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In this section we consider the numerical discretization of the equations of motion.



Text for the Course
The lectures will be based closely on the text

Atmospheric Modeling, Data Assimilation and Predictability
by

Eugenia Kalnay

published by Cambridge University Press (2002).
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Numerical Methods (Kalnay, Ch. 3)
• NWP is an initial/boundary value problem

• Given

– an estimate of the present state of the atmosphere
(initial conditions)

– appropriate surface and lateral boundary conditions

the model simulates or forecasts the evolution of the at-
mosphere.

• The more accurate the estimate of the initial conditions,
the better the quality of the forecasts.

• Similariy, the more accurate the solution method, the
better the quality of the forecasts.

We now consider methods of solving PDEs numerically.
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Partial Differential Equations
We begin by looking at the classification of partial differen-
tial equations (PDEs).

The general second order linear PDE in 2D may be written

A
∂2u

∂x2
+ 2B

∂2u

∂x∂y
+ C

∂2u

∂y2
+ D

∂u

∂x
+ E

∂u

∂y
+ Fu = 0

Second order linear partial differential equations are classi-
fied into three types depending on the sign of B2 − AC:

• Hyperbolic: B2 − AC > 0

• Parabolic: B2 − AC = 0

• Elliptic: B2 − AC < 0

Recall the equations of the conic sections

x2

a2
− y2

b2
= 1︸ ︷︷ ︸

Hyperbola

x2 = y︸ ︷︷ ︸
Parabola

x2

a2
+

y2

b2
= 1︸ ︷︷ ︸

Ellipse
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The simplest (canonical) examples of these equations are

(a)
∂2u

∂t2
= c2∂

2u

∂x2
Wave equation (hyperbolic).

(b)
∂u

∂t
= σ

∂2u

∂x2
Diffusion equation (parabolic).

(c)
∂2u

∂x2
+

∂2u

∂y2
= f (x, y) Poisson’s equation (elliptic).
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The simplest (canonical) examples of these equations are

(a)
∂2u

∂t2
= c2∂

2u

∂x2
Wave equation (hyperbolic).

(b)
∂u

∂t
= σ

∂2u

∂x2
Diffusion equation (parabolic).

(c)
∂2u

∂x2
+

∂2u

∂y2
= f (x, y) Poisson’s equation (elliptic).

Example of hyperbolic equation:

• Vibrating String.

• Water Waves.

Example of parabolic equation:

• Heated Rod.

• Viscous Damping.
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Examples of Elliptic Equation:

• Shape of a drum.

• Streamfunction/vorticity relationship.

? ? ?
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Examples of Elliptic Equation:

• Shape of a drum.

• Streamfunction/vorticity relationship.

? ? ?

Note: The following standard elliptic equations arise re-
peatedly in a multitude of contexts throughout science:

• Poisson’s Equation: ∇2u = f .

• Laplace’s Equation: ∇2u = 0.
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The behaviour of the solutions, the proper initial and/or
boundary conditions, and the numerical methods that can
be used to find the solutions depend essentially on the type
of PDE that we are dealing with.
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The behaviour of the solutions, the proper initial and/or
boundary conditions, and the numerical methods that can
be used to find the solutions depend essentially on the type
of PDE that we are dealing with.

Thus, we need to study the canonical PDEs to develop an
understanding of their properties, and then apply similar
methods to the more complicated NWP equations.

? ? ?

A fourth canonical equation, of central importance in atmo-
spheric science, is

(d)
∂u

∂t
+ c

∂u

∂x
= 0 Advection equation.

The advection equation has the solution u(x, t) = u(x− ct, 0).
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The advection equation is a first order PDE, but it can also
be classified as hyperbolic, since its solutions satisfy the
wave equation:
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2u
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=
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∂
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+ c

∂
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) (
∂

∂t
− c

∂

∂x

)
u = 0

Obviously, if ∂u/∂t + c ∂u/∂x = 0, then u is a solution of the
wave equation.
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The advection equation is a first order PDE, but it can also
be classified as hyperbolic, since its solutions satisfy the
wave equation:

∂2u

∂t2
− c2∂

2u

∂x2
=

(
∂

∂t
+ c

∂

∂x

) (
∂

∂t
− c

∂

∂x

)
u = 0

Obviously, if ∂u/∂t + c ∂u/∂x = 0, then u is a solution of the
wave equation.

? ? ?

We note that if the elliptic Laplace equation is split up like
this, the component operators are complex:

∂2u

∂x2
+

∂2u

∂y2
=

(
∂

∂x
+ i

∂

∂y

) (
∂

∂x
− i

∂

∂y

)
u = 0
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The advection equation is a first order PDE, but it can also
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∂
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)
u = 0

Obviously, if ∂u/∂t + c ∂u/∂x = 0, then u is a solution of the
wave equation.

? ? ?

We note that if the elliptic Laplace equation is split up like
this, the component operators are complex:

∂2u

∂x2
+

∂2u

∂y2
=

(
∂

∂x
+ i

∂

∂y

) (
∂

∂x
− i

∂

∂y

)
u = 0

We cannot split this equation into two real first-order
factors.
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Example: Solve the Wave Equation
We will derive the solution of the wave equation by
transformation of variables.
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Example: Solve the Wave Equation
We will derive the solution of the wave equation by
transformation of variables.

Define the new variables ξ = x− ct and η = x + ct.

Then

ux = ξxuξ + ηxuη = uξ + uη

ut = ξtuξ + ηtuη = −cuξ + cuη

uxx = [uξξ + 2uξη + uηη]

utt = c2[uξξ − 2uξη + uηη]

Therefore

[utt − c2uxx] = −4c2uξη = 0 which means
∂2u

∂ξ∂η
= 0 .

The solution of this equation may be expressed as a sum of
a function of ξ and another of η: u = f (x− ct) + g(x + ct).
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Well-posedness
A well-posed initial/boundary condition problem has a unique
solution that depends continuously on the initial/boundary
conditions.
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Well-posedness
A well-posed initial/boundary condition problem has a unique
solution that depends continuously on the initial/boundary
conditions.

The specification of proper initial conditions and boundary
conditions for a PDE is essential in order to have a well-
posed problem.

• If too many initial/boundary conditions are specified, there
will be no solution.

• If too few are specified, the solution will not be unique.

• If the number of initial/boundary conditions is right, but
they are specified at the wrong place or time, the solu-
tion will be unique, but it will not depend smoothly on
initial/boundary conditions.

For ill-posed problems, small errors in the initial/boundary
conditions may produce huge errors in the solution.
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∂t2
− c2 ∂2u

∂x2
= 0

subject to the following conditions:

u(x, 0) = a0(x) u(x, 1) = a1(x) u(0, t) = b0(t) u(0, t) = b1(t)
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In any of the above cases we have an ill-posed problem.

We can never find a numerical solution of a problem that is
ill posed: the computation will react by blowing up.

? ? ?

Example: Solve the hyperbolic equation

∂2u

∂t2
− c2 ∂2u

∂x2
= 0

subject to the following conditions:

u(x, 0) = a0(x) u(x, 1) = a1(x) u(0, t) = b0(t) u(0, t) = b1(t)

Example: Solve the advection equation

∂u

∂t
+ c

∂u

∂x
= 0

on 0 ≤ x ≤ 1 and t ≥ 0 with the initial/boundary conditions

u(x, 0) = u0(x) u(0, t) = uL(t) u(1, t) = uR(t) .
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The Elliptic Case
Second order elliptic equations require one boundary con-
dition at each point of the spatial boundary.
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The Elliptic Case
Second order elliptic equations require one boundary con-
dition at each point of the spatial boundary.

These are pure boundary value, time-independent prob-
lems. The boundary conditions may be:

• The value of the function (Dirichlet problem), as when
we specify the temperature on the edge of a plate.

• The normal derivative (Neumann problem), as when we
specify the heat flux.

• A mixed boundary condition, involving a linear combina-
tion of the function and its derivative (Robin problem).
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The Parabolic Case
Linear parabolic equations require one initial condition at
the initial time and one boundary condition at each point
of the spatial boundaries.
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For example, for a heated rod, we need the initial tempera-
ture at each point T (x, 0) and the temperature at each end,
T (0, t) and T (L, t) as a function of time.

In atmospheric science, the parabolic case arises mainly
when we consider diffusive processes: internal viscosity;
boundary layer friction; etc.

To give an example, consider the highlighted terms of the
Navier-Stokes Equations

∂V

∂t
+ V · ∇V + 2Ω×V +

1

ρ
∇p = ν∇2V

? ? ?
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The Parabolic Case
Linear parabolic equations require one initial condition at
the initial time and one boundary condition at each point
of the spatial boundaries.

For example, for a heated rod, we need the initial tempera-
ture at each point T (x, 0) and the temperature at each end,
T (0, t) and T (L, t) as a function of time.

In atmospheric science, the parabolic case arises mainly
when we consider diffusive processes: internal viscosity;
boundary layer friction; etc.

To give an example, consider the highlighted terms of the
Navier-Stokes Equations

∂V

∂t
+ V · ∇V + 2Ω×V +

1

ρ
∇p = ν∇2V

? ? ?

Break here.
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The Hyperbolic Case
Linear hyperbolic equations require as many initial condi-
tions as the number of characteristics that come out of every
point in the surface t = 0, and as many boundary conditions
as the number of characteristics that cross a point in the
(space) boundary pointing inwards.
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The Hyperbolic Case
Linear hyperbolic equations require as many initial condi-
tions as the number of characteristics that come out of every
point in the surface t = 0, and as many boundary conditions
as the number of characteristics that cross a point in the
(space) boundary pointing inwards.

For example: Solve ∂u/∂t + c ∂u/∂x = 0 for x > 0, t > 0.

The characteristics are the solutions of dx/dt = c.

The space boundary is x = 0.

If c > 0, we need the initial condition u(x, 0) = f (x) and the
boundary condition u(0, t) = g(t).

If c < 0, we need the initial condition u(x, 0) = f (x) but no
boundary conditions.
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Schematic of the characteristics of the advection equation

∂u

∂t
+ c

∂u

∂x
= 0

for (a) positive and (b) negative velocity c.
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For nonlinear equations, no general statements can be made,
but physical insight and local linearization can help to de-
termine proper initial/boundary conditions.
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For nonlinear equations, no general statements can be made,
but physical insight and local linearization can help to de-
termine proper initial/boundary conditions.

For example, in the nonlinear advection equation

∂u

∂t
+ u

∂u

∂x
= 0

the characteristics are dx/dt = u.

We don’t know a priori the sign of u at the boundary, and
whether the characteristics will point inwards or outwards.

? ? ?

One method of solving simple PDEs is the method of sep-
aration of variables. Unfortunately in most cases it is not
possible to use it.

Nevertheless, it is instructive to solve some simple PDE’s
analytically, using the method of separation of variables.
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Separation of Variables
Example 1: An Elliptic Equation.
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Solve, by the method of separation of variables, the PDE:
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∂2u

∂y2
= 0 0 ≤ x ≤ 1 0 ≤ y ≤ 1

subject to the boundary conditions

u(x, 0) = 0 u(0, y) = 0 u(1, y) = 0 u(x, 1) = A sin mπx,
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= 0 0 ≤ x ≤ 1 0 ≤ y ≤ 1

subject to the boundary conditions

u(x, 0) = 0 u(0, y) = 0 u(1, y) = 0 u(x, 1) = A sin mπx,

Assume the solution is a product of a function of x and a
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u(x, y) = X(x) · Y (y)
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Separation of Variables
Example 1: An Elliptic Equation.

Solve, by the method of separation of variables, the PDE:

∇2u =
∂2u

∂x2
+

∂2u

∂y2
= 0 0 ≤ x ≤ 1 0 ≤ y ≤ 1

subject to the boundary conditions

u(x, 0) = 0 u(0, y) = 0 u(1, y) = 0 u(x, 1) = A sin mπx,

Assume the solution is a product of a function of x and a
function of y:

u(x, y) = X(x) · Y (y)

The equation becomes

Y
d2X

dx2
+ X

d2Y

dy2
= 0 or

1

X

d2X

dx2
= − 1

Y

d2Y

dy2

The left side is a function of x, the right a function of y.
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Thus, they must both be equal to a constant −K2

d2X

dx2
+ K2X = 0

d2Y

dy2
−K2Y = 0
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Thus, they must both be equal to a constant −K2

d2X

dx2
+ K2X = 0

d2Y

dy2
−K2Y = 0

The solutions of the two equations are

X = C1 sin Kx + C2 cos Kx Y = C3 sinh Ky + C4 cosh Ky

The boundary condition u(0, y) = 0 forces C2 = 0,
so X = C1 sin Kx.

The boundary condition u(1, y) = 0 forces sin Kx = 0 or K = nπ
so X = C1 sin nπx.
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so X = C1 sin nπx.

The boundary condition u(x, 0) = 0 forces C4 = 0,
so Y = C3 sinh nπy.
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Thus, they must both be equal to a constant −K2

d2X

dx2
+ K2X = 0

d2Y

dy2
−K2Y = 0

The solutions of the two equations are

X = C1 sin Kx + C2 cos Kx Y = C3 sinh Ky + C4 cosh Ky

The boundary condition u(0, y) = 0 forces C2 = 0,
so X = C1 sin Kx.

The boundary condition u(1, y) = 0 forces sin Kx = 0 or K = nπ
so X = C1 sin nπx.

The boundary condition u(x, 0) = 0 forces C4 = 0,
so Y = C3 sinh nπy.

The boundary condition u(x, 1) = A sin mπx forces C1 sin nπx×
C3 sinh nπ = A sin mπx, so that n = m and C1C3 sinh mπ = A.
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Thus, C1C3 = A/ sinh mπ, and the solution is

u(x, y) =

(
A

sinh mπ

)
sin mπx sinh mπy

? ? ?
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Suppose the solution on the “northern” side is now

u(x, 1) = f (x)

Find the solution.
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Thus, C1C3 = A/ sinh mπ, and the solution is

u(x, y) =

(
A

sinh mπ

)
sin mπx sinh mπy

? ? ?

More general BCs

Suppose the solution on the “northern” side is now

u(x, 1) = f (x)

Find the solution.

We note that the equation is linear and homogeneous, so
that, given two solutions, a linear combination of them is
also a solution of the equation.
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We assume that we can Fourier-analyse the function f (x):

f (x) =

∞∑
k=1

ak sin kπx with
∞∑

k=1

k2 |ak| < ∞
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boundary values on the other three edges.
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We assume that we can Fourier-analyse the function f (x):

f (x) =

∞∑
k=1

ak sin kπx with
∞∑

k=1

k2 |ak| < ∞

Then the solution may be expressed as:

u(x, y) =

∞∑
k=1

( ak

sinh kπ

)
sin kπx sinh kπy

In the same way, we can find solutions for non-vanishing
boundary values on the other three edges.

Thus, the more general problem on a rectangular domain:

∇2u(x, y) = 0 , u(x, y) = F (x, y) on the boundary

may be solved.
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Another Example: A Parabolic Equation.
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Another Example: A Parabolic Equation.

∂u

∂t
= σ

∂2u

∂x2
0 ≤ x ≤ 1 t ≥ 0

Boundary conditions:

u(0, t) = 0 u(1, t) = 0

Initial condition:

u(x, 0) = f (x) =

∞∑
k=1

ak sin kπx

Find the solution:

u(x, t) =

∞∑
k=1

ake
−σk2π2t sin kπx

Note that the higher the wavenumber, the faster it goes to
zero, i.e., the solution is smoothed as time goes on.
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Another Example: A Hyperbolic Equation.

∂2u

∂t2
= c2∂

2u

∂x2
0 ≤ x ≤ 1 0 ≤ t ≤ 1
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Another Example: A Hyperbolic Equation.
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0 ≤ x ≤ 1 0 ≤ t ≤ 1

Boundary conditions:

u(0, t) = 0 u(1, t) = 0

Initial conditions:

u(x, 0) = f (x) =
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k=1

ak sin kπx
∂u

∂t
(x, 0) = g(x) =

∞∑
k=1

bk sin kπx
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Another Example: A Hyperbolic Equation.

∂2u

∂t2
= c2∂

2u

∂x2
0 ≤ x ≤ 1 0 ≤ t ≤ 1

Boundary conditions:

u(0, t) = 0 u(1, t) = 0

Initial conditions:

u(x, 0) = f (x) =

∞∑
k=1

ak sin kπx
∂u

∂t
(x, 0) = g(x) =

∞∑
k=1

bk sin kπx

Find the solution by the separation of variables method.
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Same equation as above, but different boundary conditions:

∂2u

∂t2
= c2∂

2u

∂x2
0 ≤ x ≤ 1 0 ≤ t ≤ 1
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In other words, we try to solve a hyperbolic (wave) equation
as if it were an elliptic equation (boundary value problem).
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Same equation as above, but different boundary conditions:

∂2u

∂t2
= c2∂

2u

∂x2
0 ≤ x ≤ 1 0 ≤ t ≤ 1

Boundary conditions:

u(0, t) = 0 u(1, t) = 0

Instead of two initial conditions, we give an initial and a
“final” condition:

u(x, 0) = f (x) u(x, 1) = g(x)

In other words, we try to solve a hyperbolic (wave) equation
as if it were an elliptic equation (boundary value problem).

Exercise: Show that the solution is unique but that it does
not depend continuously on the boundary conditions, and
therefore is not a well-posed problem.
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Conclusion: Before trying to solve a problem numerically,
we must make sure that it is well posed: it has a unique
solution that depends continuously on the data that define
the problem.

? ? ?
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Food for Thought

Lorenz showed that the atmosphere has a finite limit of
predictability:

Even if the models and the observations are perfect, the
flapping of a butterfly in Brazil will result in a completely
different forecast for Texas.
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Conclusion: Before trying to solve a problem numerically,
we must make sure that it is well posed: it has a unique
solution that depends continuously on the data that define
the problem.

? ? ?

Food for Thought

Lorenz showed that the atmosphere has a finite limit of
predictability:

Even if the models and the observations are perfect, the
flapping of a butterfly in Brazil will result in a completely
different forecast for Texas.

Does this mean that the problem of NWP is not well posed?

If not, why not?

Consider again the definition of an ill-posed problem.
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