
Least Squares Method (Kalnay, 5.3)
We start with a toy model example, the two temperatures
problem.



Least Squares Method (Kalnay, 5.3)
We start with a toy model example, the two temperatures
problem.

We use two methods to solve it, a sequential and a vari-
ational approach, and find that they are equivalent: they
yield identical results.



Least Squares Method (Kalnay, 5.3)
We start with a toy model example, the two temperatures
problem.

We use two methods to solve it, a sequential and a vari-
ational approach, and find that they are equivalent: they
yield identical results.

The problem is important because the methodology and
results carry over to multivariate OI, Kalman filtering, and
3D-Var and 4D-Var assimilation.



Least Squares Method (Kalnay, 5.3)
We start with a toy model example, the two temperatures
problem.

We use two methods to solve it, a sequential and a vari-
ational approach, and find that they are equivalent: they
yield identical results.

The problem is important because the methodology and
results carry over to multivariate OI, Kalman filtering, and
3D-Var and 4D-Var assimilation.

If you fully understand the toy model, you should find the
more realistic application straightforward.
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Statistical estimation
Introduction. Each of you: Guess the temperature in
this room right now. How can we get a best estimate of the
temperature?

? ? ?

The best estimate of the state of the atmosphere is obtained
by combining prior information about the atmosphere (back-
ground or first guess) with observations.

In order to combine them optimally, we also need statistical
information about the errors in these pieces of information.

As an introduction to statistical estimation, we consider the
simple problem, that we call the two temperatures problem:

Given two independent observations T1 and T2, determine
the best estimate of the true temperature Tt.
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Simple (toy) Example
Let the two observations of temperature be

T1 = Tt + ε1

T2 = Tt + ε2

}

[For example, we might have two iffy thermometers].

The observations have errors εi, which we don’t know.

Let E( ) represent the expected value, i.e., the average of
many similar measurements.

We assume that the measurements T1 and T2 are unbiased:

E(T1 − Tt) = 0 , E(T2 − Tt) = 0

or equivalently,
E(ε1) = E(ε2) = 0
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We also assume that we know the variances of the observa-
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We next assume that the errors of the two measurements
are uncorrelated:

E(ε1ε2) = 0

This implies, for example, that there is no systematic ten-
dency for one thermometer to read high (ε2 > 0) when the
other is high (ε2 > 0).

? ? ?

The above equations represent the statistical information
that we need about the actual observations.
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We estimate Tt as a linear combination of the observations:

Ta = a1T1 + a2T2
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We estimate Tt as a linear combination of the observations:

Ta = a1T1 + a2T2

The analysis Ta should be unbiased:

E(Ta) = E(Tt)

This implies
a1 + a2 = 1

Ta will be the best estimate of Tt if the coefficients are chosen
to minimize the mean squared error of Ta:

σ2
a = E[(Ta − Tt)

2] = E
{[

a1(T1 − Tt) + a2(T2 − Tt)
]2}

subject to the constraint a1 + a2 = 1.

This may be written

σ2
a = E[(a1ε1 + a2ε2)

2]
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Expanding this expression for σ2
a, we get

σ2
a = a2

1σ
2
1 + a2

2σ
2
2

To minimize σ2
a w.r.t. a1, we require ∂σ2

a/∂a1 = 0.
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Similarly, ∂σ2
a/∂a2 = 0 implies a2 = 0.

We have forgotten the constraint a1 + a2 = 1.

So, a1 and a2 are not independent.

Substituting a2 = 1− a1, we get

σ2
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1σ
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2σ2
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2
1 + (1− a1)

2σ2
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Equating the derivative w.r.t. a1 to zero, ∂σ2
a/∂a1 = 0, gives

a1 =
σ2

2

σ2
1 + σ2

2

a2 =
σ2

1
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Thus, we have expressions for the weights a1 and a2 in terms
of the variances (which are assumed to be known).
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We define the precision to be the inverse of the variance. It
is a measure of the accuracy of the observations.
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We define the precision to be the inverse of the variance. It
is a measure of the accuracy of the observations.

Note: The term precision, while a good one, does not have
universal currency, so it should be defined when used.

? ? ?

Substituting the coefficients in σ2
a = a2

1σ
2
1 + a2

2σ
2
2, we obtain

σ2
a =

σ2
1σ

2
2

σ2
1 + σ2

2

This can be written in the alternative form:
1

σ2
a

=
1

σ1
2

+
1

σ2
2

Thus, if the coefficients are optimal, the precision of the
analysis is the sum of the precisions of the measurements.
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mizing a cost function.

The cost function is defined as the sum of the squares of the
distances of T to the two observations, weighted by their
observational error precisions:

J(T ) =
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2

[
(T − T1)

2

σ2
1

+
(T − T2)

2

σ2
2

]
The minimum of the cost function J is obtained is obtained
by requiring ∂J/∂T = 0.

? ? ?

Exercise: Prove that ∂J/∂T = 0 gives the same value for
Ta as the least squares method.
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tion) is the temperature.

For the least squares method, the control variables were the
weights.
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The control variable for the minimization of J (i.e., the vari-
able with respect to which we are minimizing the cost func-
tion) is the temperature.

For the least squares method, the control variables were the
weights.

The equivalence between the minimization of the analysis
error variance and the variational cost function approach is
important.

This equivalence also holds true for multidimensional prob-
lems, in which case we use the covariance matrix rather than
the scalar variance.

It indicates that OI and 3D-Var are solving the same prob-
lem by different means.

? ? ?
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Example: Suppose T1 = 2 σ1 = 2 T2 = 0 σ2 = 1.

Show that Ta = 0.4 and σa =
√

0.8.

? ? ?
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1 + σ2

2 = 5
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1 + σ2

2

=
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1
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1 + σ2

2

=
4

5

CHECK: a1 + a2 = 1.

Ta = a1T1 + a2T2 =
1

5
× 2 +

4

5
× 0 = 0.4

σ2
a =

σ2
1σ

2
2

σ2
1 + σ2

2

=
4× 1

4 + 1
= 0.8

This solution is illustrated in the next figure.
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The probability distribution for a simple case.
The analysis has a pdf with a maximum closer to T 2, and a smaller standard deviation than either observation.
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Conclusion of the foregoing.
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Simple Sequential Assimilation
We consider the ‘toy’ example as a prototype of a
full multivariate OI.

Recall that we wrote the analysis as a linear combination

Ta = a1T1 + a2T2

The requirement that the analysis be unbiassed led to
a1 + a2 = 1, so

Ta = T1 + a2(T2 − T1)

Assume that one of the two temperatures, say T1 = Tb, is not
an observation, but a background value, such as a forecast.

Assume that the other value is an observation, T2 = To.

We can write the analysis as

Ta = Tb + W (To − Tb)

where W = a2 can be expressed in terms of the variances.
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The least squares method gave us the optimal weight:
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The least squares method gave us the optimal weight:

W =
σ2

b

σ2
b + σ2

o

When the analysis is written as

Ta = Tb + W (To − Tb)

the quantity (To−Tb) is called the observational innovation,
i.e., the new information brought by the observation.

It is also known as the observational increment (with respect
to the background).
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The analysis error variance is, as before, given by

1

σ2
a
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1
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b

+
1

σ2
o
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σ2
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2
o
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b + σ2

o
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Exercise: Verify all the foregoing formulæ.
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The analysis variance can be written as

σ2
a = (1−W )σ2

b

? ? ?

Exercise: Verify all the foregoing formulæ.

? ? ?

We have shown that the simple two-temperatures problem
serves as a paradigm for the problem of objective analysis
of the atmospheric state.
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Collection of Main Equations
We gather the principal equations here:
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These four equations have been derived for the simplest
scalar case . . .

. . . but they are important for the problem of data assim-
ilation because they have exactly the same form as more
general equations:
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These four equations have been derived for the simplest
scalar case . . .

. . . but they are important for the problem of data assim-
ilation because they have exactly the same form as more
general equations:

The least squares sequential estimation method is used for
real multidimensional problems (OI, interpolation, 3D-Var
and even Kalman filtering).

Therefore we will interpret these four equations in detail.
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The first equation

Ta = Tb + W (To − Tb)
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The first equation

Ta = Tb + W (To − Tb)

This says:

The analysis is obtained by adding to the background
value, or first guess, the innovation (the difference
between the observation and first guess), weighted
by the optimal weight.
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The second equation

W =
σ2

b

σ2
b + σ2

o

This says:

The optimal weight is the background error variance
multiplied by the inverse of the total error variance
(the sum of the background and the observation error
variances).
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o

This says:

The optimal weight is the background error variance
multiplied by the inverse of the total error variance
(the sum of the background and the observation error
variances).

Note that the larger the background error variance,
the larger the correction to the first guess.

? ? ?
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This says:

The optimal weight is the background error variance
multiplied by the inverse of the total error variance
(the sum of the background and the observation error
variances).

Note that the larger the background error variance,
the larger the correction to the first guess.

? ? ?

Look at the limits: σ2
o = 0 ; σ2

b = 0.
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The third equation
The variance of the analysis is
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b + σ2

o
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The third equation
The variance of the analysis is
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a =
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b + σ2

o

This can also be written
1

σ2
a

=
1

σ2
b

+
1

σ2
o

This says:

The precision of the analysis (inverse of the analysis
error variance) is the sum of the precisions of the
background and the observation.
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The fourth equation

σ2
a = (1−W )σ2

b

This says:

The error variance of the analysis is the error variance
of the background, reduced by a factor equal to one
minus the optimal weight.
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All the above statements are important because they also
hold true for sequential data assimilation systems (OI and
Kalman filtering) for multidimensional problems.

22



All the above statements are important because they also
hold true for sequential data assimilation systems (OI and
Kalman filtering) for multidimensional problems.

In these problems, in which Tb and Ta are three-dimensional
fields of size order 107 and To is a set of observations (typi-
cally of size 105), we have to replace expressions as follows:
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All the above statements are important because they also
hold true for sequential data assimilation systems (OI and
Kalman filtering) for multidimensional problems.

In these problems, in which Tb and Ta are three-dimensional
fields of size order 107 and To is a set of observations (typi-
cally of size 105), we have to replace expressions as follows:

• error variance =⇒ error covariance matrix

• optimal weight =⇒ optimal gain matrix.

Note that there is one essential tuning parameter in OI:

It is the ratio of the observationalvariance to the background
error variance: (

σo

σb

)2
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Application to Analysis
If the background is a forecast, we can use the four equations
to create a simple sequential analysis cycle.

The observation is used once at the time it appears and then
discarded.
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Application to Analysis
If the background is a forecast, we can use the four equations
to create a simple sequential analysis cycle.

The observation is used once at the time it appears and then
discarded.

Assume that we have completed the analysis at time ti (e.g.,
at 06 UTC), and we want to proceed to the next cycle (time
ti+1, or 12 UTC).

The analysis cycle has two phases, a forecast phase to up-
date the background Tb and its error variance σ2

b, and an
analysis phase, to update the analysis Ta and its error vari-
ance σ2

a.
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Typical 6-hour analysis cycle.
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Forecast Phase
In the forecast phase of the analysis cycle, the background
is first obtained through a forecast:

Tb(ti+1) = M [Ta(ti)]

where M represents the forecast model.
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In the forecast phase of the analysis cycle, the background
is first obtained through a forecast:

Tb(ti+1) = M [Ta(ti)]

where M represents the forecast model.

We also need the error variance of the background.

In OI, this is obtained by making a suitable simple assump-
tion, such as that the model integration increases the ini-
tial error variance by a fixed amount, a factor a somewhat
greater than 1:

σ2
b(ti+1) = aσ2

a(ti)
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Forecast Phase
In the forecast phase of the analysis cycle, the background
is first obtained through a forecast:

Tb(ti+1) = M [Ta(ti)]

where M represents the forecast model.

We also need the error variance of the background.

In OI, this is obtained by making a suitable simple assump-
tion, such as that the model integration increases the ini-
tial error variance by a fixed amount, a factor a somewhat
greater than 1:

σ2
b(ti+1) = aσ2

a(ti)

This allows the new weight W (ti+1) to be estimated using

W =
σ2

b

σ2
b + σ2

o
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Analysis Phase
In the analysis phase of the cycle we get the new observation
To(ti+1), and we derive the new analysis Ta(ti+1) using

Ta = Tb + W (To − Tb)
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The new analysis error variance σ2
a(ti+1) comes from

σ2
a = (1−W )σ2

b

It is smaller than the background error.
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Analysis Phase
In the analysis phase of the cycle we get the new observation
To(ti+1), and we derive the new analysis Ta(ti+1) using

Ta = Tb + W (To − Tb)

The estimates of σ2
b is from

σ2
b(ti+1) = aσ2

a(ti)

The new analysis error variance σ2
a(ti+1) comes from

σ2
a = (1−W )σ2

b

It is smaller than the background error.

After the analysis, the cycle for time ti+1 is completed, and
we can proceed to the next cycle.
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Reading Assignment

Study the Remarks in Kalnay, §5.3.1
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