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We consider two empirical schemes:

• The Successive Corrections Method (SCM)

• The Nudging Method

They are mainly of historical interest.

SCM was used in the 1950s and 1960s operational NWP
systems. It is no longer popular (but still worth studying!).

Nudging is still used for mesoscale analysis, for example,
using radar data.



Successive corrections method
One of the first analysis methods used in operational NWP
was the SCM, developed by Bergthorsson and Döös (1955)
in Sweden and by Cressman, US Weather Service (1959).
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One of the first analysis methods used in operational NWP
was the SCM, developed by Bergthorsson and Döös (1955)
in Sweden and by Cressman, US Weather Service (1959).

SCM is an iterative scheme.

The first estimate at grid-point i is given by the background
(or first guess) field:

f0
i = f b

i

where f0
i is the zeroth iteration estimate of the gridded field.

Then, observations are used to ‘correct’ the analysis, in an
iterative procedure.

Large scales are analysed first, then smaller scales.
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Suppose we have the noon-day pressure pi and temperature
Ti at Belfield, every day for a year. Let n = 365.

The mean pressure, p̄, is defined to be

p̄ =
1

n

n∑
i=1

pi

and similarly for mean temperature T̄ .

The variance of pressure, σ2
p,

σ2
p =

1

n

n∑
i=1

(pi − p̄)2

and similarly for temperature variance σ2
T .

The standard deviations, σp and σT are the square roots of
the variances. They measure the root mean square devia-
tion from the mean.
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The covariance of p and T is defined as

µpT =
1

n

n∑
i=1

(pi − p̄)(Ti − T̄ )

Note that it is defined using deviations from the means.
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Note that it is defined using deviations from the means.

The correlation between p and T is the normalized covari-
ance:

ρpT =
µpT

σpσT

It is dimensionless, and bound between −1 and +1.

If p and T tend to be greater than their mean values at
the same time, and less than their mean values at the same
time, they are positively correlated and ρpT > 0.

If p tends to be greater than its mean value when T is less
than its mean, and vice-versa, then p and T are negatively
correlated and ρpT < 0.
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Exercise: Consider the pressure and temperature at Belfield.
Would you expect them to be correlated?

If so, is ρpt positive or negative?
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Exercise: Consider the pressure and temperature at Belfield.
Would you expect them to be correlated?

If so, is ρpt positive or negative?

What about the correlation between pressure and density?

? ? ?

The Normal or Gaussian distribution of a variable x is

P (x) =
1√
2π

1

σ
exp

[
−(x− x̄)2

2σ2

]
The mean is x̄ and the standard deviation σ. The constant
term is included so that

∫ +∞
−∞ P (x) dx = 1.

Many variables have distributions which can be accurately
modelled by the normal distribution.
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Back to the SCM Analysis
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The following iterations are obtained by successive corrections:

fn+1
i = fn

i +


Kn

i∑
k = 1

wn
ik

(
fO
k − fn

k

)
Kn

i∑
k = 1

wn
ik + ε2

 i.e.
New Value
= Old Value

+Correction
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The notation is as follows:

• fn
i is the nth iteration estimation at the grid point i

• fO
k is the kth observation surrounding the grid point i

• fn
k is the value of the nth field estimate evaluated at the

observation point k

• Kn
i is the number of observations within a distance Rn of

the grid point i

• ε2 is an estimate of the ratio of the observation error
variance to the background error variance.

7



Interpolation
To calculate the difference fO

k − fn
k , we have to interpolate

the background field to the observation point.
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Interpolation
To calculate the difference fO

k − fn
k , we have to interpolate

the background field to the observation point.

For the multi-dimensional case, we can do this one dimen-
sion at a time.

We interpolate first in the x-direction, and then interpolate
the results in the y-direction.

Usually, bi-quadratic or bi-cubic interpolation is used.
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Cressman (1959) defined the weights wn
ik in the SCM as

wn
ik =

R2
n − r2
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for r2
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where r2

ik is the square of the distance between an observa-
tion point rk and a grid point at ri.

? ? ?
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ik ≤ R2

n

wn
ik = 0 for r2

ik > R2
n


where r2

ik is the square of the distance between an observa-
tion point rk and a grid point at ri.

? ? ?

Exercise: Consider a single observation at a gridpoint.
If the first guess is a uniform field, what does the SCM
analysis look like? (Assume ε = 0).

Exercise: Draw a series of weight curves using MatLab.
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There are eight observations within a distance R from grid
point i.
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The radius of influence Rn may vary with the iteration.

For example, the Swedish operational system (in 1980s)
used

• R1 = 1500 km, R2 = 900 km for upper air analyses

• R1 = 1500 km, R2 = 1200 km, R3 = 750 km, R4 = 300 km
for the surface pressure analysis
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The radius of influence Rn may vary with the iteration.

For example, the Swedish operational system (in 1980s)
used

• R1 = 1500 km, R2 = 900 km for upper air analyses

• R1 = 1500 km, R2 = 1200 km, R3 = 750 km, R4 = 300 km
for the surface pressure analysis

The field reflects the large scales after the first iteration, and
converges towards the smaller scales during later iterations.
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Error estimate ε2
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This results in a “credulous” analysis that faithfully reflects
the observations: the analysis converges to the observation
values if the observations are located at the grid points.
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Error estimate ε2

In the original SCM, the coefficient ε2 was set to zero.

This results in a “credulous” analysis that faithfully reflects
the observations: the analysis converges to the observation
values if the observations are located at the grid points.

If the data are noisy (e.g., if an observation has gross er-
rors) this can lead to “bull’s eyes” (many isolines around an
unrealistic value).

Including ε2 > 0 assumes that the observations have errors,
and gives some weight to the background field.

Exercise: Consider the effect of a single observation, lo-
cated at a greid point (a) for ε2 = 0, (b) for ε2 = 0.5.
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Another empirical and fairly widely used method for data
assimilation is Newtonian relaxation or nudging.

[References are Hoke and Anthes (1976) and Kistler (1974)]

We add to the prognostic equations a term that nudges the
solution towards the observations.

For example, for a primitive equation model, the zonal ve-
locity forecast equation is written as

∂u

∂t
= −v ·∇u + fv − ∂φ

∂x
+

[
uobs − u

τu

]
Similar terms are added to the other equations.

The relaxation time scale, τ , is chosen based on empirical
considerations.
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Recall how to solve this o.d.e. using an integrating factor.
Multiply by exp
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u(t) = uobs + [u(0)− uobs] exp(−t/τ )
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∂u
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=

[
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]
we write this as

∂u

∂t
+

u
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=
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τ

Recall how to solve this o.d.e. using an integrating factor.
Multiply by exp

(∫
dt/τ

)
= exp(t/τ ):

d

dt

[
exp

(
t

τ

)
u

]
= exp

(
t

τ

)
uobs

τ

The solution is found by integration:

u(t) = uobs + [u(0)− uobs] exp(−t/τ )

So, u approaches uobs exponentially, with time-scale τ .
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If τ is very small, the solution converges towards the obser-
vations too fast, and the dynamics cannot adjust in time.

If τ is too large, the errors in the model can grow too much
before the nudging becomes effective.

Hoke and Anthes indicated that τ should be chosen so that
the last term is similar in magnitude to the less dominant
terms.

They used a very short time scale, about 20 minutes, in
their experiments.

Kaas et al. (1999) performed an interesting experiment,
nudging a model towards a 15-y reanalysis from the ECMWF.

By averaging the mean forcing due to nudging, they empir-
ically determined corrections to reduce model deficiencies.
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out in space in the nudging analysis scheme?
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to perform a statistical interpolation.

? ? ?

16



Question: How is the observational information spread
out in space in the nudging analysis scheme?

? ? ?

The nudging method is not generally used for large-scale
assimilation.

Some groups use it for assimilating small-scale observations
(e.g., radar observations).

It is especially useful when there are no available statistics
to perform a statistical interpolation.

? ? ?

Exercise: Assuming that the nudging term is comparable
in size to the Coriolis term, estimate the relaxation time τ .
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