The ENIAC Integrations Numerical Solution of the BVE

Peter Lynch

School of Mathematical Sciences

Outline

Background

The Equation for the Streamfunction

Finite Difference Approximation

Polar Stereographic Projection

Solving the Poisson Equation

Conclusion

Conclusion

Background

F

The Equation for the Streamfunction

Finite Difference Approximation

Polar Stereographic Projection

Solving the Poisson Equation

Conclusion

Background

)

The dynamical behaviour of planetary waves in the atmosphere is modelled by the barotropic vorticity equation (BVE):

$$\frac{d(\zeta+f)}{dt}=0\,.$$

Background

PS Map

The dynamical behaviour of planetary waves in the atmosphere is modelled by the barotropic vorticity equation (BVE):

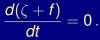
Rossby (1939) used a simplified (linear) form of this equation for his study of atmospheric waves.

Background

PS Map

 $\nabla^2 \Phi =$

The dynamical behaviour of planetary waves in the atmosphere is modelled by the barotropic vorticity equation (BVE):



Rossby (1939) used a simplified (linear) form of this equation for his study of atmospheric waves.

Charney, Fjørtoft & von Neumann (1950) integrated the BVE to produce the earliest numerical weather predictions on the ENIAC.

They integrated the equation on a rectangular domain, in planar geometry.

Background

PS Map

)

The Equation for the Streamfunction

Finite Difference Approximation

Polar Stereographic Projection

Solving the Poisson Equation

Conclusion

Background

1

ψ Eqn

FD Method

PS Map

= F

$$\mathbf{V} = \mathbf{k} \times \nabla \psi \qquad \nabla \cdot \mathbf{V} = \mathbf{0}$$
$$u = -\frac{\partial \psi}{\partial y} \qquad \mathbf{v} = +\frac{\partial \psi}{\partial x}$$

$$\frac{\mathrm{d} \bullet}{\mathrm{d}t} = \frac{\partial \bullet}{\partial t} + u \frac{\partial \bullet}{\partial x} + v \frac{\partial \bullet}{\partial y}$$
$$= \frac{\partial \bullet}{\partial t} - \frac{\partial \psi}{\partial y} \frac{\partial \bullet}{\partial x} + \frac{\partial \psi}{\partial x} \frac{\partial \bullet}{\partial y}$$
$$= \frac{\partial \bullet}{\partial t} + J(\psi, \bullet)$$

Co

n n n UCD

$$\mathbf{V} = \mathbf{k} \times \nabla \psi \qquad \nabla \cdot \mathbf{V} = \mathbf{0}$$
$$u = -\frac{\partial \psi}{\partial y} \qquad \mathbf{v} = +\frac{\partial \psi}{\partial x}$$

$$\frac{\mathrm{d} \bullet}{\mathrm{d}t} = \frac{\partial \bullet}{\partial t} + u \frac{\partial \bullet}{\partial x} + v \frac{\partial \bullet}{\partial y}$$
$$= \frac{\partial \bullet}{\partial t} - \frac{\partial \psi}{\partial y} \frac{\partial \bullet}{\partial x} + \frac{\partial \psi}{\partial x} \frac{\partial \bullet}{\partial y}$$
$$= \frac{\partial \bullet}{\partial t} + J(\psi, \bullet)$$

$$abla \cdot \mathbf{V} = \mathbf{0}$$
 $\zeta = \nabla^2 \psi = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2}$

FD Method

PS Map

Co

Since f does not vary with time, we have

$$\frac{\partial}{\partial t}(\zeta + f) = \frac{\partial \zeta}{\partial t} = \frac{\partial \nabla^2 \psi}{\partial t}$$

Background

 ψ Eqn

FD Method

PS Map

 $^{72}\Phi = F$

Since f does not vary with time, we have

$$\frac{\partial}{\partial t}(\zeta + f) = \frac{\partial \zeta}{\partial t} = \frac{\partial \nabla^2 \psi}{\partial t}$$

Thus, the BVE may be written

$$\frac{\partial \nabla^2 \psi}{\partial t} + J(\psi, \nabla^2 \psi + f) = \mathbf{0}$$

This is a single partial differential equation with just one dependent variable, the streamfunction $\psi(x, y, t)$.

Since f does not vary with time, we have

$$\frac{\partial}{\partial t}(\zeta + f) = \frac{\partial \zeta}{\partial t} = \frac{\partial \nabla^2 \psi}{\partial t}$$

Thus, the BVE may be written

$$\frac{\partial \nabla^2 \psi}{\partial t} + J(\psi, \nabla^2 \psi + f) = 0$$

This is a single partial differential equation with just one dependent variable, the streamfunction $\psi(x, y, t)$.

Once initial and boundary values are given, the equation can be solved for $\psi = \psi(x, y, t)$.

Conclusion

Background

PS Map

The Jacobian operator is defined as

$$J(\psi,\zeta) = \left(\frac{\partial \psi}{\partial x}\frac{\partial \zeta}{\partial y} - \frac{\partial \psi}{\partial y}\frac{\partial \zeta}{\partial x}\right)$$

Background

 ψ Eqn

FD Method

PS Map

 ∇^2

The Jacobian operator is defined as

$$J(\psi,\zeta) = \left(\frac{\partial \psi}{\partial x}\frac{\partial \zeta}{\partial y} - \frac{\partial \psi}{\partial y}\frac{\partial \zeta}{\partial x}\right)$$

The Jacobian operator represents advection:

$$\mathbf{V} \cdot \nabla \zeta = \mathbf{u} \frac{\partial \zeta}{\partial \mathbf{x}} + \mathbf{v} \frac{\partial \zeta}{\partial \mathbf{y}}$$

= $-\frac{\partial \psi}{\partial \mathbf{y}} \frac{\partial \zeta}{\partial \mathbf{x}} + \frac{\partial \psi}{\partial \mathbf{x}} \frac{\partial \zeta}{\partial \mathbf{y}}$
= $\mathbf{J}(\psi, \zeta)$

Background

 ψ Eqn

PS Map

 $\nabla^2 \Phi$

The Jacobian operator is defined as

Background

ψ Ean

$$J(\psi,\zeta) = \left(\frac{\partial \psi}{\partial x}\frac{\partial \zeta}{\partial y} - \frac{\partial \psi}{\partial y}\frac{\partial \zeta}{\partial x}\right)$$

The Jacobian operator represents advection:

FD Method

$$\mathbf{V} \cdot \nabla \zeta = u \frac{\partial \zeta}{\partial x} + v \frac{\partial \zeta}{\partial y}$$

= $-\frac{\partial \psi}{\partial y} \frac{\partial \zeta}{\partial x} + \frac{\partial \psi}{\partial x} \frac{\partial \zeta}{\partial y}$
= $J(\psi, \zeta)$

It is essentially nonlinear. The BVE must be solved by numerical means. We come to this next.

PS Map

The Equation for the Streamfunction

Finite Difference Approximation

Polar Stereographic Projection

Solving the Poisson Equation

Conclusion

Background

 $\frac{\partial}{\partial t} \nabla^2 \psi = -J(\psi, \nabla^2 \psi + f)$

 $\psi \mathsf{E}$

FD Method

PS Map

 $\nabla^2 \Phi = F$

$$rac{\partial}{\partial t}
abla^2\psi=-J(\psi,
abla^2\psi+f)$$

Assume that $\psi(x, y) = \psi_0(x, y)$ at t = 0.

Background

FD Method

PS Map

 $\nabla^2 \Phi = F$

$$\frac{\partial}{\partial t} \nabla^2 \psi = -J(\psi, \nabla^2 \psi + f)$$

Assume that $\psi(x, y) = \psi_0(x, y)$ at t = 0.

We write the system of equations

$$\zeta = \nabla^2 \psi \tag{1}$$

$$\frac{\partial \zeta}{\partial t} = -J(\psi, \zeta + f)$$
(2)

$$\nabla^2 \frac{\partial \psi}{\partial t} = \frac{\partial \zeta}{\partial t} \tag{3}$$

Conclusion

Background

F

$$\frac{\partial}{\partial t} \nabla^2 \psi = -J(\psi, \nabla^2 \psi + f)$$

Assume that $\psi(x, y) = \psi_0(x, y)$ at t = 0.

We write the system of equations

$$\zeta = \nabla^2 \psi \tag{1}$$

$$\frac{\partial \zeta}{\partial t} = -J(\psi, \zeta + f)$$
 (2)

$$\nabla^2 \frac{\partial \psi}{\partial t} = \frac{\partial \zeta}{\partial t} \tag{3}$$

We assume that the values of $\psi(x, y)$ on the boundary remain unchanged during the integration.

Background

FD Method

PS Map

ALGORITHM:

```
• Given: \psi^n(x, y) at time t = n\Delta t.
```

- Compute $\zeta^n(x, y)$ using (1).
- ► Solve (2) for $(\partial \zeta / \partial t)^n$.

- Solve (3) with homogeneous boundary conditions for (∂ψ/∂t)ⁿ.
- ► Advance ψ to time $t = (n+1)\Delta t$ using $\psi^{n+1} = \psi^{n-1} + 2\Delta t (\partial \psi / \partial t)^n$.

р

The Equation for the Streamfunction

Finite Difference Approximation

Polar Stereographic Projection

Solving the Poisson Equation

Conclusion

Conclusion

Background

p

7

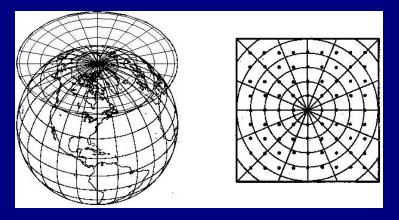


Figure: Polar Stereographic projection

Map Factor $\mu = \frac{1}{1 + \sin \phi}$ und ψ EqnFD MethodPS Map $\nabla^2 \phi = F$ Conclusion

Contents

Background

The Equation for the Streamfunction

Finite Difference Approximation

Polar Stereographic Projection

Solving the Poisson Equation

Conclusion

Background

Conclusion

 $\nabla^2 \Phi = F$ with $\Phi = 0$ on the boundary

on a rectangular domain.

Background

Conclusion

 $abla^2 \Phi = F$ with $\Phi = 0$ on the boundary

on a rectangular domain.

We introduce a discrete grid

$$\begin{array}{rcl} x & \longrightarrow & \{x_0, x_1, x_2, \dots, x_M = M \Delta x\} \\ y & \longrightarrow & \{y_0, y_1, y_2, \dots, y_N = N \Delta y\} \end{array}$$

Conclusion

 $abla^2 \Phi = F$ with $\Phi = 0$ on the boundary

on a rectangular domain.

We introduce a discrete grid

$$\begin{array}{rcl} x & \longrightarrow & \{x_0, x_1, x_2, \dots, x_M = M \Delta x\} \\ y & \longrightarrow & \{y_0, y_1, y_2, \dots, y_N = N \Delta y\} \end{array}$$

For simplicity, we assume

$$\Delta x = \Delta y = \Delta s$$

Conclusion

 $abla^2 \Phi = F$ with $\Phi = 0$ on the boundary

on a rectangular domain.

We introduce a discrete grid

$$\begin{array}{rcl} x & \longrightarrow & \{x_0, x_1, x_2, \dots, x_M = M \Delta x\} \\ y & \longrightarrow & \{y_0, y_1, y_2, \dots, y_N = N \Delta y\} \end{array}$$

For simplicity, we assume

$$\Delta x = \Delta y = \Delta s$$
.

We use a spectral method that was devised by John von Neumann for the ENIAC integrations.

Background

FD Method

PS Map

 $\nabla^2 \Phi = F$

We recall some properties of the Fourier expansion:

$$\Phi_{mn} = \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{\Phi}_{k\ell} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

Background

FD Method

PS Map

 $\nabla^2 \Phi = F$

We recall some properties of the Fourier expansion:

$$\Phi_{mn} = \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{\Phi}_{k\ell} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

The inverse transform is

$$\tilde{\Phi}_{k\ell} = \left(\frac{2}{M}\right) \left(\frac{2}{N}\right) \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} \Phi_{ij} \sin\left(\frac{ik\pi}{M}\right) \sin\left(\frac{j\ell\pi}{N}\right)$$

Background

PS Map

 $\nabla^2 \Phi = F$

We recall some properties of the Fourier expansion:

$$\Phi_{mn} = \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{\Phi}_{k\ell} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

The inverse transform is

$$\tilde{\Phi}_{k\ell} = \left(\frac{2}{M}\right) \left(\frac{2}{N}\right) \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} \Phi_{ij} \sin\left(\frac{ik\pi}{M}\right) \sin\left(\frac{j\ell\pi}{N}\right)$$

We note that

$$\sum_{i=1}^{M-1} \sum_{j=1}^{N-1} \sin\left(\frac{im\pi}{M}\right) \sin\left(\frac{jn\pi}{N}\right) \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$
$$= \delta_{ik} \delta_{j\ell} \left(\frac{M}{2}\right) \left(\frac{N}{2}\right)$$

 $\nabla^2 \Phi = F$ Conclusion

The usual five-point approximation to $\nabla^2 \Phi$ is

$$(
abla^2\Phi)_{mn}pprox \left(rac{\Phi_{m+1,n}+\Phi_{m-1,n}+\Phi_{m,n+1}+\Phi_{m,n-1}-4\Phi_{m,n}}{\Delta s^2}
ight)$$

Background

 ψ Eqn

FD Method

PS Map

 $\nabla^2 \Phi = F$

Conc

The usual five-point approximation to $\nabla^2 \Phi$ is

$$(
abla^2\Phi)_{mn}pprox \left(rac{\Phi_{m+1,n}+\Phi_{m-1,n}+\Phi_{m,n+1}+\Phi_{m,n-1}-4\Phi_{m,n}}{\Delta s^2}
ight)$$

We expand Φ in a double Fourier series

$$\Phi_{mn} = \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{\Phi}_{k\ell} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

Background

Conclusion

The usual five-point approximation to $\nabla^2 \Phi$ is

$$(
abla^2\Phi)_{mn}pprox \left(rac{\Phi_{m+1,n}+\Phi_{m-1,n}+\Phi_{m,n+1}+\Phi_{m,n-1}-4\Phi_{m,n}}{\Delta s^2}
ight)$$

We expand Φ in a double Fourier series

$$\Phi_{mn} = \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{\Phi}_{k\ell} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

We use approximations like the following:

$$\frac{\partial^2}{\partial x^2} \sin\left(\frac{km\pi}{M}\right) \approx -4\sin^2\left(\frac{k\pi}{2M}\right) \sin\left(\frac{km\pi}{M}\right)$$

[Exercise: confirm the details.]

Background

PS Map

p

Thus:

$$\nabla^{2} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right) \approx -\frac{4}{\Delta s^{2}} \left[\sin^{2}\left(\frac{k\pi}{2M}\right) + \sin^{2}\left(\frac{\ell\pi}{2N}\right)\right] \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

Background

FD Method

PS Map

 $\nabla^2 \Phi = F$

Thus:

Back

$$\nabla^{2} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right) \approx -\frac{4}{\Delta s^{2}} \left[\sin^{2}\left(\frac{k\pi}{2M}\right) + \sin^{2}\left(\frac{\ell \pi}{2N}\right)\right] \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

The Laplacian is applied term-by-term to Φ :

$$\nabla^{2} \Phi_{mn} \approx -\frac{4}{\Delta s^{2}} \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \left[\sin^{2} \left(\frac{k\pi}{2M} \right) + \sin^{2} \left(\frac{\ell\pi}{2N} \right) \right] \tilde{\Phi}_{k\ell} \times \sin \left(\frac{km\pi}{M} \right) \sin \left(\frac{\ell n\pi}{N} \right)$$
ground ψ Eqn FD Method PS Map $\nabla^{2} \Phi = F$ Conclusion

We now expand the right hand side function:

$$F_{mn} = \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{F}_{k\ell} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

Background

FD Method

PS Map

 $\nabla^2 \Phi = F$

Conc

We now expand the right hand side function:

$$F_{mn} = \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{F}_{k\ell} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

Now we equate the coefficients of $\nabla^2 \Phi$ and *F*:

$$\left[\sin^2\left(\frac{k\pi}{2M}\right) + \sin^2\left(\frac{\ell\pi}{2N}\right)\right]\tilde{\Phi}_{k\ell} = (-\Delta s^2/4)\tilde{F}_{k\ell}$$

or

$$ilde{\Phi}_{k\ell} = rac{(-\Delta s^2/4) ilde{F}_{k\ell}}{\sin^2\left(rac{k\pi}{2M}
ight) + \sin^2\left(rac{\ell\pi}{2N}
ight)}$$

Background

lap

 $\nabla^2 \Phi = F$

We now expand the right hand side function:

$$F_{mn} = \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{F}_{k\ell} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

Now we equate the coefficients of $\nabla^2 \Phi$ and *F*:

$$\left[\sin^2\left(rac{k\pi}{2M}
ight)+\sin^2\left(rac{\ell\pi}{2N}
ight)
ight] ilde{\Phi}_{k\ell}=(-\Delta s^2/4) ilde{F}_{k\ell}$$

or

Background

$$ilde{\Phi}_{k\ell} = rac{(-\Delta s^2/4) ilde{F}_{k\ell}}{\sin^2\left(rac{k\pi}{2M}
ight) + \sin^2\left(rac{\ell\pi}{2N}
ight)}$$

Now $\tilde{\Phi}_{k\ell}$ is known, and we can invert it:

$$\Phi_{mn} = \frac{\Delta s^2}{MN} \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{\Phi}_{k\ell} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

We can compute the inverse transform in one go:

$$\Phi_{mn} = -\frac{\Delta s^2}{MN} \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} \sum_{k=1}^{N-1} \sum_{\ell=1}^{N-1} \left[\sin^2 \left(\frac{k\pi}{2M} \right) + \sin^2 \left(\frac{\ell\pi}{2N} \right) \right]^{-1} \times F_{ij} \sin \left(\frac{im\pi}{M} \right) \sin \left(\frac{jn\pi}{N} \right) \sin \left(\frac{km\pi}{M} \right) \sin \left(\frac{\ell n\pi}{N} \right)$$

Background

 ψ Eqn

FD Method

PS Map

 $\nabla^2 \Phi = F$

We can compute the inverse transform in one go:

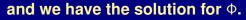
$$\Phi_{mn} = -\frac{\Delta s^2}{MN} \sum_{i=1}^{M-1} \sum_{j=1}^{M-1} \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \left[\sin^2 \left(\frac{k\pi}{2M} \right) + \sin^2 \left(\frac{\ell\pi}{2N} \right) \right]^{-1} \times F_{ij} \sin \left(\frac{im\pi}{M} \right) \sin \left(\frac{jn\pi}{N} \right) \sin \left(\frac{km\pi}{M} \right) \sin \left(\frac{\ell n\pi}{N} \right)$$

We now substitute

$$F_{ij} \longrightarrow \left(\frac{\partial \zeta}{\partial t} \right)_{ij}$$

Then

$$\Phi_{mn} = \left(\frac{\partial \psi}{\partial t}\right)_{mn}$$

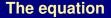


Background

FD Method

PS Map

 $\nabla^2 \Phi = F$



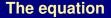
$$\frac{d(\zeta+f)}{dt}=0\,.$$

was used for the four integrations on the ENIAC.

Conclusion

Background

 $\nabla^2 \Phi = F$



$$\frac{d(\zeta+f)}{dt}=0\,.$$

was used for the four integrations on the ENIAC.

Charney, Fjørtoft and von Neumann (*Tellus*, 1950) used *z* rather than ψ . This necessitates an approximation involving the β -term.

Background

PS Map

 $\nabla^2 \Phi = F$

The equation

$$\frac{d(\zeta+f)}{dt}=0\,.$$

was used for the four integrations on the ENIAC.

Charney, Fjørtoft and von Neumann (*Tellus*, 1950) used *z* rather than ψ . This necessitates an approximation involving the β -term.

Lynch (*BAMS*, 2008) showed that the ψ -form yields forecasts that are slightly more accurate.

This confirmed a hypothesis advanced earlier by Norman Phillips.

 $\nabla^2 \Phi = F$

Charney et al. used the 500mb analyses of the National Weather Service, discretized and digitized by hand.

Background

PS Map

 $\nabla^2 \Phi = F$

Charney et al. used the 500mb analyses of the National Weather Service, discretized and digitized by hand.

The computation grid was 19×16 points, with a resolution of about 600 km.

Background

Conclusion

 $\nabla^2 \Phi = F$

Charney et al. used the 500mb analyses of the National Weather Service, discretized and digitized by hand.

The computation grid was 19×16 points, with a resolution of about 600 km.

The ENIAC forecasts had an "electrifying effect" on the meteorological community, and led ultimately to operational NWP.

Background

Conclusion

 $\nabla^2 \Phi = F$

Contents

Background

The Equation for the Streamfunction

Finite Difference Approximation

Polar Stereographic Projection

Solving the Poisson Equation

Conclusion

Background

 ∇^2

- ENIAC code in MatLab.
- PHONIAC on a mobile phone.
- What about an iPod?

Conclusion

Background

PS Map

 $\nabla^2 \Phi =$