; } \\ 1.5^{\circ}, 35 \mathrm{~km} ; \mathrm{L} 58 \\ \hline \end{gathered}$	$\begin{gathered} \text { 4D-var; } \\ 0.9^{\circ}, 35 \mathrm{~km} ; \mathrm{L} 80 \\ \hline \end{gathered}$	4D-Var/EnKF?	4D-VarEnKF?	4D-VarEnKF?
CPTECIINPE (Brazi)	3D-Var, $100 \mathrm{~km}$	3D-Var; $60 \mathrm{~km}$	LENKF; 40 km	LENKF; 40 km	LENKF; 40 km	LENKF; 20 km
$\begin{gathered} \text { JMA } \\ \text { (Japan) } \end{gathered}$	$\begin{gathered} \text { 4D-Var; } \\ 120 \mathrm{~km} ; \mathrm{L} 40 \\ \hline \end{gathered}$	$\begin{aligned} & \text { 4D-Var; } \\ & 80 \mathrm{~km} ; \mathrm{L} 60 \end{aligned}$	$\begin{gathered} \text { 4D-Var; } \\ 60 \mathrm{~km} ; \mathrm{L} 60 \end{gathered}$	$\begin{gathered} \text { 4D-Var; } \\ 60 \mathrm{~km} ; \mathrm{L} 60 \end{gathered}$	ETKF	ETKF
$\begin{aligned} & \text { CMA } \\ & \text { (China) } \end{aligned}$	NORESPONSE					
$\begin{gathered} \text { KMA } \\ \text { (Korea) } \end{gathered}$	$\begin{aligned} & \text { 3D-var; } \\ & \text { T426:L40 } \end{aligned}$	3 3D-Var;	$\begin{gathered} 3 \mathrm{D}-\mathrm{Var} ; \\ \mathrm{T} 426 ; \mathrm{L} 70 \\ \hline \end{gathered}$	4D-Var? EnkF?	4D-Var? EnkF?	4D-Var? EnKF?
NCMRWF (India)						
BMRC (Australia)	$3 \mathrm{D}-\mathrm{Ol}$	Met Office 4D-VAR under ACCESS (?)	?	?	?	?

End of §5.6

