The ENIAC Integrations

Numerical Solution of the BVE

Peter Lynch

School of Mathematical Sciences

Outline
Background

The Equation for the Streamfunction

Finite Difference Approximation
Polar Stereographic Projection

Solving the Poisson Equation
Conclusion

The dynamical behaviour of planetary waves in the atmosphere is modelled by the barotropic vorticity equation (BVE):

$$
\frac{d(\zeta+f)}{d t}=0 .
$$

Rossby (1939) used a simplified (linear) form of this equation for his study of atmospheric waves.

Charney, Fjørtoft \& von Neumann (1950) integrated the BVE to produce the earliest numerical weather predictions on the ENIAC.

They integrated the equation on a rectangular domain, in planar geometry.

Contents

Background
The Equation for the Streamfunction

Finite Difference Approximation

Polar Stereographic Projection
Solving the Poisson Equation
Conclusion

Since f does not vary with time, we have

$$
\frac{\partial}{\partial t}(\zeta+f)=\frac{\partial \zeta}{\partial t}=\frac{\partial \nabla^{2} \psi}{\partial t}
$$

Thus, the BVE may be written

$$
\frac{\partial \nabla^{2} \psi}{\partial t}+J\left(\psi, \nabla^{2} \psi+f\right)=0
$$

This is a single partial differential equation with just one dependent variable, the streamfunction $\psi(x, y, t)$.

Once initial and boundary values are given, the equation can be solved for $\psi=\psi(x, y, t)$.

Contents

Background

The Equation for the Streamfunction

Finite Difference Approximation
Polar Stereographic Projection
Solving the Poisson Equation
Conclusion

ALGORITHM:

- Given: $\psi^{n}(x, y)$ at time $t=n \Delta t$.
\downarrow
- Compute $\zeta^{n}(x, y)$ using (1).
-
- Solve (2) for $(\partial \zeta / \partial t)^{n}$.
-
- Solve (3) with homogeneous boundary conditions for $(\partial \psi / \partial t)^{n}$.
- Advance ψ to time $t=(n+1) \Delta t$ using

$$
\psi^{n+1}=\psi^{n-1}+2 \Delta t(\partial \psi / \partial t)^{n} .
$$

We assume that the values of $\psi(x, y)$ on the boundary remain unchanged during the integration.

Contents

Background
The Equation for the Streamfunction

Finite Difference Approximation
Polar Stereographic Projection
Solving the Poisson Equation
Conclusion

$$
\begin{align*}
\zeta & =\nabla^{2} \psi \tag{1}\\
\frac{\partial \zeta}{\partial t} & =-J(\psi, \zeta+f) \tag{2}\\
\nabla^{2} \frac{\partial \psi}{\partial t} & =\frac{\partial \zeta}{\partial t} \tag{3}
\end{align*}
$$

We write the system of equations

Figure: Polar Stereographic projection

$$
\text { Map Factor } \quad \mu=\frac{1}{1+\sin \phi}
$$

We need to find the streamfunction by solving a Poisson equation of the form

$$
\nabla^{2} \Phi=F \quad \text { with } \quad \Phi=0 \text { on the boundary }
$$

on a rectangular domain.
We introduce a discrete grid

$$
\begin{aligned}
& x \longrightarrow\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{M}=M \Delta x\right\} \\
& y \longrightarrow\left\{y_{0}, y_{1}, y_{2}, \ldots, y_{N}=N \Delta y\right\}
\end{aligned}
$$

For simplicity, we assume

$$
\Delta x=\Delta y=\Delta s .
$$

We use a spectral method that was devised by John von Neumann for the ENIAC integrations.

We recall some properties of the Fourier expansion:

$$
\Phi_{m n}=\sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{\Phi}_{k \ell} \sin \left(\frac{k m \pi}{M}\right) \sin \left(\frac{\ell n \pi}{N}\right)
$$

The inverse transform is

$$
\tilde{\Phi}_{k \ell}=\left(\frac{2}{M}\right)\left(\frac{2}{N}\right) \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} \Phi_{i j} \sin \left(\frac{i k \pi}{M}\right) \sin \left(\frac{j \ell \pi}{N}\right)
$$

We note that

$$
\begin{aligned}
\sum_{i=1}^{M-1} & \sum_{j=1}^{N-1} \sin \left(\frac{i m \pi}{M}\right) \sin \left(\frac{j n \pi}{N}\right) \sin \left(\frac{k m \pi}{M}\right) \sin \left(\frac{\ell n \pi}{N}\right) \\
& =\delta_{i k} \delta_{j \ell}\left(\frac{M}{2}\right)\left(\frac{N}{2}\right)
\end{aligned}
$$

Background

The usual five-point approximation to $\nabla^{2} \Phi$ is

$$
\left(\nabla^{2} \Phi\right)_{m n} \approx\left(\frac{\Phi_{m+1, n}+\Phi_{m-1, n}+\Phi_{m, n+1}+\Phi_{m, n-1}-4 \Phi_{m, n}}{\Delta s^{2}}\right)
$$

We expand Φ in a double Fourier series

$$
\Phi_{m n}=\sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{\Phi}_{k \ell} \sin \left(\frac{k m \pi}{M}\right) \sin \left(\frac{\ell n \pi}{N}\right)
$$

We use approximations like the following:

$$
\frac{\partial^{2}}{\partial x^{2}} \sin \left(\frac{k m \pi}{M}\right) \approx-4 \sin ^{2}\left(\frac{k \pi}{2 M}\right) \sin \left(\frac{k m \pi}{M}\right)
$$

[Exercise: confirm the details.]

We now expand the right hand side function:

$$
F_{m n}=\sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{F}_{k \ell} \sin \left(\frac{k m \pi}{M}\right) \sin \left(\frac{\ell n \pi}{N}\right)
$$

Now we equate the coefficients of $\nabla^{2} \Phi$ and F :

$$
\left[\sin ^{2}\left(\frac{k \pi}{2 M}\right)+\sin ^{2}\left(\frac{\ell \pi}{2 N}\right)\right] \tilde{\Phi}_{k l}=\left(-\Delta s^{2} / 4\right) \tilde{F}_{k \ell}
$$

or

$$
\tilde{\Phi}_{k \ell}=\frac{\left(-\Delta s^{2} / 4\right) \tilde{F}_{k \ell}}{\sin ^{2}\left(\frac{k \pi}{2 M}\right)+\sin ^{2}\left(\frac{\ell \pi}{2 N}\right)}
$$

Now $\tilde{\Phi}_{k \ell}$ is known, and we can invert it:

$$
\Phi_{m n}=\frac{\Delta s^{2}}{M N} \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{\Phi}_{k \ell} \sin \left(\frac{k m \pi}{M}\right) \sin \left(\frac{\ell n \pi}{N}\right)
$$

Background

Thus:

$$
\begin{aligned}
& \nabla^{2} \sin \left(\frac{k m \pi}{M}\right) \sin \left(\frac{l n \pi}{N}\right) \approx \\
& \quad-\frac{4}{\Delta s^{2}}\left[\sin ^{2}\left(\frac{k \pi}{2 M}\right)+\sin ^{2}\left(\frac{\ell \pi}{2 N}\right)\right] \sin \left(\frac{k m \pi}{M}\right) \sin \left(\frac{\ell n \pi}{N}\right)
\end{aligned}
$$

The Laplacian is applied term-by-term to ϕ :

$$
\begin{aligned}
& \nabla^{2} \Phi_{m n} \approx \\
&-\frac{4}{\Delta s^{2}} \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} {\left[\sin ^{2}\left(\frac{k \pi}{2 M}\right)+\sin ^{2}\left(\frac{\ell \pi}{2 N}\right)\right] \tilde{\Phi}_{k \ell} \times } \\
& \sin \left(\frac{k m \pi}{M}\right) \sin \left(\frac{\ell n \pi}{N}\right)
\end{aligned}
$$

We can compute the inverse transform in one go:

$$
\begin{array}{r}
\Phi_{m n}=-\frac{\Delta s^{2}}{M N} \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1}\left[\sin ^{2}\left(\frac{k \pi}{2 M}\right)+\sin ^{2}\left(\frac{\ell \pi}{2 N}\right)\right]^{-1} \times \\
F_{i j} \sin \left(\frac{i m \pi}{M}\right) \sin \left(\frac{j n \pi}{N}\right) \sin \left(\frac{k m \pi}{M}\right) \sin \left(\frac{\ell n \pi}{N}\right)
\end{array}
$$

We now substitute

$$
F_{i j} \longrightarrow\left(\frac{\partial \zeta}{\partial t}\right)_{i j}
$$

Then

$$
\Phi_{m n}=\left(\frac{\partial \psi}{\partial t}\right)_{m n}
$$

and we have the solution for ϕ.

The equation

$$
\frac{d(\zeta+f)}{d t}=0
$$

was used for the four integrations on the ENIAC.
Charney et al. used the 500 mb analyses of the National Weather Service, discretized and digitized by hand.

The computation grid was 19×16 points, with a Charney, Fjortoft and von Neumann (Telius,
used z rather than ψ. This necessitates an resolution of about 600 km .

The ENIAC forecasts had an "electrifying effect" on the meteorological community, and led ultimately to operational NWP.
This confirmed a hypothesis advanced earlier by Norman Phillips.

Contents
Background

The Equation for the Streamfunction
Finite Difference Approximation

- ENIAC code in MatLab.
-
- PHONIAC on a mobile phone.
$>$
Polar Stereographic Projection
- What about an iPod?

Solving the Poisson Equation

Conclusion

