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The Laplace Transform: Definition

For a function of time f (t), the LT is defined as

f̂ (s) =

∫ ∞
0

e−st f (t) dt .

Here, s is complex and f̂ (s) is a complex function of s.

The inversion from f̂ (s) back to f (t) is

f (t) =
1

2πi

∫
C1

est f̂ (s) ds .

where C1 is a contour in the s-plane, parallel to the
imaginary axis, to the right of all singularities of f̂ (s).
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Integral Transforms
The LT is one of a large family of integral transforms

They can be defined as

F (s) =

∫
R

K (s, t) f (t) dt

where R is the range of f (t) and K (s, t) is called the
kernel of the transform.

For example, the Fourier transform is

f̃ (ω) =

∫ ∞
−∞

e−iωt f (t) dt f (t) =
1

2π

∫ ∞
−∞

e+iωt f̃ (ω) dω

The Hilbert transform is another . . . and many more.
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The LT is a linear operator

L{f (t)} = f̂ (s) ≡
∫ ∞

0
e−st f (t) dt .

Therefore

L{αf (t)} =

∫ ∞
0

e−st αf (t) dt = α

∫ ∞
0

e−st f (t) dt = αL{f (t)} .

Also

L{f (t)+g(t)} =

∫ ∞
0

e−st [f (t)+g(t)] dt = L{f (t)}+L{g(t)} .

Therefore

L{αf (t) + βg(t)} = αL{f (t)}+ βL{g(t)} .
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Basic Properties of the LT
I L{a} = a/s
I L{exp(at)} = 1/(s − a)

I L{exp(iωt)} = 1/(s − iω)

I L{sin at} = a/(s2 + a2)

I L{cos at} = s/(s2 + a2)

I L{df/dt} = sf̂ (s)− f (0)

All these results can be demonstrated immediately by
using the definition of the Laplace transform L{f (t)}.
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A Simple Oscillation
Let f (t) have a single harmonic component

f (t) = α exp(iωt)

Exercise: Show that the LT of f (t) is

f̂ (s) =
α

s − iω
,

a holomorphic function with a simple pole at s = iω.

A pure (monochrome) oscillation in time transforms
to a function with a single pole.

The position of the pole is determined by the
frequency of the oscillation.
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Again
f̂ (s) = L{α exp(iωt)} =

α

s − iω
.

The inverse transform of f̂ (s) is

f (t) =
1

2πi

∫
C1

est f̂ (s) ds =
1

2πi

∫
C1

α exp(st)

s − iω
ds .

We augment C1 by a semi-circular arc C2 in the left
half-plane. Denote the resulting closed contour by
C0 = C1 ∪ C2.

If it can be shown that this leaves the value of the
integral unchanged, the inverse is an integral around
a closed contour.

See textbook of Doetsch
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For an integral around a closed contour,

f (t) =
1

2πi

∮
C0

α exp(st)

s − iω
ds ,

we can apply the residue theorem:

f (t) =
∑
C0

[
Residues of

(
α exp(st)

s − iω

)]
so f (t) is the sum of the residues of the integrand
within C0.
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Again

f (t) =
∑
C0

[
Residues of

(
α exp(st)

s − iω

)]

There is just one pole, at s = iω. The residue is

lim
s→iω

(s − iω)

(
α exp(st)

s − iω

)
= α exp(iωt)

So we recover the input function:

f (t) = α exp(iωt)
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A Two-Component Oscillation

Let f (t) have two harmonic components

f (t) = a exp(iωt) + A exp(iΩt) |ω| � |Ω|

The LT is a linear operator, so the transform of f (t) is

f̂ (s) =
a

s − iω
+

A
s − iΩ

,

which has two simple poles, at s = iω and s = iΩ.

The LF pole, at s = iω, is close to the origin.

The HF pole, at s = iΩ, is far from the origin.
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Again

f̂ (s) =
a

s − iω
+

A
s − iΩ

.

The inverse transform of f̂ (s) is

f (t) =
1

2πi

∮
C0

a exp(st)

s − iω
ds +

1
2πi

∮
C0

A exp(st)

s − iΩ
ds

= a exp(iωt) + A exp(iΩt) .

We now replace C0 by a circular contour C? centred at
the origin, with radius γ such that |ω| < γ < |Ω|.
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Again: We replace C0 by C? with |ω| < γ < |Ω|.

We denote the modified operator by L?.

Since the pole s = iω falls within the contour C?,
it contributes to the integral.

Since the pole s = iΩ falls outside the contour C?,
it makes no contribution.

Therefore,

f ?(t) ≡ L?{f̂ (s)} =
1

2πi

∮
C?

a exp(st)

s − iω
ds = a exp(iωt) .

We have filtered f (t): the function f ?(t) is the LF
component of f (t). The HF component is gone.
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Exercise

Consider the test function

f (t) = α1 cos(ω1t − ψ1) + α2 cos(ω2t − ψ2) |ω1| < |ω2|

Show that the LT is

f̂ (s) =
α1

2

[
e−iψ1

s − iω1
+

eiψ1

s + iω1

]
+
α2

2

[
e−iψ2

s − iω2
+

eiψ2

s + iω2

]

Show how, by choosing C? with |ω1| < γ < |ω2|, the HF
component can be eliminated.
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Applying LT to an ODE
We consider a nonlinear ordinary differential equation

dw
dt

+ iωw + n(w) = 0 w(0) = w0

The LT of the equation is

(sŵ − w0) + iωŵ +
n0

s
= 0 .

We have frozen n(w) at its initial value n0 = n(w0).

We can immediately solve for the transform solution:

ŵ(s) =
1

s + iω

[
w0 −

n0

s

]
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ŵ(s) =
1

s + iω

[
w0 −

n0

s

]

Basic Theory Residues ODEs NWP Equation Lagrange



Applying LT to an ODE
We consider a nonlinear ordinary differential equation

dw
dt

+ iωw + n(w) = 0 w(0) = w0

The LT of the equation is
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Using partial fractions, we write the transform as

ŵ(s) =

(
w0

s + iω

)
+

n0

iω

(
1
s
− 1

s + iω

)

There are two poles, at s = −iω and at s = 0.

The pole at s = 0 always falls within the contour C?.
The pole at s = −iω may or may not fall within C?.

Thus, the solution is

w?(t) =


(

w0 −
n0

iω

)
exp(−iωt) +

n0

iω
: |ω| < γ

n0

iω
: |ω| > γ
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So we see that, for a LF oscillation (|ω| < γ), the
solution w?(t) is the same as the full solution w(t) of
the ODE.

For a HF oscillation (|ω| > γ), the solution contains
only a constant term.

Thus, high frequencies are filtered out.
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A General Vector Equation

We write the general NWP equations symbolically as

dX
dt

+ i LX + N(X) = 0

where X(t) is the state vector at time t .

We apply the Laplace transform to get

(s X̂− X0) + i LX̂ +
1
s

N0 = 0

where X0 is the initial value of X and N0 = N(X0) is
held constant at its initial value.

The frequencies are entangled. How do we proceed?

Basic Theory Residues ODEs NWP Equation Lagrange



A General Vector Equation

We write the general NWP equations symbolically as

dX
dt

+ i LX + N(X) = 0

where X(t) is the state vector at time t .

We apply the Laplace transform to get

(s X̂− X0) + i LX̂ +
1
s

N0 = 0

where X0 is the initial value of X and N0 = N(X0) is
held constant at its initial value.

The frequencies are entangled. How do we proceed?

Basic Theory Residues ODEs NWP Equation Lagrange



A General Vector Equation

We write the general NWP equations symbolically as

dX
dt

+ i LX + N(X) = 0

where X(t) is the state vector at time t .

We apply the Laplace transform to get

(s X̂− X0) + i LX̂ +
1
s

N0 = 0

where X0 is the initial value of X and N0 = N(X0) is
held constant at its initial value.

The frequencies are entangled. How do we proceed?

Basic Theory Residues ODEs NWP Equation Lagrange



Eigenanalysis

Ẋ + i LX + N(X) = 0

Assume the eigenanalysis of L is

LE = EΛ

where Λ = diag(λ1, . . . , λN) and E = (e1, . . . ,eN).

More explicitly, assume that the eigenfrequencies
split in two:

Λ =

[
ΛY 0
0 ΛZ

]
ΛY : Frequencies of rotational modes (LF)
ΛZ : Frequencies of gravity-inertia modes (HF)
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We define a new set of variables: W = E−1X.

Multiplying the equation by E−1 we get

E−1Ẋ + i E−1L(EE−1)X + E−1N(X) = 0

This is just
Ẇ + i ΛW + E−1N(X) = 0

This equation separates into two sub-systems:

Ẏ + i ΛY Y + NY (Y,Z) = 0
Ż + i ΛZ Z + NZ (Y,Z) = 0

where W = (Y,Z)T.

The variables Y and Z are all coupled through the
nonlinear terms NY (Y,Z) and NZ (Y,Z).
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We first consider a single component w:

ẇ + iλw + n(W) = 0

Note that all other components may occur in the
nonlinear term.

Holding the nonlinear term constant, we get

(sŵ − w0) + iλŵ +
n0

s
= 0

or
ŵ(s) =

1
s + iλ

[
w0 −

n0

s

]
This has two poles, at s = 0 and s = −iλ:

ŵ(s) =
w0 + n0/iλ

s + iλ
− n0/iλ

s
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Again,

ŵ(s) =
w0 + n0/iλ

s + iλ
− n0/iλ

s

If |λ| is small, both poles are within C?, so

w?(t) = L?{ŵ} =
(

w0 +
n0

iλ

)
e−iλt −

(n0

iλ

)
,

an oscillation with frequency λ.

If |λ| is large, the pole at s = −iλ falls outside C?, and

w?(t) = L?{ŵ} = −
(n0

iλ

)
.

This corresponds to putting ẇ = 0 in the equation:

iλw? + n0 = 0
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General Solution Method
We recall that the Laplace transform of the equation is

(s X̂− X0) + i LX̂ +
1
s

N0 = 0

where X0 is the initial value of X and N0 = N(X0) is
held constant at its initial value.

But now we take n∆t to be the initial time:

(s X̂− Xn) + i LX̂ +
1
s

Nn = 0

The solution can be written formally:

X̂(s) = (s I + i L)−1
[
Xn − 1

s
Nn
]
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Again,

X̂(s) = (s I + i L)−1
[
Xn − 1

s
Nn
]

We recover the filtered solution by applying L? at time
(n + 1)∆t .

X? = L?{X̂(s)}
∣∣∣
t=∆t

The procedure may now be iterated to produce a
forecast of any length.

Further details are given in Clancy and Lynch, 2011a,b
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Lagrangian Formulation
We now consider how to combine the Laplace
transform approach with Lagrangian advection.

The general form of the equation is

DX
Dt

+ i LX + N(X) = 0

where advection is now included in the time
derivative.

We re-define the Laplace transform to be the integral
in time along the trajectory of a fluid parcel:

X̂(s) ≡
∫
T

e−st X(t) dt
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We consider parcels that arrive at the gridpoints at
time (n + 1)∆t . They originate at locations not
corresponding to gridpoints at time n∆t .

We denote the value at an arrival point by Xn+1
A .

The value at the departure point is Xn
D.

The initial values when transforming the Lagrangian
time derivatives are Xn

D.

The equations thus transform to

(s X̂− Xn
D) + i LX̂ +

1
s

N
n+

1
2

M = 0

where we evaluate nonlinear terms at a mid-point,
interpolated in space and extrapolated in time.
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The solution can be written formally:

X̂(s) = (s I + i L)−1
[
Xn

D −
1
s

N
n+

1
2

M

]

The values at the departure point and mid-point are
computed by interpolation.

We recover the filtered solution by applying L? at time
(n + 1)∆t , or ∆t after the initial time.

X? = L?{X̂(s)}
∣∣∣
t=∆t

The procedure may now be iterated to produce a
forecast of any length.

Further details are given in Clancy and Lynch, 2011a,b
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