# Laplace Transform Integration (ACM 40520)

**Peter Lynch** 

**School of Mathematical Sciences** 



#### Outline

**Basic Theory** 

**Residue Theorem** 

**Ordinary Differential Equations** 

**General Vector NWP Equation** 

Lagrangian Formulation



**Basic Theory** 

Residues

ODEs

NWP Equation

#### Outline

#### **Basic Theory**

**Residue Theorem** 

**Ordinary Differential Equations** 

**General Vector NWP Equation** 

Lagrangian Formulation



**Basic Theory** 

Residues

ODEs

NWP Equation

#### The Laplace Transform: Definition

For a function of time f(t), the LT is defined as

$$\hat{f}(s) = \int_0^\infty e^{-st} f(t) \,\mathrm{d}t$$
 .

Here, *s* is complex and  $\hat{f}(s)$  is a complex function of *s*.



**Basic Theory** 

ODEs

NWP Equation

### The Laplace Transform: Definition

For a function of time f(t), the LT is defined as

$$\hat{f}(s) = \int_0^\infty e^{-st} f(t) \,\mathrm{d}t$$
 .

Here, *s* is complex and  $\hat{f}(s)$  is a complex function of *s*.

The inversion from  $\hat{f}(s)$  back to f(t) is

$$f(t) = \frac{1}{2\pi i} \int_{\mathcal{C}_1} e^{st} \hat{f}(s) \,\mathrm{d}s.$$

where  $C_1$  is a contour in the *s*-plane, parallel to the imaginary axis, to the right of all singularities of  $\hat{f}(s)$ .



Basic Theory

ODEs

**NWP Equation** 

#### Contour for inversion of Laplace Transform



### **Integral Transforms**

The LT is one of a large family of integral transforms

They can be defined as

$$F(s) = \int_{\mathcal{R}} K(s,t) f(t) \, \mathrm{d}t$$

where  $\mathcal{R}$  is the range of f(t) and K(s, t) is called the kernel of the transform.



**Basic Theory** 

ODEs

NWP Equation

### **Integral Transforms**

The LT is one of a large family of integral transforms

They can be defined as

$$F(s) = \int_{\mathcal{R}} K(s,t) f(t) \, \mathrm{d}t$$

where  $\mathcal{R}$  is the range of f(t) and K(s, t) is called the kernel of the transform.

For example, the Fourier transform is

$$ilde{f}(\omega) = \int_{-\infty}^{\infty} {oldsymbol e}^{-i\omega t} \, f(t) \, \mathrm{d}t \qquad f(t) = rac{1}{2\pi} \int_{-\infty}^{\infty} {oldsymbol e}^{+i\omega t} \, ilde{f}(\omega) \, \mathrm{d}\omega$$



Lagrange

**Basic Theory** 

ODEs

**NWP Equation** 

## **Integral Transforms**

The LT is one of a large family of integral transforms

They can be defined as

$$F(s) = \int_{\mathcal{R}} K(s,t) f(t) \, \mathrm{d}t$$

where  $\mathcal{R}$  is the range of f(t) and K(s, t) is called the kernel of the transform.

For example, the Fourier transform is

$$ilde{f}(\omega) = \int_{-\infty}^{\infty} {oldsymbol e}^{-i\omega t} \, f(t) \, \mathrm{d}t \qquad f(t) = rac{1}{2\pi} \int_{-\infty}^{\infty} {oldsymbol e}^{+i\omega t} \, ilde{f}(\omega) \, \mathrm{d}\omega$$

#### The Hilbert transform is another ... and many more.

**Basic Theory** 

ODEs

**NWP Equation** 

### The LT is a linear operator

$$\mathcal{L}{f(t)} = \hat{f}(s) \equiv \int_0^\infty e^{-st} f(t) \,\mathrm{d}t.$$

#### Therefore

$$\mathcal{L}\{\alpha f(t)\} = \int_0^\infty e^{-st} \, \alpha f(t) \, \mathrm{d}t = \alpha \int_0^\infty e^{-st} \, f(t) \, \mathrm{d}t = \alpha \mathcal{L}\{f(t)\} \, .$$



**Basic Theory** 

ODEs

NWP Equation

### The LT is a linear operator

$$\mathcal{L}{f(t)} = \hat{f}(s) \equiv \int_0^\infty e^{-st} f(t) \,\mathrm{d}t \,.$$

Therefore

$$\mathcal{L}\{\alpha f(t)\} = \int_0^\infty e^{-st} \, \alpha f(t) \, \mathrm{d}t = \alpha \int_0^\infty e^{-st} \, f(t) \, \mathrm{d}t = \alpha \mathcal{L}\{f(t)\} \, .$$

#### Also

$$\mathcal{L}\lbrace f(t)+g(t)\rbrace = \int_0^\infty e^{-st} \left[f(t)+g(t)\right] \mathrm{d}t = \mathcal{L}\lbrace f(t)\rbrace + \mathcal{L}\lbrace g(t)\rbrace.$$



**Basic Theory** 

ODEs

**NWP Equation** 

### The LT is a linear operator

$$\mathcal{L}{f(t)} = \hat{f}(s) \equiv \int_0^\infty e^{-st} f(t) \,\mathrm{d}t \,.$$

Therefore

$$\mathcal{L}\{\alpha f(t)\} = \int_0^\infty e^{-st} \, \alpha f(t) \, \mathrm{d}t = \alpha \int_0^\infty e^{-st} \, f(t) \, \mathrm{d}t = \alpha \mathcal{L}\{f(t)\} \, .$$

#### Also

$$\mathcal{L}\lbrace f(t)+g(t)\rbrace = \int_0^\infty e^{-st} \left[f(t)+g(t)\right] \mathrm{d}t = \mathcal{L}\lbrace f(t)\rbrace + \mathcal{L}\lbrace g(t)\rbrace.$$

#### Therefore

#### $\mathcal{L}\{\alpha f(t) + \beta g(t)\} = \alpha \mathcal{L}\{f(t)\} + \beta \mathcal{L}\{g(t)\}.$



**Basic Theory** 

ODEs

**NWP Equation** 

• 
$$\mathcal{L}{a} = a/s$$

•  $\mathcal{L}{\exp(at)} = 1/(s-a)$ 



#### **Basic Theory**

ODEs

NWP Equation

- $\mathcal{L}{a} = a/s$
- $\mathcal{L}{\exp(at)} = 1/(s-a)$

• 
$$\mathcal{L}\{\exp(i\omega t)\} = 1/(s - i\omega)$$



#### **Basic Theory**

ODEs

NWP Equation

La

- $\mathcal{L}{a} = a/s$
- $\mathcal{L}\{\exp(at)\} = 1/(s-a)$
- $\blacktriangleright \mathcal{L}\{\exp(i\omega t)\} = 1/(s i\omega)$
- $\mathcal{L}{\text{sin } at} = a/(s^2 + a^2)$
- $\mathcal{L}\{\cos at\} = s/(s^2 + a^2)$



ODEs

NWP Equation

- $\blacktriangleright \mathcal{L}\{a\} = a/s$
- $\mathcal{L}\{\exp(at)\} = 1/(s-a)$
- $\mathcal{L}\{\exp(i\omega t)\} = 1/(s i\omega)$
- $\blacktriangleright \mathcal{L}\{\sin at\} = a/(s^2 + a^2)$
- $\mathcal{L}\{\cos at\} = s/(s^2 + a^2)$
- $\blacktriangleright \mathcal{L}\{\mathrm{d}f/\mathrm{d}t\} = \hat{sf}(s) f(0)$



ODEs

NWP Equation

- $\mathcal{L}{a} = a/s$
- $\mathcal{L}\{\exp(at)\} = 1/(s-a)$
- $\mathcal{L}\{\exp(i\omega t)\} = 1/(s i\omega)$
- $\blacktriangleright \mathcal{L}\{\sin at\} = a/(s^2 + a^2)$
- $\mathcal{L}\{\cos at\} = s/(s^2 + a^2)$
- $\blacktriangleright \mathcal{L}\{\mathrm{d}f/\mathrm{d}t\} = \hat{sf}(s) f(0)$

# All these results can be demonstrated immediately by using the definition of the Laplace transform $\mathcal{L}{f(t)}$ .



ODEs

**NWP Equation** 

#### Outline

#### **Basic Theory**

#### **Residue Theorem**

**Ordinary Differential Equations** 

**General Vector NWP Equation** 

Lagrangian Formulation



**Basic Theory** 

Residues

ODEs

NWP Equation

#### Let f(t) have a single harmonic component

 $f(t) = \alpha \exp(i\omega t)$ 



**Basic Theory** 

ODEs

**NWP Equation** 

Let f(t) have a single harmonic component

 $f(t) = \alpha \exp(i\omega t)$ 

**Exercise:** Show that the LT of f(t) is

$$\hat{f}(s) = rac{lpha}{s - i\omega}$$

a *holomorphic function* with a simple pole at  $s = i\omega$ .



ODEs

NWP Equation

Let f(t) have a single harmonic component

 $f(t) = \alpha \exp(i\omega t)$ 

**Exercise:** Show that the LT of f(t) is

$$\hat{f}(s) = rac{lpha}{s - i\omega}$$

a *holomorphic function* with a simple pole at  $s = i\omega$ .

A pure (monochrome) oscillation in time transforms to a function with a single pole.



Lagrange

ODEs

**NWP Equation** 

Let f(t) have a single harmonic component

 $f(t) = \alpha \exp(i\omega t)$ 

**Exercise:** Show that the LT of f(t) is

$$\hat{f}(s) = rac{lpha}{s - i\omega}$$

a *holomorphic function* with a simple pole at  $s = i\omega$ .

A pure (monochrome) oscillation in time transforms to a function with a single pole.

# The position of the pole is determined by the frequency of the oscillation.

**Basic Theory** 

ODEs

**NWP Equation** 

$$\hat{f}(oldsymbol{s}) = \mathcal{L}\{lpha \ oldsymbol{exp}(oldsymbol{i}\omega t)\} = rac{lpha}{oldsymbol{s} - oldsymbol{i}\omega} \, .$$



Basic Theory

#### Residues

ODE

NWP Equation

$$\hat{f}(s) = \mathcal{L}\{lpha exp(i\omega t)\} = rac{lpha}{s - i\omega}$$
 .

The inverse transform of  $\hat{f}(s)$  is

$$f(t) = \frac{1}{2\pi i} \int_{\mathcal{C}_1} e^{st} \hat{f}(s) \,\mathrm{d}s = \frac{1}{2\pi i} \int_{\mathcal{C}_1} \frac{\alpha \exp(st)}{s - i\omega} \,\mathrm{d}s.$$



Basic Theory

ODEs

NWP Equation

$$\hat{f}(s) = \mathcal{L}\{lpha \exp(i\omega t)\} = rac{lpha}{s - i\omega}.$$

The inverse transform of  $\hat{f}(s)$  is

$$f(t) = \frac{1}{2\pi i} \int_{\mathcal{C}_1} e^{st} \hat{f}(s) \,\mathrm{d}s = \frac{1}{2\pi i} \int_{\mathcal{C}_1} \frac{\alpha \exp(st)}{s - i\omega} \,\mathrm{d}s.$$

We augment  $C_1$  by a semi-circular arc  $C_2$  in the left half-plane. Denote the resulting closed contour by  $C_0 = C_1 \cup C_2$ .



**Basic Theory** 

ODEs

**NWP Equation** 

$$\hat{f}(s) = \mathcal{L}\{lpha \exp(i\omega t)\} = rac{lpha}{s - i\omega}$$
 .

The inverse transform of  $\hat{f}(s)$  is

$$f(t) = \frac{1}{2\pi i} \int_{\mathcal{C}_1} e^{st} \hat{f}(s) \,\mathrm{d}s = \frac{1}{2\pi i} \int_{\mathcal{C}_1} \frac{\alpha \,\exp(st)}{s - i\omega} \,\mathrm{d}s.$$

We augment  $C_1$  by a semi-circular arc  $C_2$  in the left half-plane. Denote the resulting closed contour by  $C_0 = C_1 \cup C_2$ .

If it can be shown that this leaves the value of the integral unchanged, the inverse is an integral around a closed contour.



ODEs

**NWP Equation** 

$$\hat{f}(s) = \mathcal{L}\{lpha \exp(i\omega t)\} = rac{lpha}{s - i\omega}$$
 .

The inverse transform of  $\hat{f}(s)$  is

$$f(t) = \frac{1}{2\pi i} \int_{\mathcal{C}_1} e^{st} \hat{f}(s) \,\mathrm{d}s = \frac{1}{2\pi i} \int_{\mathcal{C}_1} \frac{\alpha \,\exp(st)}{s - i\omega} \,\mathrm{d}s.$$

We augment  $C_1$  by a semi-circular arc  $C_2$  in the left half-plane. Denote the resulting closed contour by  $C_0 = C_1 \cup C_2$ .

If it can be shown that this leaves the value of the integral unchanged, the inverse is an integral around a closed contour.



|              |          | See textbook of Doetsch |              |     |        |
|--------------|----------|-------------------------|--------------|-----|--------|
| Basic Theory | Residues | ODEs                    | NWP Equation | Lag | grange |







Basic Theory

Residues

ODE

**NWP Equation** 

For an integral around a closed contour,

$$f(t) = rac{1}{2\pi i} \oint_{\mathcal{C}_0} rac{lpha \exp(st)}{s - i\omega} \,\mathrm{d}s \,,$$

we can apply the residue theorem:



**Basic Theory** 

Residues

ODEs

NWP Equation

For an integral around a closed contour,

$$f(t) = rac{1}{2\pi i} \oint_{\mathcal{C}_0} rac{lpha \exp(st)}{s - i\omega} \,\mathrm{d}s \,,$$

we can apply the residue theorem:

$$f(t) = \sum_{C_0} \left[ \text{Residues of } \left( \frac{lpha \exp(st)}{s - i\omega} \right) \right]$$

so f(t) is the sum of the residues of the integrand within  $C_0$ .



Lagrange

**Basic Theory** 

Residues

ODEs

NWP Equation



NWP Equation

$$f(t) = \sum_{C_0} \left[ \text{Residues of } \left( \frac{\alpha \exp(st)}{s - i\omega} \right) \right]$$



Basic Theory

Residues

ODE

NWP Equation

$$f(t) = \sum_{C_0} \left[ \text{Residues of } \left( \frac{\alpha \, \exp(st)}{s - i\omega} \right) \right]$$

There is just one pole, at  $s = i\omega$ . The residue is

$$\lim_{s \to i\omega} (s - i\omega) \left( \frac{\alpha \exp(st)}{s - i\omega} \right) = \alpha \exp(i\omega t)$$



**Basic Theory** 

Residues

ODEs

NWP Equation

$$f(t) = \sum_{C_0} \left[ \text{Residues of } \left( \frac{\alpha \, \exp(st)}{s - i\omega} \right) \right]$$

There is just one pole, at  $s = i\omega$ . The residue is

$$\lim_{s \to i\omega} (s - i\omega) \left( \frac{\alpha \exp(st)}{s - i\omega} \right) = \alpha \exp(i\omega t)$$

So we recover the input function:

 $f(t) = \alpha \, \exp(i\omega t)$ 



**Basic Theory** 

ODEs

**NWP Equation** 

### **A Two-Component Oscillation**

Let f(t) have two harmonic components

 $f(t) = a \exp(i\omega t) + A \exp(i\Omega t)$   $|\omega| \ll |\Omega|$ 



**Basic Theory** 

ODEs

NWP Equation

### A Two-Component Oscillation

Let f(t) have two harmonic components

 $f(t) = a \exp(i\omega t) + A \exp(i\Omega t) \qquad |\omega| \ll |\Omega|$ 

The LT is a linear operator, so the transform of f(t) is

$$\hat{f}(s) = rac{a}{s-i\omega} + rac{A}{s-i\Omega}$$

which has two simple poles, at  $s = i\omega$  and  $s = i\Omega$ .



**Basic Theory** 

ODEs

**NWP Equation**
### A Two-Component Oscillation

Let f(t) have two harmonic components

 $f(t) = a \exp(i\omega t) + A \exp(i\Omega t)$   $|\omega| \ll |\Omega|$ 

The LT is a linear operator, so the transform of f(t) is

$$\hat{f}(s) = rac{a}{s-i\omega} + rac{A}{s-i\Omega}$$

which has two simple poles, at  $s = i\omega$  and  $s = i\Omega$ .

The LF pole, at  $s = i\omega$ , is close to the origin.

The HF pole, at  $s = i\Omega$ , is far from the origin.



Lagrange

ODEs

$$\hat{f}(s) = rac{a}{s-i\omega} + rac{A}{s-i\Omega}$$



Basic Theory

#### Residues

ODE

NWP Equation

$$\hat{f}(s) = rac{a}{s-i\omega} + rac{A}{s-i\Omega}$$
 .

### The inverse transform of $\hat{f}(s)$ is

Residues

$$\begin{split} f(t) &= \frac{1}{2\pi i} \oint_{\mathcal{C}_0} \frac{a \exp(st)}{s - i\omega} \, \mathrm{d}s + \frac{1}{2\pi i} \oint_{\mathcal{C}_0} \frac{A \exp(st)}{s - i\Omega} \, \mathrm{d}s \\ &= a \exp(i\omega t) + A \exp(i\Omega t) \, . \end{split}$$



ODEs

$$\hat{f}(s) = rac{a}{s-i\omega} + rac{A}{s-i\Omega}$$
 .

#### The inverse transform of $\hat{f}(s)$ is

$$\begin{split} f(t) &= \frac{1}{2\pi i} \oint_{\mathcal{C}_0} \frac{a \exp(st)}{s - i\omega} \, \mathrm{d}s + \frac{1}{2\pi i} \oint_{\mathcal{C}_0} \frac{A \exp(st)}{s - i\Omega} \, \mathrm{d}s \\ &= a \exp(i\omega t) + A \exp(i\Omega t) \, . \end{split}$$

We now replace  $C_0$  by a circular contour  $C^*$  centred at the origin, with radius  $\gamma$  such that  $|\omega| < \gamma < |\Omega|$ .



**Basic Theory** 

ODEs



n n n UCD



**Basic Theory** 

#### Residues

ODEs

NWP Equation

Lagran

We denote the modified operator by  $\mathcal{L}^{\star}$ .



**Basic Theory** 

ODEs

NWP Equation

We denote the modified operator by  $\mathcal{L}^{\star}$ .

Since the pole  $s = i\omega$  falls within the contour  $C^*$ , it contributes to the integral.

Since the pole  $s = i\Omega$  falls *outside* the contour  $C^*$ , it makes *no contribution*.



ODEs

**NWP Equation** 

We denote the modified operator by  $\mathcal{L}^{\star}$ .

Since the pole  $s = i\omega$  falls within the contour  $C^*$ , it contributes to the integral.

Since the pole  $s = i\Omega$  falls *outside* the contour  $C^*$ , it makes *no contribution*.

Therefore,

$$f^{\star}(t) \equiv \mathcal{L}^{\star}\{\hat{f}(s)\} = rac{1}{2\pi i} \oint_{\mathcal{C}^{\star}} rac{a \exp(st)}{s - i\omega} \, \mathrm{d}s = a \exp(i\omega t) \, \mathrm{d}s$$



**Basic Theory** 

Residues

ODEs

**NWP Equation** 

We denote the modified operator by  $\mathcal{L}^{\star}$ .

Since the pole  $s = i\omega$  falls *within* the contour  $C^*$ , it contributes to the integral.

Since the pole  $s = i\Omega$  falls *outside* the contour  $C^*$ , it makes *no contribution*.

Therefore,

$$f^{\star}(t) \equiv \mathcal{L}^{\star}\{\hat{f}(s)\} = rac{1}{2\pi i} \oint_{\mathcal{C}^{\star}} rac{a \exp(st)}{s - i\omega} \, \mathrm{d}s = a \exp(i\omega t) \, .$$

We have filtered f(t): the function  $f^{*}(t)$  is the LF component of f(t). The HF component is gone.



Lagrange

ODEs

### **Exercise**

#### **Consider the test function**

 $f(t) = lpha_1 \cos(\omega_1 t - \psi_1) + lpha_2 \cos(\omega_2 t - \psi_2)$   $|\omega_1| < |\omega_2|$ 



**Basic Theory** 

ODEs

NWP Equation

### **Exercise**

#### **Consider the test function**

$$f(t) = lpha_1 \cos(\omega_1 t - \psi_1) + lpha_2 \cos(\omega_2 t - \psi_2)$$
  $|\omega_1| < |\omega_2|$ 

#### Show that the LT is

$$\hat{f}(s) = rac{lpha_1}{2} \left[ rac{e^{-i\psi_1}}{s - i\omega_1} + rac{e^{i\psi_1}}{s + i\omega_1} 
ight] + rac{lpha_2}{2} \left[ rac{e^{-i\psi_2}}{s - i\omega_2} + rac{e^{i\psi_2}}{s + i\omega_2} 
ight]$$



**Basic Theory** 

Residues

ODEs

NWP Equation

### **Exercise**

#### **Consider the test function**

$$f(t) = lpha_1 \cos(\omega_1 t - \psi_1) + lpha_2 \cos(\omega_2 t - \psi_2)$$
  $|\omega_1| < |\omega_2|$ 

#### Show that the LT is

$$\hat{f}(s) = rac{lpha_1}{2} \left[ rac{e^{-i\psi_1}}{s - i\omega_1} + rac{e^{i\psi_1}}{s + i\omega_1} 
ight] + rac{lpha_2}{2} \left[ rac{e^{-i\psi_2}}{s - i\omega_2} + rac{e^{i\psi_2}}{s + i\omega_2} 
ight]$$

Show how, by choosing  $C^*$  with  $|\omega_1| < \gamma < |\omega_2|$ , the HF component can be eliminated.



Lagrange

ODEs





Basic Theory

Residues

ODE

**NWP Equation** 

### Outline

**Basic Theory** 

**Residue Theorem** 

**Ordinary Differential Equations** 

**General Vector NWP Equation** 

Lagrangian Formulation



**Basic Theory** 

Residues

ODEs

NWP Equation

## Applying LT to an ODE

#### We consider a nonlinear ordinary differential equation

$$\frac{\mathrm{d}\boldsymbol{w}}{\mathrm{d}t} + i\omega\boldsymbol{w} + \boldsymbol{n}(\boldsymbol{w}) = \boldsymbol{0} \qquad \boldsymbol{w}(\boldsymbol{0}) = \boldsymbol{w}_0$$



**Basic Theory** 

ODEs

**NWP Equation** 

## Applying LT to an ODE

#### We consider a nonlinear ordinary differential equation

$$\frac{\mathrm{d}w}{\mathrm{d}t} + i\omega w + n(w) = 0 \qquad w(0) = w_0$$

#### The LT of the equation is

$$(s\hat{w}-w_0)+i\omega\hat{w}+\frac{n_0}{s}=0$$
.

We have frozen n(w) at its initial value  $n_0 = n(w_0)$ .



**Basic Theory** 

ODEs

## Applying LT to an ODE

#### We consider a nonlinear ordinary differential equation

$$\frac{\mathrm{d}\boldsymbol{w}}{\mathrm{d}t}+i\omega\boldsymbol{w}+\boldsymbol{n}(\boldsymbol{w})=\boldsymbol{0}\qquad \boldsymbol{w}(\boldsymbol{0})=\boldsymbol{w}_{0}$$

#### The LT of the equation is

$$(s\hat{w}-w_0)+i\omega\hat{w}+rac{n_0}{s}=0$$
.

We have frozen n(w) at its initial value  $n_0 = n(w_0)$ .

We can immediately solve for the transform solution:

$$\hat{w}(s) = rac{1}{s+i\omega} \left[ w_0 - rac{n_0}{s} 
ight]$$

**Basic Theory** 

ODEs

NWP Equation

#### Using partial fractions, we write the transform as

$$\hat{w}(s) = \left(rac{w_0}{s+i\omega}
ight) + rac{n_0}{i\omega}\left(rac{1}{s} - rac{1}{s+i\omega}
ight)$$

There are two poles, at  $s = -i\omega$  and at s = 0.



**Basic Theory** 

ODEs

**NWP Equation** 

Using partial fractions, we write the transform as

$$\hat{w}(s) = \left(rac{w_0}{s+i\omega}
ight) + rac{n_0}{i\omega}\left(rac{1}{s} - rac{1}{s+i\omega}
ight)$$

There are two poles, at  $s = -i\omega$  and at s = 0.

The pole at s = 0 always falls within the contour  $C^*$ . The pole at  $s = -i\omega$  may or may not fall within  $C^*$ .



**Basic Theory** 

Residues

ODEs

**NWP Equation** 

Using partial fractions, we write the transform as

$$\hat{w}(s) = \left(rac{w_0}{s+i\omega}
ight) + rac{n_0}{i\omega}\left(rac{1}{s} - rac{1}{s+i\omega}
ight)$$

There are two poles, at  $s = -i\omega$  and at s = 0.

The pole at s = 0 always falls within the contour  $C^*$ . The pole at  $s = -i\omega$  may or may not fall within  $C^*$ .

Thus, the solution is

$$w^{\star}(t) = \begin{cases} \left(w_0 - \frac{n_0}{i\omega}\right) \exp(-i\omega t) + \frac{n_0}{i\omega} & : \quad |\omega| < \gamma \\ \frac{n_0}{i\omega} & : \quad |\omega| > \gamma \end{cases}$$



Lagrange

ODEs

$$w^{\star}(t) = \begin{cases} \left(w_0 - \frac{n_0}{i\omega}\right) \exp(-i\omega t) + \frac{n_0}{i\omega} & : \quad |\omega| < \gamma \\ \frac{n_0}{i\omega} & : \quad |\omega| > \gamma \end{cases}$$



Basic Theory

Residu

ODEs

NWP Equation

$$\mathbf{w}^{\star}(t) = \begin{cases} \left(\mathbf{w}_{0} - \frac{\mathbf{n}_{0}}{i\omega}\right) \exp(-i\omega t) + \frac{\mathbf{n}_{0}}{i\omega} & : \quad |\omega| < \gamma \\ \frac{\mathbf{n}_{0}}{i\omega} & : \quad |\omega| > \gamma \end{cases}$$

So we see that, for a LF oscillation ( $|\omega| < \gamma$ ), the solution  $w^*(t)$  is the same as the full solution w(t) of the ODE.



**Basic Theory** 

Residues

ODEs

**NWP Equation** 

$$\mathbf{w}^{\star}(t) = \begin{cases} \left(\mathbf{w}_{0} - \frac{\mathbf{n}_{0}}{i\omega}\right) \exp(-i\omega t) + \frac{\mathbf{n}_{0}}{i\omega} & : \quad |\omega| < \gamma \\ \frac{\mathbf{n}_{0}}{i\omega} & : \quad |\omega| > \gamma \end{cases}$$

So we see that, for a LF oscillation ( $|\omega| < \gamma$ ), the solution  $w^*(t)$  is the same as the full solution w(t) of the ODE.

For a HF oscillation ( $|\omega| > \gamma$ ), the solution contains only a constant term.



Lagrange

**Basic Theory** 

Residues

ODEs

$$\mathbf{w}^{\star}(t) = \begin{cases} \left(\mathbf{w}_{0} - \frac{\mathbf{n}_{0}}{i\omega}\right) \exp(-i\omega t) + \frac{\mathbf{n}_{0}}{i\omega} & : \quad |\omega| < \gamma \\ \frac{\mathbf{n}_{0}}{i\omega} & : \quad |\omega| > \gamma \end{cases}$$

So we see that, for a LF oscillation ( $|\omega| < \gamma$ ), the solution  $w^*(t)$  is the same as the full solution w(t) of the ODE.

For a HF oscillation ( $|\omega| > \gamma$ ), the solution contains only a constant term.

Thus, high frequencies are filtered out.



Lagrange

ODEs

### Outline

**Basic Theory** 

**Residue Theorem** 

**Ordinary Differential Equations** 

**General Vector NWP Equation** 

Lagrangian Formulation



**Basic Theory** 

Residues

ODEs

**NWP Equation** 

### **A** General Vector Equation

We write the general NWP equations symbolically as

$$\frac{\mathrm{d}\mathbf{X}}{\mathrm{d}t} + i\,\mathbf{L}\mathbf{X} + \mathbf{N}(\mathbf{X}) = \mathbf{0}$$

where X(t) is the state vector at time t.



**Basic Theory** 

ODEs

**NWP Equation** 

### **A** General Vector Equation

We write the general NWP equations symbolically as

$$\frac{\mathrm{d}\mathbf{X}}{\mathrm{d}t} + i\,\mathbf{L}\mathbf{X} + \mathbf{N}(\mathbf{X}) = \mathbf{0}$$

where X(t) is the state vector at time *t*.

We apply the Laplace transform to get

$$(s\hat{\mathbf{X}} - \mathbf{X}_0) + i\mathbf{L}\hat{\mathbf{X}} + \frac{1}{s}\mathbf{N}_0 = \mathbf{0}$$

# where $X_0$ is the initial value of X and $N_0 = N(X_0)$ is held constant at its initial value.



**Basic Theory** 

ODEs

NWP Equation

### A General Vector Equation

We write the general NWP equations symbolically as

$$\frac{\mathrm{d}\mathbf{X}}{\mathrm{d}t} + i\,\mathbf{L}\mathbf{X} + \mathbf{N}(\mathbf{X}) = \mathbf{0}$$

where X(t) is the state vector at time *t*.

We apply the Laplace transform to get

$$(s\hat{\mathbf{X}} - \mathbf{X}_0) + i\mathbf{L}\hat{\mathbf{X}} + \frac{1}{s}\mathbf{N}_0 = \mathbf{0}$$

where  $X_0$  is the initial value of X and  $N_0 = N(X_0)$  is held constant at its initial value.

The frequencies are entangled. How do we proceed?



**Basic Theory** 

ODEs

NWP Equation

### **Eigenanalysis**

### $\dot{\mathbf{X}} + i \mathbf{L}\mathbf{X} + \mathbf{N}(\mathbf{X}) = \mathbf{0}$



**Basic Theory** 

ODEs

NWP Equation

### Eigenanalysis

### $\dot{\mathbf{X}} + i \mathbf{L}\mathbf{X} + \mathbf{N}(\mathbf{X}) = \mathbf{0}$

Assume the eigenanalysis of L is  $LE = E\Lambda$ 

where  $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_N)$  and  $\mathbf{E} = (\mathbf{e}_1, \dots, \mathbf{e}_N)$ .



**Basic Theory** 

ODEs

NWP Equation

### Eigenanalysis

### $\dot{\mathbf{X}} + i \mathbf{L}\mathbf{X} + \mathbf{N}(\mathbf{X}) = \mathbf{0}$

Assume the eigenanalysis of L is

 $\textbf{LE}=\textbf{E}\Lambda$ 

where  $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_N)$  and  $\mathbf{E} = (\mathbf{e}_1, \dots, \mathbf{e}_N)$ .

More explicitly, assume that the eigenfrequencies split in two:

 $\Lambda = \begin{bmatrix} \Lambda_Y & \mathbf{0} \\ \mathbf{0} & \Lambda_Z \end{bmatrix}$ 

 $\Lambda_Y$ : Frequencies of rotational modes (LF)  $\Lambda_Z$ : Frequencies of gravity-inertia modes (HF)



**Basic Theory** 

ODEs

NWP Equation

#### We define a new set of variables: $W = E^{-1}X$ .



**Basic Theory** 

Residues

ODE

NWP Equation

We define a new set of variables:  $W = E^{-1}X$ .

Multiplying the equation by E<sup>-1</sup> we get

 $E^{-1}\dot{X} + iE^{-1}L(EE^{-1})X + E^{-1}N(X) = 0$ 



**Basic Theory** 

ODEs

NWP Equation

We define a new set of variables:  $W = E^{-1}X$ . Multiplying the equation by  $E^{-1}$  we get  $E^{-1}\dot{X} + iE^{-1}L(EE^{-1})X + E^{-1}N(X) = 0$ This is just

$$\dot{\mathbf{W}} + i \wedge \mathbf{W} + \mathbf{E}^{-1} \mathbf{N}(\mathbf{X}) = \mathbf{0}$$



**Basic Theory** 

ODEs

NWP Equation

We define a new set of variables:  $W = E^{-1}X$ . Multiplying the equation by  $E^{-1}$  we get  $E^{-1}\dot{X} + i E^{-1}L(EE^{-1})X + E^{-1}N(X) = 0$ This is just

$$\dot{\mathbf{W}} + i \wedge \mathbf{W} + \mathbf{E}^{-1} \mathbf{N}(\mathbf{X}) = \mathbf{0}$$

This equation separates into two sub-systems:

$$\begin{aligned} \mathbf{Y} + i \Lambda_Y \mathbf{Y} + \mathbf{N}_Y (\mathbf{Y}, \mathbf{Z}) &= \mathbf{0} \\ \dot{\mathbf{Z}} + i \Lambda_Z \mathbf{Z} + \mathbf{N}_Z (\mathbf{Y}, \mathbf{Z}) &= \mathbf{0} \end{aligned}$$

where  $\mathbf{W} = (\mathbf{Y}, \mathbf{Z})^{\mathrm{T}}$ .



**Basic Theory** 

ODEs

NWP Equation
We define a new set of variables:  $W = E^{-1}X$ . Multiplying the equation by  $E^{-1}$  we get  $E^{-1}\dot{X} + i E^{-1}L(EE^{-1})X + E^{-1}N(X) = 0$ 

This is just

$$\dot{\mathbf{W}} + i \wedge \mathbf{W} + \mathbf{E}^{-1} \mathbf{N}(\mathbf{X}) = \mathbf{0}$$

This equation separates into two sub-systems:

$$\begin{aligned} \mathbf{Y} + i \Lambda_Y \mathbf{Y} + \mathbf{N}_Y (\mathbf{Y}, \mathbf{Z}) &= \mathbf{0} \\ \dot{\mathbf{Z}} + i \Lambda_Z \mathbf{Z} + \mathbf{N}_Z (\mathbf{Y}, \mathbf{Z}) &= \mathbf{0} \end{aligned}$$

where  $\mathbf{W} = (\mathbf{Y}, \mathbf{Z})^{\mathrm{T}}$ .

The variables Y and Z are all coupled through the nonlinear terms  $N_Y(Y, Z)$  and  $N_Z(Y, Z)$ .



**Basic Theory** 

ODE

**NWP Equation** 

### We first consider a single component *w*:

$$\dot{w} + i\lambda w + n(\mathbf{W}) = 0$$

## Note that all other components may occur in the nonlinear term.



**Basic Theory** 

ODEs

NWP Equation

We first consider a single component w:

$$\dot{w} + i\lambda w + n(\mathbf{W}) = 0$$

# Note that all other components may occur in the nonlinear term.

Holding the nonlinear term constant, we get

$$(s\hat{w} - w_0) + i\lambda\hat{w} + \frac{n_0}{s} = 0$$

or

$$\hat{w}(s) = rac{1}{s+i\lambda} \left[ w_0 - rac{n_0}{s} 
ight]$$



**Basic Theory** 

ODEs

NWP Equation

We first consider a single component w:

$$\dot{w} + i\lambda w + n(\mathbf{W}) = 0$$

# Note that all other components may occur in the nonlinear term.

Holding the nonlinear term constant, we get

$$(s\hat{w} - w_0) + i\lambda\hat{w} + \frac{n_0}{s} = 0$$

or

$$\hat{w}(s) = rac{1}{s+i\lambda} \left[ w_0 - rac{n_0}{s} 
ight]$$

This has *two poles*, at s = 0 and  $s = -i\lambda$ :

$$\hat{w}(s) = rac{w_0 + n_0/i\lambda}{s + i\lambda} - rac{n_0/i\lambda}{s}$$



**Basic Theory** 

NWP Equation

$$\hat{w}(s) = rac{w_0 + n_0/i\lambda}{s + i\lambda} - rac{n_0/i\lambda}{s}$$



Basic Theory

Residue

ODE

NWP Equation

$$\hat{w}(s) = rac{w_0 + n_0/i\lambda}{s + i\lambda} - rac{n_0/i\lambda}{s}$$

If  $|\lambda|$  is small, both poles are within  $\mathcal{C}^{\star}$ , so

$$\mathbf{w}^{\star}(t) = \mathcal{L}^{\star}\{\hat{\mathbf{w}}\} = \left(\mathbf{w}_0 + \frac{\mathbf{n}_0}{i\lambda}\right)\mathbf{e}^{-i\lambda t} - \left(\frac{\mathbf{n}_0}{i\lambda}\right),$$

an oscillation with frequency  $\lambda$ .



**Basic Theory** 

ODEs

NWP Equation

$$\hat{w}(s) = rac{w_0 + n_0/i\lambda}{s+i\lambda} - rac{n_0/i\lambda}{s}$$

If  $|\lambda|$  is small, both poles are within  $\mathcal{C}^{\star}$ , so

$$\mathbf{w}^{\star}(t) = \mathcal{L}^{\star}\{\hat{\mathbf{w}}\} = \left(\mathbf{w}_0 + \frac{\mathbf{n}_0}{i\lambda}\right)\mathbf{e}^{-i\lambda t} - \left(\frac{\mathbf{n}_0}{i\lambda}\right),$$

an oscillation with frequency  $\lambda$ .

If  $|\lambda|$  is large, the pole at  $s = -i\lambda$  falls outside  $C^*$ , and

$$w^{\star}(t) = \mathcal{L}^{\star}\{\hat{w}\} = -\left(\frac{n_0}{i\lambda}\right)$$



Lagrange

**Basic Theory** 

Residues

ODEs

$$\hat{w}(s) = rac{w_0 + n_0/i\lambda}{s + i\lambda} - rac{n_0/i\lambda}{s}$$

If  $|\lambda|$  is small, both poles are within  $\mathcal{C}^{\star}$ , so

$$\mathbf{w}^{\star}(t) = \mathcal{L}^{\star}\{\hat{\mathbf{w}}\} = \left(\mathbf{w}_0 + \frac{\mathbf{n}_0}{i\lambda}\right)\mathbf{e}^{-i\lambda t} - \left(\frac{\mathbf{n}_0}{i\lambda}\right),$$

an oscillation with frequency  $\lambda$ .

If  $|\lambda|$  is large, the pole at  $s=-i\lambda$  falls outside  $\mathcal{C}^{\star}$ , and

$$W^{\star}(t) = \mathcal{L}^{\star}\{\hat{W}\} = -\left(\frac{n_0}{i\lambda}\right)$$

### This corresponds to putting $\dot{w} = 0$ in the equation:

$$i\lambda w^{\star} + n_0 = 0$$



Lagrange

**Basic Theory** 

ODEs

## **General Solution Method**

### We recall that the Laplace transform of the equation is

$$(s\hat{\mathbf{X}} - \mathbf{X}_0) + i\,\mathbf{L}\hat{\mathbf{X}} + \frac{1}{s}\mathbf{N}_0 = \mathbf{0}$$

where  $X_0$  is the initial value of X and  $N_0 = N(X_0)$  is held constant at its initial value.



Lagrange

ODEs

### **General Solution Method**

### We recall that the Laplace transform of the equation is

$$(s\hat{\mathbf{X}} - \mathbf{X}_0) + i\,\mathbf{L}\hat{\mathbf{X}} + \frac{1}{s}\mathbf{N}_0 = \mathbf{0}$$

where  $X_0$  is the initial value of X and  $N_0 = N(X_0)$  is held constant at its initial value.

But now we take  $n \Delta t$  to be the initial time:

$$(s\hat{\mathbf{X}} - \mathbf{X}^n) + i\mathbf{L}\hat{\mathbf{X}} + \frac{1}{s}\mathbf{N}^n = \mathbf{0}$$



**Basic Theory** 

ODEs

NWP Equation

## **General Solution Method**

### We recall that the Laplace transform of the equation is

$$(s\hat{\mathbf{X}} - \mathbf{X}_0) + i\,\mathbf{L}\hat{\mathbf{X}} + \frac{1}{s}\mathbf{N}_0 = \mathbf{0}$$

where  $X_0$  is the initial value of X and  $N_0 = N(X_0)$  is held constant at its initial value.

But now we take  $n \Delta t$  to be the initial time:

$$(s\hat{\mathbf{X}} - \mathbf{X}^n) + i\mathbf{L}\hat{\mathbf{X}} + \frac{1}{s}\mathbf{N}^n = \mathbf{0}$$

The solution can be written formally:

$$\hat{\mathbf{X}}(s) = (s\mathbf{I} + i\mathbf{L})^{-1} \left[\mathbf{X}^n - \frac{1}{s}\mathbf{N}^n\right]$$



**Basic Theory** 

ODEs

NWP Equation

## Again, $\hat{\mathbf{X}}(s) = (s\mathbf{I} + i\mathbf{L})^{-1} \left[\mathbf{X}^n - \frac{1}{s}\mathbf{N}^n\right]$



#### **Basic Theory**

#### Residues

ODEs

**NWP Equation** 

Again,
$$\hat{\mathbf{X}}(s) = (s\mathbf{I} + i\mathbf{L})^{-1} \left[\mathbf{X}^n - \frac{1}{s}\mathbf{N}^n\right]$$

We recover the filtered solution by applying  $\mathcal{L}^*$  at time  $(n+1)\Delta t$ .

$$\left. \mathbf{X}^{\star} = \mathcal{L}^{\star} \{ \hat{\mathbf{X}}(s) \} 
ight|_{t = \Delta t}$$



**Basic Theory** 

Residues

ODEs

NWP Equation

Again,
$$\hat{\mathbf{X}}(s) = (s \, \mathbf{I} + i \, \mathbf{L})^{-1} \left[ \mathbf{X}^n - \frac{1}{s} \mathbf{N}^n \right]$$

We recover the filtered solution by applying  $\mathcal{L}^*$  at time  $(n+1)\Delta t$ .

$$\mathbf{X}^{\star} = \mathcal{L}^{\star}\{\hat{\mathbf{X}}(s)\}\Big|_{t=\Delta t}$$

The procedure may now be iterated to produce a forecast of any length.



Lagrange

ODEs

Again,
$$\hat{\mathbf{X}}(s) = (s \mathbf{I} + i \mathbf{L})^{-1} \left[ \mathbf{X}^n - \frac{1}{s} \mathbf{N}^n \right]$$

We recover the filtered solution by applying  $\mathcal{L}^*$  at time  $(n+1)\Delta t$ .

$$\mathbf{X}^{\star} = \mathcal{L}^{\star}\{\hat{\mathbf{X}}(s)\}\Big|_{t=\Delta t}$$

# The procedure may now be iterated to produce a forecast of any length.

Further details are given in Clancy and Lynch, 2011a,b



Lagrange

**Basic Theory** 

Residues

ODEs

## Outline

**Basic Theory** 

**Residue Theorem** 

**Ordinary Differential Equations** 

**General Vector NWP Equation** 

Lagrangian Formulation



**Basic Theory** 

Residues

ODEs

NWP Equation

## Lagrangian Formulation

We now consider how to combine the Laplace transform approach with Lagrangian advection.



**Basic Theory** 

ODEs

NWP Equation

## Lagrangian Formulation

We now consider how to combine the Laplace transform approach with Lagrangian advection.

The general form of the equation is

$$rac{\mathrm{D}\mathbf{X}}{\mathrm{D}t} + i\,\mathbf{L}\mathbf{X} + \mathbf{N}(\mathbf{X}) = \mathbf{0}$$

where advection is now included in the time derivative.



Lagrange

ODEs

## Lagrangian Formulation

We now consider how to combine the Laplace transform approach with Lagrangian advection.

The general form of the equation is

$$\frac{\mathrm{D}\mathbf{X}}{\mathrm{D}t} + i\,\mathbf{L}\mathbf{X} + \mathbf{N}(\mathbf{X}) = \mathbf{0}$$

where advection is now included in the time derivative.

We *re-define* the Laplace transform to be the integral in time *along the trajectory of a fluid parcel*:

$$\hat{\mathbf{X}}(s) \equiv \int_{\mathcal{T}} e^{-st} \mathbf{X}(t) \,\mathrm{d}t$$



Lagrange

ODEs



**Basic Theory** 

ODEs

NWP Equation

We denote the value at an *arrival point* by  $X_A^{n+1}$ . The value at the *departure point* is  $X_D^n$ .



ODEs

**NWP Equation** 

We denote the value at an *arrival point* by  $X_A^{n+1}$ . The value at the *departure point* is  $X_D^n$ .

The initial values when transforming the Lagrangian time derivatives are  $X_D^n$ .



Lagrange

ODEs

We denote the value at an *arrival point* by  $X_A^{n+1}$ . The value at the *departure point* is  $X_D^n$ .

The initial values when transforming the Lagrangian time derivatives are  $X_{D}^{n}$ .

The equations thus transform to

$$(s\hat{\mathbf{X}} - \mathbf{X}_{\mathrm{D}}^{n}) + i\mathbf{L}\hat{\mathbf{X}} + \frac{1}{s}\mathbf{N}_{\mathrm{M}}^{n+\frac{1}{2}} = \mathbf{0}$$

where we evaluate nonlinear terms at a mid-point, interpolated in space and extrapolated in time.



Lagrange

ODEs





Basic Theory

Residue

ODE

**NWP Equation** 

$$\hat{\mathbf{X}}(s) = (s \mathbf{I} + i \mathbf{L})^{-1} \left[ \mathbf{X}_{\mathrm{D}}^{n} - \frac{1}{s} \mathbf{N}_{\mathrm{M}}^{n+\frac{1}{2}} \right]$$



#### **Basic Theory**

#### Residues

ODEs

NWP Equation

$$\hat{\mathbf{X}}(s) = (s \, \mathbf{I} + i \, \mathbf{L})^{-1} \left[ \mathbf{X}_{\mathrm{D}}^{n} - \frac{1}{s} \mathbf{N}_{\mathrm{M}}^{n+\frac{1}{2}} \right]$$

The values at the departure point and mid-point are computed by interpolation.



**Basic Theory** 

Residues

ODEs

NWP Equation

$$\hat{\mathbf{X}}(s) = (s \, \mathbf{I} + i \, \mathbf{L})^{-1} \left[ \mathbf{X}_{\mathrm{D}}^{n} - \frac{1}{s} \mathbf{N}_{\mathrm{M}}^{n+\frac{1}{2}} \right]$$

The values at the departure point and mid-point are computed by interpolation.

We recover the filtered solution by applying  $\mathcal{L}^*$  at time  $(n+1)\Delta t$ , or  $\Delta t$  after the *initial time*.

$$\left\| \mathbf{X}^{\star} = \mathcal{L}^{\star} \{ \hat{\mathbf{X}}(s) \} \right\|_{t = \Delta t}$$



Lagrange

**Basic Theory** 

Residues

ODEs

$$\hat{\mathbf{X}}(s) = (s \, \mathbf{I} + i \, \mathbf{L})^{-1} \left[ \mathbf{X}_{\mathrm{D}}^{n} - \frac{1}{s} \mathbf{N}_{\mathrm{M}}^{n+\frac{1}{2}} \right]$$

The values at the departure point and mid-point are computed by interpolation.

We recover the filtered solution by applying  $\mathcal{L}^*$  at time  $(n+1)\Delta t$ , or  $\Delta t$  after the *initial time*.

$$\mathbf{X}^{\star} = \mathcal{L}^{\star}\{\hat{\mathbf{X}}(s)\}\Big|_{t=\Delta t}$$

# The procedure may now be iterated to produce a forecast of any length.



Lagrange

ODEs

$$\hat{\mathbf{X}}(s) = (s \, \mathbf{I} + i \, \mathbf{L})^{-1} \left[ \mathbf{X}_{\mathrm{D}}^{n} - \frac{1}{s} \mathbf{N}_{\mathrm{M}}^{n+\frac{1}{2}} \right]$$

The values at the departure point and mid-point are computed by interpolation.

We recover the filtered solution by applying  $\mathcal{L}^*$  at time  $(n+1)\Delta t$ , or  $\Delta t$  after the *initial time*.

$$\mathbf{X}^{\star} = \mathcal{L}^{\star}\{\hat{\mathbf{X}}(s)\}\Big|_{t=\Delta t}$$

# The procedure may now be iterated to produce a forecast of any length.



Lagrange

Further details are given in Clancy and Lynch, 2011a,b \_ \_ \_

**Basic Theory** 

Residues

ODE