
§3.2.3 Leapfrog Scheme (again)
The numerical solution of the differential equations requires
that they be transformed into algebraic form.

This is done by the now-familiar method of finite differences.

§3.2.3 Leapfrog Scheme (again)
The numerical solution of the differential equations requires
that they be transformed into algebraic form.

This is done by the now-familiar method of finite differences.

The continuous variables are represented by their values at
a finite set of points, and derivatives are approximated by
differences between values at adjacent points.

§3.2.3 Leapfrog Scheme (again)
The numerical solution of the differential equations requires
that they be transformed into algebraic form.

This is done by the now-familiar method of finite differences.

The continuous variables are represented by their values at
a finite set of points, and derivatives are approximated by
differences between values at adjacent points.

The atmosphere is partitioned into several discrete horizon-
tal layers, and each layer is divided up into grid cells.

Then the variables are evaluated at the centre of each cell.

§3.2.3 Leapfrog Scheme (again)
The numerical solution of the differential equations requires
that they be transformed into algebraic form.

This is done by the now-familiar method of finite differences.

The continuous variables are represented by their values at
a finite set of points, and derivatives are approximated by
differences between values at adjacent points.

The atmosphere is partitioned into several discrete horizon-
tal layers, and each layer is divided up into grid cells.

Then the variables are evaluated at the centre of each cell.

Similarly, the time interval under consideration is sliced into
a finite number of discrete time steps.

§3.2.3 Leapfrog Scheme (again)
The numerical solution of the differential equations requires
that they be transformed into algebraic form.

This is done by the now-familiar method of finite differences.

The continuous variables are represented by their values at
a finite set of points, and derivatives are approximated by
differences between values at adjacent points.

The atmosphere is partitioned into several discrete horizon-
tal layers, and each layer is divided up into grid cells.

Then the variables are evaluated at the centre of each cell.

Similarly, the time interval under consideration is sliced into
a finite number of discrete time steps.

Thus, the continuous evolution of the variables is approxi-
mated by the change from step to step.

In a sense, the finite difference method corre-
sponds to a reversal of history.

2

In a sense, the finite difference method corre-
sponds to a reversal of history.

Lewis Fry Richardson described the procedure:

Although the infinitesimal calculus has been
a splendid success, yet there remain problems
in which it is cumbrous or unworkable. When
such difficulties are encountered it may be
well to return to the manner in which they
did things before the calculus was invented,
postponing the passage to the limit until af-
ter the problem has been solved for a moder-
ate number of moderately small differences.

(Richardson, 1927)

2

The leapfrog time scheme
We consider again the method of advancing the solution in
time known as the leapfrog scheme.

3

The leapfrog time scheme
We consider again the method of advancing the solution in
time known as the leapfrog scheme.

Let U denote a typical dependent variable, governed by an
equation of the form

dU

dt
= F (U) .

3

The leapfrog time scheme
We consider again the method of advancing the solution in
time known as the leapfrog scheme.

Let U denote a typical dependent variable, governed by an
equation of the form

dU

dt
= F (U) .

The continuous time domain t is replaced by a sequence of
discrete moments {0, ∆t, 2∆t, . . . , n∆t, . . . }.
The solution at these moments is denoted by Un = U(n∆t).

3

The leapfrog time scheme
We consider again the method of advancing the solution in
time known as the leapfrog scheme.

Let U denote a typical dependent variable, governed by an
equation of the form

dU

dt
= F (U) .

The continuous time domain t is replaced by a sequence of
discrete moments {0, ∆t, 2∆t, . . . , n∆t, . . . }.
The solution at these moments is denoted by Un = U(n∆t).

If this solution is known up to time t = n∆t, the right-hand
term Fn = F (Un) can be computed.

Thus, we can integrate the equation forward in time.

3

The advection equation is, again,

dU

dt
= F (U) .

4

The advection equation is, again,

dU

dt
= F (U) .

The time derivative is approximated by a centered difference

Un+1 − Un−1

2∆t
= Fn ,

4

The advection equation is, again,

dU

dt
= F (U) .

The time derivative is approximated by a centered difference

Un+1 − Un−1

2∆t
= Fn ,

Thus, the forecast value Un+1 may be computed from the
old value Un−1 and the tendency Fn:

Un+1 = Un−1 + 2∆t Fn .

4

The advection equation is, again,

dU

dt
= F (U) .

The time derivative is approximated by a centered difference

Un+1 − Un−1

2∆t
= Fn ,

Thus, the forecast value Un+1 may be computed from the
old value Un−1 and the tendency Fn:

Un+1 = Un−1 + 2∆t Fn .

This process of stepping forward from moment to moment is
repeated a large number of times, until the desired forecast
range is reached.

4

For the physical equation, a single initial condition U0 is
sufficient to determine the solution.

5

For the physical equation, a single initial condition U0 is
sufficient to determine the solution.

One problem with the leapfrog scheme (and other three-
time-level schemes) is that two values of U are required to
start the computation.

5

For the physical equation, a single initial condition U0 is
sufficient to determine the solution.

One problem with the leapfrog scheme (and other three-
time-level schemes) is that two values of U are required to
start the computation.

In addition to the physical initial condition U0, a computa-
tional initial condition U1 is required.

5

For the physical equation, a single initial condition U0 is
sufficient to determine the solution.

One problem with the leapfrog scheme (and other three-
time-level schemes) is that two values of U are required to
start the computation.

In addition to the physical initial condition U0, a computa-
tional initial condition U1 is required.

This cannot be obtained using the leapfrog scheme, so nor-
mally a simple non-centered step

U1 = U0 + ∆t F 0

is used to provide the value at t = ∆t.

5

For the physical equation, a single initial condition U0 is
sufficient to determine the solution.

One problem with the leapfrog scheme (and other three-
time-level schemes) is that two values of U are required to
start the computation.

In addition to the physical initial condition U0, a computa-
tional initial condition U1 is required.

This cannot be obtained using the leapfrog scheme, so nor-
mally a simple non-centered step

U1 = U0 + ∆t F 0

is used to provide the value at t = ∆t.

From then on, the leapfrog scheme can be used.

However, the errors of the first step will persist.

5

For the physical equation, a single initial condition U0 is
sufficient to determine the solution.

One problem with the leapfrog scheme (and other three-
time-level schemes) is that two values of U are required to
start the computation.

In addition to the physical initial condition U0, a computa-
tional initial condition U1 is required.

This cannot be obtained using the leapfrog scheme, so nor-
mally a simple non-centered step

U1 = U0 + ∆t F 0

is used to provide the value at t = ∆t.

From then on, the leapfrog scheme can be used.

However, the errors of the first step will persist.

The computational initial condition can be defined in several
ways:

5

• Set U1 = U0. Since u1 = u0 + ut∆t + · · · , this introduces
errors of order O(∆t), and is not recommended.

6

• Set U1 = U0. Since u1 = u0 + ut∆t + · · · , this introduces
errors of order O(∆t), and is not recommended.

• Use a forward time scheme for the first time step. Since
the forward time step is only used once, the total error is
still of O(∆t)2.

6

• Set U1 = U0. Since u1 = u0 + ut∆t + · · · , this introduces
errors of order O(∆t), and is not recommended.

• Use a forward time scheme for the first time step. Since
the forward time step is only used once, the total error is
still of O(∆t)2.

• An alternative is to use an Euler-backwards (Matsuno)
scheme for the first time step.

6

• Set U1 = U0. Since u1 = u0 + ut∆t + · · · , this introduces
errors of order O(∆t), and is not recommended.

• Use a forward time scheme for the first time step. Since
the forward time step is only used once, the total error is
still of O(∆t)2.

• An alternative is to use an Euler-backwards (Matsuno)
scheme for the first time step.

• Use half of the initial time step for the forward time step,
followed by leapfrog time steps. This will reduce the error
introduced in the unstable first step.

Schematic of the leapfrog scheme with a small starting step.

6

Computational Mode: Simple Case
We analyse the oscillation equation with ω = 0:

dU

dt
= 0

The true solution is U = U0, constant.

7

Computational Mode: Simple Case
We analyse the oscillation equation with ω = 0:

dU

dt
= 0

The true solution is U = U0, constant.

The leapfrog approximation to this is just

Un+1 = Un−1 with the forward step U1 = U0 .

7

Computational Mode: Simple Case
We analyse the oscillation equation with ω = 0:

dU

dt
= 0

The true solution is U = U0, constant.

The leapfrog approximation to this is just

Un+1 = Un−1 with the forward step U1 = U0 .

We consider two particular choices of U1.

First, suppose the exact value U1 = U0 is chosen. Then the
numerical solution is Un = U0 for all n, which is exact.

7

Computational Mode: Simple Case
We analyse the oscillation equation with ω = 0:

dU

dt
= 0

The true solution is U = U0, constant.

The leapfrog approximation to this is just

Un+1 = Un−1 with the forward step U1 = U0 .

We consider two particular choices of U1.

First, suppose the exact value U1 = U0 is chosen. Then the
numerical solution is Un = U0 for all n, which is exact.

Second, suppose U1 = −U0. The solution is Un = (−1)nU0,
which is comprised entirely of the computational mode.

7

Computational Mode: Simple Case
We analyse the oscillation equation with ω = 0:

dU

dt
= 0

The true solution is U = U0, constant.

The leapfrog approximation to this is just

Un+1 = Un−1 with the forward step U1 = U0 .

We consider two particular choices of U1.

First, suppose the exact value U1 = U0 is chosen. Then the
numerical solution is Un = U0 for all n, which is exact.

Second, suppose U1 = −U0. The solution is Un = (−1)nU0,
which is comprised entirely of the computational mode.

This illustrates the importance of a careful choice of the
computational initial condition.

7

Robert-Asselin time filter
The second problem is that, for nonlinear equations, the
leapfrog scheme has a tendency to increase the amplitude
of the computational mode with time.

This can separate the space dependence in a checkerboard
fashion between the even and odd time steps.

8

Robert-Asselin time filter
The second problem is that, for nonlinear equations, the
leapfrog scheme has a tendency to increase the amplitude
of the computational mode with time.

This can separate the space dependence in a checkerboard
fashion between the even and odd time steps.

The problem can be solved by restarting every 50 steps or
so, or by applying a Robert–Asselin time filter.

8

Robert-Asselin time filter
The second problem is that, for nonlinear equations, the
leapfrog scheme has a tendency to increase the amplitude
of the computational mode with time.

This can separate the space dependence in a checkerboard
fashion between the even and odd time steps.

The problem can be solved by restarting every 50 steps or
so, or by applying a Robert–Asselin time filter.

After Un+1 is obtained, a slight time smoothing is applied
to Un:

Un = Un + γ(Un+1 − 2Un + Un−1)

8

Robert-Asselin time filter
The second problem is that, for nonlinear equations, the
leapfrog scheme has a tendency to increase the amplitude
of the computational mode with time.

This can separate the space dependence in a checkerboard
fashion between the even and odd time steps.

The problem can be solved by restarting every 50 steps or
so, or by applying a Robert–Asselin time filter.

After Un+1 is obtained, a slight time smoothing is applied
to Un:

Un = Un + γ(Un+1 − 2Un + Un−1)

Note that the added term is like smoothing in time, an
approximation of an ideally time-centered smoother:

Un = Un + γ(Un+1 − 2Un + Un−1)

8

The smoother

Un = Un + γ(Un+1 − 2Un + Un−1)

reduces the amplitude of different frequencies ν by a factor
(1 − 4γ sin2(ν∆t/2)).

? ? ?

9

The smoother

Un = Un + γ(Un+1 − 2Un + Un−1)

reduces the amplitude of different frequencies ν by a factor
(1 − 4γ sin2(ν∆t/2)).

? ? ?

Exercise: Prove this. Hint: write Un = U0 exp(iνn∆t).

? ? ?

9

The smoother

Un = Un + γ(Un+1 − 2Un + Un−1)

reduces the amplitude of different frequencies ν by a factor
(1 − 4γ sin2(ν∆t/2)).

? ? ?

Exercise: Prove this. Hint: write Un = U0 exp(iνn∆t).

? ? ?

The computational mode, whose period is 2∆t, is reduced
by (1 − 4γ) every time step.

9

The smoother

Un = Un + γ(Un+1 − 2Un + Un−1)

reduces the amplitude of different frequencies ν by a factor
(1 − 4γ sin2(ν∆t/2)).

? ? ?

Exercise: Prove this. Hint: write Un = U0 exp(iνn∆t).

? ? ?

The computational mode, whose period is 2∆t, is reduced
by (1 − 4γ) every time step.

Because the field at t = (n − 1)∆t is replaced by the already
filtered value, the R-A filter introduces a slight distortion
of the pure centered filter.

9

The smoother

Un = Un + γ(Un+1 − 2Un + Un−1)

reduces the amplitude of different frequencies ν by a factor
(1 − 4γ sin2(ν∆t/2)).

? ? ?

Exercise: Prove this. Hint: write Un = U0 exp(iνn∆t).

? ? ?

The computational mode, whose period is 2∆t, is reduced
by (1 − 4γ) every time step.

Because the field at t = (n − 1)∆t is replaced by the already
filtered value, the R-A filter introduces a slight distortion
of the pure centered filter.

A full analysis requires that the combined leapfrog scheme
and time filter be analysed together (Asselin, 1972).

9

The smoother

Un = Un + γ(Un+1 − 2Un + Un−1)

reduces the amplitude of different frequencies ν by a factor
(1 − 4γ sin2(ν∆t/2)).

? ? ?

Exercise: Prove this. Hint: write Un = U0 exp(iνn∆t).

? ? ?

The computational mode, whose period is 2∆t, is reduced
by (1 − 4γ) every time step.

Because the field at t = (n − 1)∆t is replaced by the already
filtered value, the R-A filter introduces a slight distortion
of the pure centered filter.

A full analysis requires that the combined leapfrog scheme
and time filter be analysed together (Asselin, 1972).

This filter is widely used with the leapfrog scheme, with γ
of the order of 0.01.

9

Time schemes for dU/dt = F (U)

10

Time schemes for dU/dt = F (U)

11

Time schemes for dU/dt = F (U)

For schemes (j) and (k), the right hand side is split into
two terms: F (U) = F1(U) + F2(U).

12

Break here

13

Two Toy Equations
The following two “toy equations” serve as prototypes for
dissipative and for wave-like process in the atmosphere.

14

Two Toy Equations
The following two “toy equations” serve as prototypes for
dissipative and for wave-like process in the atmosphere.

• The Friction Equation

dU

dt
= −κU , κ > 0

with solution U = U0 exp(−κt) decaying with time.

14

Two Toy Equations
The following two “toy equations” serve as prototypes for
dissipative and for wave-like process in the atmosphere.

• The Friction Equation

dU

dt
= −κU , κ > 0

with solution U = U0 exp(−κt) decaying with time.

• The Oscillation Equation

dU

dt
= iωU ,

with solution U = U0 exp(iωt), oscillating in time.

14

Two Toy Equations
The following two “toy equations” serve as prototypes for
dissipative and for wave-like process in the atmosphere.

• The Friction Equation

dU

dt
= −κU , κ > 0

with solution U = U0 exp(−κt) decaying with time.

• The Oscillation Equation

dU

dt
= iωU ,

with solution U = U0 exp(iωt), oscillating in time.

If we substitute U = ρ exp(iφ) in the oscillation equation, then

dρ

dt
= 0 and φ = ω

14

Two Toy Equations
The following two “toy equations” serve as prototypes for
dissipative and for wave-like process in the atmosphere.

• The Friction Equation
dU

dt
= −κU , κ > 0

with solution U = U0 exp(−κt) decaying with time.

• The Oscillation Equation
dU

dt
= iωU ,

with solution U = U0 exp(iωt), oscillating in time.

If we substitute U = ρ exp(iφ) in the oscillation equation, then

dρ

dt
= 0 and φ = ω

Thus the solution U has a constant modulus, and a phase
that increases or decreases linearly with time.

14

The Friction Equation
We consider now the friction equation:

dU

dt
= −κU , κ > 0 with U = U0 at t = 0

15

The Friction Equation
We consider now the friction equation:

dU

dt
= −κU , κ > 0 with U = U0 at t = 0

Of course, the analytical solution is U(t) = U0 exp(−κt), which
decays monotonically with time.

15

The Friction Equation
We consider now the friction equation:

dU

dt
= −κU , κ > 0 with U = U0 at t = 0

Of course, the analytical solution is U(t) = U0 exp(−κt), which
decays monotonically with time.

The simplest numerical scheme is the Euler forward method.
The time derivative in the differential equation is approxi-
mated by a forward difference:

Un+1 − Un

∆t
= −κUn .

15

The Friction Equation
We consider now the friction equation:

dU

dt
= −κU , κ > 0 with U = U0 at t = 0

Of course, the analytical solution is U(t) = U0 exp(−κt), which
decays monotonically with time.

The simplest numerical scheme is the Euler forward method.
The time derivative in the differential equation is approxi-
mated by a forward difference:

Un+1 − Un

∆t
= −κUn .

It is easy to find the solution of this difference equation:
Un = U0(1 − κ∆t)n.

15

The Friction Equation
We consider now the friction equation:

dU

dt
= −κU , κ > 0 with U = U0 at t = 0

Of course, the analytical solution is U(t) = U0 exp(−κt), which
decays monotonically with time.

The simplest numerical scheme is the Euler forward method.
The time derivative in the differential equation is approxi-
mated by a forward difference:

Un+1 − Un

∆t
= −κUn .

It is easy to find the solution of this difference equation:
Un = U0(1 − κ∆t)n.

This solution decays monotonically in time provided

κ∆t < 1
15

Again, the solution decays monotonically in time provided

κ∆t < 1

16

Again, the solution decays monotonically in time provided

κ∆t < 1

The Euler scheme is stable for this friction equation.

16

Again, the solution decays monotonically in time provided

κ∆t < 1

The Euler scheme is stable for this friction equation.

However, the scheme is only first-order accurate: for a fixed
time τ = n∆t, the error is

ε(τ) = |U0(1 − κ∆t)n − U0 exp(−κn∆t)| = 1
2U

0τκ2∆t + O(∆t2) .

? ? ?

16

Again, the solution decays monotonically in time provided

κ∆t < 1

The Euler scheme is stable for this friction equation.

However, the scheme is only first-order accurate: for a fixed
time τ = n∆t, the error is

ε(τ) = |U0(1 − κ∆t)n − U0 exp(−κn∆t)| = 1
2U

0τκ2∆t + O(∆t2) .

? ? ?

Exercise: Prove this.

? ? ?

16

Again, the solution decays monotonically in time provided

κ∆t < 1

The Euler scheme is stable for this friction equation.

However, the scheme is only first-order accurate: for a fixed
time τ = n∆t, the error is

ε(τ) = |U0(1 − κ∆t)n − U0 exp(−κn∆t)| = 1
2U

0τκ2∆t + O(∆t2) .

? ? ?

Exercise: Prove this.

? ? ?

We might attempt to obtain a more accurate solution by
using a centered difference for the time derivative, as in the
leapfrog scheme.

Let us look at this possibility now.

16

The leapfrog scheme for the Friction Equation is:

Un+1 − Un−1

2∆t
= −κUn .

17

The leapfrog scheme for the Friction Equation is:

Un+1 − Un−1

2∆t
= −κUn .

A solution in the form of a geometric progression, Un = U0ρn

for some constant ρ, will decrease monotonically provided
0 < ρ < 1.

17

The leapfrog scheme for the Friction Equation is:

Un+1 − Un−1

2∆t
= −κUn .

A solution in the form of a geometric progression, Un = U0ρn

for some constant ρ, will decrease monotonically provided
0 < ρ < 1.

This is the condition for the character of the finite difference
solution to resemble that of the continuous equation.

17

The leapfrog scheme for the Friction Equation is:

Un+1 − Un−1

2∆t
= −κUn .

A solution in the form of a geometric progression, Un = U0ρn

for some constant ρ, will decrease monotonically provided
0 < ρ < 1.

This is the condition for the character of the finite difference
solution to resemble that of the continuous equation.

Substituting this solution into the FDE, there are two pos-
sibilities:

ρ+ = −κ∆t +
√

1 + κ2∆t2 and ρ− = −κ∆t−
√

1 + κ2∆t2 .

17

The leapfrog scheme for the Friction Equation is:

Un+1 − Un−1

2∆t
= −κUn .

A solution in the form of a geometric progression, Un = U0ρn

for some constant ρ, will decrease monotonically provided
0 < ρ < 1.

This is the condition for the character of the finite difference
solution to resemble that of the continuous equation.

Substituting this solution into the FDE, there are two pos-
sibilities:

ρ+ = −κ∆t +
√

1 + κ2∆t2 and ρ− = −κ∆t−
√

1 + κ2∆t2 .

It is easy to see that |ρ+| < 1 for all ∆t so that a decaying
solution is obtained.

? ? ?

17

The leapfrog scheme for the Friction Equation is:

Un+1 − Un−1

2∆t
= −κUn .

A solution in the form of a geometric progression, Un = U0ρn

for some constant ρ, will decrease monotonically provided
0 < ρ < 1.

This is the condition for the character of the finite difference
solution to resemble that of the continuous equation.

Substituting this solution into the FDE, there are two pos-
sibilities:

ρ+ = −κ∆t +
√

1 + κ2∆t2 and ρ− = −κ∆t−
√

1 + κ2∆t2 .

It is easy to see that |ρ+| < 1 for all ∆t so that a decaying
solution is obtained.

? ? ?

Exercise: Prove this. Hint: if y = −x +
√

1 + x2, then
y(0) = 1; y > 0; y′ < 0 so 0 < y ≤ 1.

17

However, |ρ−| = [κ∆t +
√

1 + κ2∆t2] > 1 for all ∆t, so this
solution grows without limit with n.

18

However, |ρ−| = [κ∆t +
√

1 + κ2∆t2] > 1 for all ∆t, so this
solution grows without limit with n.

The first solution (ρ+) gives the physical mode, which is sim-
ilar in character to the solution of the differential equation.

18

However, |ρ−| = [κ∆t +
√

1 + κ2∆t2] > 1 for all ∆t, so this
solution grows without limit with n.

The first solution (ρ+) gives the physical mode, which is sim-
ilar in character to the solution of the differential equation.

The second solution (ρ−) is called the computational mode.
It appears as a result of replacing a first-order derivative by
a second-order difference.

18

However, |ρ−| = [κ∆t +
√

1 + κ2∆t2] > 1 for all ∆t, so this
solution grows without limit with n.

The first solution (ρ+) gives the physical mode, which is sim-
ilar in character to the solution of the differential equation.

The second solution (ρ−) is called the computational mode.
It appears as a result of replacing a first-order derivative by
a second-order difference.

The computational mode has no counterpart in the physi-
cal equation; it is a spurious numerical artifact.

18

However, |ρ−| = [κ∆t +
√

1 + κ2∆t2] > 1 for all ∆t, so this
solution grows without limit with n.

The first solution (ρ+) gives the physical mode, which is sim-
ilar in character to the solution of the differential equation.

The second solution (ρ−) is called the computational mode.
It appears as a result of replacing a first-order derivative by
a second-order difference.

The computational mode has no counterpart in the physi-
cal equation; it is a spurious numerical artifact.

Since ρ− < 0, its sign alternates each time-step and, since it
grows with time, it leads to numerical instability.

18

However, |ρ−| = [κ∆t +
√

1 + κ2∆t2] > 1 for all ∆t, so this
solution grows without limit with n.

The first solution (ρ+) gives the physical mode, which is sim-
ilar in character to the solution of the differential equation.

The second solution (ρ−) is called the computational mode.
It appears as a result of replacing a first-order derivative by
a second-order difference.

The computational mode has no counterpart in the physi-
cal equation; it is a spurious numerical artifact.

Since ρ− < 0, its sign alternates each time-step and, since it
grows with time, it leads to numerical instability.

Thus, despite its second-order accuracy, the leapfrog scheme
produces unacceptable errors for the friction equation.

18

However, |ρ−| = [κ∆t +
√

1 + κ2∆t2] > 1 for all ∆t, so this
solution grows without limit with n.

The first solution (ρ+) gives the physical mode, which is sim-
ilar in character to the solution of the differential equation.

The second solution (ρ−) is called the computational mode.
It appears as a result of replacing a first-order derivative by
a second-order difference.

The computational mode has no counterpart in the physi-
cal equation; it is a spurious numerical artifact.

Since ρ− < 0, its sign alternates each time-step and, since it
grows with time, it leads to numerical instability.

Thus, despite its second-order accuracy, the leapfrog scheme
produces unacceptable errors for the friction equation.

The instability of the leapfrog scheme would appear to make
it unsuitable for use.

18

However, |ρ−| = [κ∆t +
√

1 + κ2∆t2] > 1 for all ∆t, so this
solution grows without limit with n.

The first solution (ρ+) gives the physical mode, which is sim-
ilar in character to the solution of the differential equation.

The second solution (ρ−) is called the computational mode.
It appears as a result of replacing a first-order derivative by
a second-order difference.

The computational mode has no counterpart in the physi-
cal equation; it is a spurious numerical artifact.

Since ρ− < 0, its sign alternates each time-step and, since it
grows with time, it leads to numerical instability.

Thus, despite its second-order accuracy, the leapfrog scheme
produces unacceptable errors for the friction equation.

The instability of the leapfrog scheme would appear to make
it unsuitable for use.

But we know better: read on!

18

The Oscillation Equation
If we apply the leapfrog scheme to the oscillation equation

dU

dt
= iωU , with U = U0 at t = 0 ,

a markedly different result is obtained.

19

The Oscillation Equation
If we apply the leapfrog scheme to the oscillation equation

dU

dt
= iωU , with U = U0 at t = 0 ,

a markedly different result is obtained.

The analytical solution is U(t) = U0 exp(iωt).

19

The Oscillation Equation
If we apply the leapfrog scheme to the oscillation equation

dU

dt
= iωU , with U = U0 at t = 0 ,

a markedly different result is obtained.

The analytical solution is U(t) = U0 exp(iωt).

Using the leapfrog scheme and again seeking a solution Un =
U0ρn for constant ρ, there are again two possibilities:

ρ± = iω∆t±
√

1 − ω2∆t2 .

19

The Oscillation Equation
If we apply the leapfrog scheme to the oscillation equation

dU

dt
= iωU , with U = U0 at t = 0 ,

a markedly different result is obtained.

The analytical solution is U(t) = U0 exp(iωt).

Using the leapfrog scheme and again seeking a solution Un =
U0ρn for constant ρ, there are again two possibilities:

ρ± = iω∆t±
√

1 − ω2∆t2 .

For |ω∆t| ≤ 1, it is clear that |ρ±| = 1 so that two oscillating
solutions are obtained.

19

The Oscillation Equation
If we apply the leapfrog scheme to the oscillation equation

dU

dt
= iωU , with U = U0 at t = 0 ,

a markedly different result is obtained.

The analytical solution is U(t) = U0 exp(iωt).

Using the leapfrog scheme and again seeking a solution Un =
U0ρn for constant ρ, there are again two possibilities:

ρ± = iω∆t±
√

1 − ω2∆t2 .

For |ω∆t| ≤ 1, it is clear that |ρ±| = 1 so that two oscillating
solutions are obtained.

For small ω∆t we have ρ+ ≈ +1 and ρ− ≈ −1.

19

Again, for small ω∆t we have ρ+ ≈ +1 and ρ− ≈ −1.

20

Again, for small ω∆t we have ρ+ ≈ +1 and ρ− ≈ −1.

The former approximates the analytical solution. The latter
is the computational mode, which alternates in sign from
step to step.

20

Again, for small ω∆t we have ρ+ ≈ +1 and ρ− ≈ −1.

The former approximates the analytical solution. The latter
is the computational mode, which alternates in sign from
step to step.

For |ω∆t| > 1, either |ρ+| > 1 or |ρ−| > 1. Thus the leapfrog
scheme is unstable in this case.

20

Again, for small ω∆t we have ρ+ ≈ +1 and ρ− ≈ −1.

The former approximates the analytical solution. The latter
is the computational mode, which alternates in sign from
step to step.

For |ω∆t| > 1, either |ρ+| > 1 or |ρ−| > 1. Thus the leapfrog
scheme is unstable in this case.

The leapfrog scheme is stable for the oscillation equation,
provided

|ω∆t| < 1 .

20

Again, for small ω∆t we have ρ+ ≈ +1 and ρ− ≈ −1.

The former approximates the analytical solution. The latter
is the computational mode, which alternates in sign from
step to step.

For |ω∆t| > 1, either |ρ+| > 1 or |ρ−| > 1. Thus the leapfrog
scheme is unstable in this case.

The leapfrog scheme is stable for the oscillation equation,
provided

|ω∆t| < 1 .

20

Matlab Exercises
• Write a matlab program to solve the oscillation equation

dU

dt
= iU , U0 = 1 (ω = 1)

the analytical solution of which is U(t) = exp(it), using

– the Euler forward method

– the leapfrog method

Draw conclusions about the stability of the two schemes.

21

Matlab Exercises
• Write a matlab program to solve the oscillation equation

dU

dt
= iU , U0 = 1 (ω = 1)

the analytical solution of which is U(t) = exp(it), using

– the Euler forward method

– the leapfrog method

Draw conclusions about the stability of the two schemes.

• Write a matlab program to solve the friction equation

dU

dt
= −U , U0 = 1 (κ = 1)

the analytical solution of which is U(t) = exp(−t), using

– the Euler forward method

– the leapfrog method

Draw conclusions about the stability of the two schemes.
21

Conclusion of §3.2.3

22

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

