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• The diffusion equation,

∂u

∂t
= σ

∂2u

∂x2

which is a parabolic equation.
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Suppose we choose to approximate this PDE with the FDE
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We can ask two fundamental questions:

• [1] Is the FDE consistent with the PDE?

• [2] For a given time t > 0, will the solution of the FDE
converge to that of the PDE as ∆x → 0 and ∆t → 0?

We will clarify these questions below.

? ? ?

Warning: Sometimes superscript n denotes a power; sometimes it is

just an index. Be careful!
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fulfill if its solutions are going to be good approximations
of the solutions of the PDE.

Definition: The difference between the PDE and the FDE
is called the discretization error or local truncation error.

Consistency is rather simple to verify:

• Substitute u instead of U in the FDE.

• Evaluate all terms using a Taylor series expansion
centered on the point (xj, tn).

• Subtract the PDE from the FDE.

If the difference (local truncation error) goes to zero as
∆x → 0, ∆t → 0, then the FDE is consistent with the PDE.
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We substitute this in the FDE and obtain(

ut + 1
2utt∆t + · · ·

)n

j
+ c

(
ux − 1

2uxx∆x + · · ·
)n

j
' 0

Subtracting the PDE gives the local truncation error:

τ =
(utt

2

)
∆t−

(cuxx

2

)
∆x + H.O.T. = O(∆t) + O(∆x)
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Truncation errors are a crucial factor in determining
forecast accuracy in NWP.
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of the FDE converges to the PDE solution.
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The second question posed above was whether the solution
of the FDE converges to the PDE solution.

That is, if we let ∆x → 0 and ∆t → 0, so that j∆x → x and
n∆t → t, does U(j∆x, n∆t) → u(x, t)?

This is clearly important, and can be answered by consid-
ering another problem, that of computational stability.

Consider again the advection equation

∂u

∂t
+ c

∂u

∂x
= 0 ,

which has the solution u(x, t) = u(x− ct, 0).

The shape of the solution u(x, 0) translates along the x-axis
with velocity c (see Figure below).
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Schematic of the solution of the advection equation (for c > 0).
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The FDE for the upstream scheme can be written as
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is the Courant number (or Lewy Number).
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j + µUn
j−1

where

µ ≡ c∆t

∆x
is the Courant number (or Lewy Number).

Let us suppose that that 0 ≤ µ ≤ 1.

Then the FDE solution at the new time level Un+1
j is

interpolated between the values Un
j and Un

j−1.

In this case the advection scheme works the way it should,
because the true solution lies in between those values.
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Schematic of the relationship between ∆x, ∆t and c leading to

interpolation of the solution at time-level n + 1.

0 < µ ≡ c∆t

∆x
< 1
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However, suppose this condition is not satisfied, so that

µ =
c∆t
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c∆t
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< 0 .
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Then the parcel arriving at point xj at time tn+1 comes from
somewhere outside the interval (xj−1, xj) at time tn.

[Recall that ∂u/∂t + c∂u/∂x = 0 is a linear approximation to du/dt = 0.]

12
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c∆t

∆x
< 0 .

Then the parcel arriving at point xj at time tn+1 comes from
somewhere outside the interval (xj−1, xj) at time tn.

[Recall that ∂u/∂t + c∂u/∂x = 0 is a linear approximation to du/dt = 0.]

Thus, the value of Un+1
j is extrapolated from

the values Un
j and Un

j−1.
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Schematic of the relationship between ∆x, ∆t and c leading to

extrapolation of the solution at time-level n + 1.

µ ≡ c∆t

∆x
> 1
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µ ≡ c∆t

∆x
< 0
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The problem with extrapolation is that the maximum abso-
lute value of the solution Un

j increases with each time step.
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If we let ∆t → 0 and ∆x → 0 with µ = const., it only makes
things worse, because then n →∞.

In practice, if the condition 0 ≤ µ ≤ 1 is not satisfied, the
FDE blows up in a few time steps.

? ? ?

Do you believe me? See the following exercise.
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Practical Exercise:
Use the simple model SLAM to explore the phenomenon of
computational instability.
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• By numerical experiment, determine approximately the
maximum value of ∆t which yields stable integrations.

• Relate this maximum to the Courant Number.
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of the system?

? ? ?

Break here
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Definition: An FDE is computationally stable if the solution
of the FDE at a fixed time t = n∆t is bounded as ∆t → 0.

Note that with n∆t fixed, ∆t → 0 implies n →∞.

We will derive a condition for stability which involves the
Courant Number.

The condition on the Courant number is usually known as
the Courant-Friedrichs-Lewy criterion or simply the CFL
condition.

? ? ?

Recall the story of Courant, Friedrichs and Lewy in Göttingen.
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Given a properly posed linear initial value problem, and a
finite difference scheme that satisfies the consistency con-
dition, then the stability of the FDE is the necessary and
sufficient condition for convergence.

Stability ⇐⇒ Convergence︸ ︷︷ ︸
For consistent systems

This theorem allows us to establish convergence by exam-
ining the easier questions of consistency and stability.

We are interested in convergence not because we want to
let ∆t, ∆x → 0, but because we want to make sure that the
errors [u(j∆x, n∆t)− Un

j ] are acceptably small.

Definition: [u(j∆x, n∆t)− Un
j ] is the global truncation error.
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Example: We use the criterion of the maximum method to
study the stability condition of the diffusion equation

∂u

∂t
= σ

∂2u

∂x2
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Example: We use the criterion of the maximum method to
study the stability condition of the diffusion equation

∂u

∂t
= σ

∂2u

∂x2

A FDE approximation (FTCS scheme) is given by

Un+1
j − Un

j

∆t
= σ

Un
j+1 − 2Un

j + Un
j−1

∆x2

(verification of consistency of this FDE is immediate).

Note: Since the differences are centered in space but for-
ward in time, the truncation error is first order in time and
second order in space

τ = O(∆t) + O(∆x)2 .

We can write the FDE in the form

Un+1
j = µUn

j+1 + (1− 2µ)Un
j + µUn

j−1

where µ = σ∆t/∆x2.
19



Again,
Un+1

j = µUn
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j + µUn
j−1
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0 ≤ µ ≤ 1/2

to insure that the solution remains bounded as n →∞.

This is the necessary condition for stability of the FDE.
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applied in very few cases.

In most FDEs some coefficients of the equations are nega-
tive, and the criterion cannot be applied.
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j−1

If we take absolute values, and let Υn = maxj |Un
j |, we get

Υn+1 ≤ {|µ| + |1− 2µ| + |µ|}Υn

Thus, we obtain the condition

0 ≤ µ ≤ 1/2

to insure that the solution remains bounded as n →∞.

This is the necessary condition for stability of the FDE.

? ? ?

Unfortunately, the criterion of the maximum can only be
applied in very few cases.

In most FDEs some coefficients of the equations are nega-
tive, and the criterion cannot be applied.

We need a more powerful method of establishing stability.
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The von Neumann Method
Another stability criterion that has much wider application
is the von Neumann stability criterion.
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The von Neumann Method
Another stability criterion that has much wider application
is the von Neumann stability criterion.

We assume that we can expand the solution of the FDE in
an appropriate set of eigenfunctions.

For simplicity we assume an expansion into Fourier series:

U(x, t) =
∑
k

Zk(t)eikx

The space variable x and the wavenumber k can be
multi-dimensional, e.g., x = (x1, x2, x3), k = (k1, k2, k3)
but, for simplicity, we will consider the scalar case.

We have xj = j∆x and tn = n∆t.

We define the wavenumber for the Fourier series: p = k∆x.

Then the Fourier expansion is

Un
j =

∑
p

Zn
p eipj (Note: kx = kj∆x = pj)
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When we substitute this Fourier expansion into a linear
FDE, we obtain a system of equations

Zn+1
p = ρpZ

n
p
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Fourier component of the solution at time n∆t, advances it
to the time (n + 1)∆t; ρp depends on p, ∆t and ∆x.
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for all p when ∆t → 0 and n →∞.
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p = ρpZ
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Here ρp is an amplification factor that, applied to the p-th
Fourier component of the solution at time n∆t, advances it
to the time (n + 1)∆t; ρp depends on p, ∆t and ∆x.

If we know the initial conditions

U0
j =

∑
p

Z0
pe

ipj

then the solution of the FDE is (remember warning about superscripts)

Zn
p = ρn

pZ0
p

Therefore, stability is guaranteed if the factor ρn is bounded
for all p when ∆t → 0 and n →∞.

So, we must have |ρp|n < M for all p as n →∞.
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Aside: Spectral Radius
For the multi-dimensional case, the modulus of ρ is replaced
by the norm of the matrix G and the stability condition
becomes ||Gn|| < M for all p, as n →∞.
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where G? is the transpose-conjugate of G, but in general the
amplification matrices arising from FDEs are not normal.
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Aside: Spectral Radius
For the multi-dimensional case, the modulus of ρ is replaced
by the norm of the matrix G and the stability condition
becomes ||Gn|| < M for all p, as n →∞.

The norm ||G|| is a measure of the size of a matrix G.

Let σ(G) be the spectral radius of G, i.e., σ(G) = maxi |λi|,
where λi are the eigenvalues of G,

Then “it can be shown that”, for any norm,

[σ(G)]n ≤ ||Gn|| ≤ ||G||n

The equal sign is valid if G is normal, i.e., if G? = G?G,
where G? is the transpose-conjugate of G, but in general the
amplification matrices arising from FDEs are not normal.

End of digression
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We found that, for stability, we must have |ρ|n < M for all p
as n →∞. Clearly, this requires

|ρ|n ≤ exp α for some constant α
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|ρ| ≤ 1 + O(∆t)
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We found that, for stability, we must have |ρ|n < M for all p
as n →∞. Clearly, this requires

|ρ|n ≤ exp α for some constant α

Thus, a necessary condition for stability, and therefore a
necessary condition for convergence, is that

lim
∆t→0,n∆t→t

|ρ|n = finite = eα

Then

|ρ| ≤
[
|ρ|n

]1/n ≤ eα/n = eα∆t/t ≈ 1 +
α∆t

t
or simply

|ρ| ≤ 1 + O(∆t)

This is the von Neumann necessary condition for
computational stability.
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Comment: The term O(∆t) allows for bounded growth which
may arise from a physical instability present in the PDE.

If the exact solution grows with time, then the FDE cannot
both satisfy |ρ| ≤ 1 and be consistent with the PDE.
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If the exact solution grows with time, then the FDE cannot
both satisfy |ρ| ≤ 1 and be consistent with the PDE.

Sufficient conditions are very complicated, and are known
only for special cases.

In practice, we usually require |ρ| ≤ 1 to guarantee compu-
tational stability.

? ? ?

For more complicated equations, the von Neumann criterion
involves a matrix G rather than the amplification factor ρ.

The stability criterion then involves the eigenvalues of the
amplification matrix, and the von Neumann stability crite-
rion is ||G|| ≤ 1 + O(∆t).
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Application to Advection Equation

PDE:
∂u

∂t
+ c

∂u

∂x
= 0

FDE:
Un+1

j − Un
j

∆t
+ c

Un
j − Un

j−1

∆x
= 0 (upstream scheme)
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Application to Advection Equation

PDE:
∂u

∂t
+ c

∂u

∂x
= 0

FDE:
Un+1

j − Un
j

∆t
+ c

Un
j − Un

j−1

∆x
= 0 (upstream scheme)

We have already studied consistency, and used the criterion
of the maximum to get a sufficient condition for stability.

Let us now apply the von Neumann criterion. Assume that

Un
j =

∑
p

Zn
p eipj =

∑
p

Apρ
n
peipj

Since the equation is linear we can consider a single term

Un
j = Apρ

n
peipj = Aρneipj
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We substitute Un
j = Aρneipj in the equation and divide by

Un
j to obtain

ρ− 1

∆t
+ c

(1− e−ip)

∆x
= 0 for all p

27



We substitute Un
j = Aρneipj in the equation and divide by

Un
j to obtain

ρ− 1

∆t
+ c

(1− e−ip)

∆x
= 0 for all p

The amplification factor ρ is the same as a 1 × 1 amplifica-
tion matrix G, and the stability condition is |ρ| ≤ 1 for all
wavenumbers p.
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We substitute Un
j = Aρneipj in the equation and divide by

Un
j to obtain

ρ− 1

∆t
+ c

(1− e−ip)

∆x
= 0 for all p

The amplification factor ρ is the same as a 1 × 1 amplifica-
tion matrix G, and the stability condition is |ρ| ≤ 1 for all
wavenumbers p.

We need to estimate the maximum value of ρ.

ρ = 1− µ(1− e−ip) = 1− µ(1− cos p + i sin p)

Then the modulus squared is just

|ρ|2 = [1− µ(1− cos p)]2 + µ2 sin2 p

27



To repeat,

|ρ|2 = [1− µ(1− cos p)]2 + µ2 sin2 p
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p

2
− sin2 p
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= c2 − s2 sin p = 2 sin

p

2
cos

p

2
= 2sc
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= [1− 2µs2]2 + 4µ2s2(1− s2)

= [1− 4µs2 + 4µ2s4] + 4µ2s2 − 4µ2s4

= 1− 4µs2 + 4µ2s2

= 1− 4µ(1− µ)s2

Thus we obtain

|ρ|2 = 1− 4µ(1− µ) sin2 p

2
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be present in the finite difference solution is L = 2∆x.
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To repeat,

|ρ|2 = 1− 4µ(1− µ) sin2 p
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First, consider the sin2p/2 term: The shortest wave that can
be present in the finite difference solution is L = 2∆x.

Therefore the maximum value that p = k∆x = 2π∆x/L can
take is p = π, and the maximum value of sin2p/2 is 1.

Second, consider the factor 4µ(1 − µ). This is a parabola,
whose maximum value is 1 when µ = 0.5.

So the von Neumann condition is satisfied provided

0 ≤ µ ≤ 1 .

This coincides with the criterion of the maximum result.
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|ρ|2 = 1− 4µ(1− µ) sin2 p

2

First, consider the sin2p/2 term: The shortest wave that can
be present in the finite difference solution is L = 2∆x.

Therefore the maximum value that p = k∆x = 2π∆x/L can
take is p = π, and the maximum value of sin2p/2 is 1.

Second, consider the factor 4µ(1 − µ). This is a parabola,
whose maximum value is 1 when µ = 0.5.

So the von Neumann condition is satisfied provided

0 ≤ µ ≤ 1 .

This coincides with the criterion of the maximum result.

It is also consistent with the idea that we should not
extrapolate but always interpolate to get the new values.
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Damping Effects of Scheme
The amplification factor ρ indicates how much the amplitude
of each wavenumber will decrease or increase each time step.
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Damping Effects of Scheme
The amplification factor ρ indicates how much the amplitude
of each wavenumber will decrease or increase each time step.

The upstream scheme decreases the amplitude of all Fourier
wave components of the solution, since 0 < µ < 1 =⇒ |ρ| < 1.

It is therefore a very dissipative FDE: it has strong numer-
ical diffusion.
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ing the upstream scheme after one time step and after 100
time steps (the Courant number is µ = 0.5).
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Since the truncation error is large, the upstream scheme is
in general not recommended except for special situations
(e.g., for outflow boundary conditions).
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Damping Effects of Scheme
The amplification factor ρ indicates how much the amplitude
of each wavenumber will decrease or increase each time step.

The upstream scheme decreases the amplitude of all Fourier
wave components of the solution, since 0 < µ < 1 =⇒ |ρ| < 1.

It is therefore a very dissipative FDE: it has strong numer-
ical diffusion.

The figure below shows the decrease in amplitude when us-
ing the upstream scheme after one time step and after 100
time steps (the Courant number is µ = 0.5).

Since the truncation error is large, the upstream scheme is
in general not recommended except for special situations
(e.g., for outflow boundary conditions).

An alternative, less damping scheme known as the Matsuno
or Euler-backward scheme is also shown.
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Amplification factor for the upstream scheme and the Matsuno

scheme, with Courant Number µ = 0.5. Response for 1 step and 100

steps shown. L is the wavelength in units of ∆x.
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