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The dynamical behaviour of planetary waves in the

atmosphere is modelled by the barotropic vorticity

equation (BVE):
d(ζ + f )

dt
= 0 .

Rossby (1939) used a simplified (linear) form of this

equation for his study of atmospheric waves.

Charney, Fjørtoft & von Neumann (1950) integrated

the BVE to produce the earliest numerical weather

predictions on the ENIAC.

They integrated the equation on a rectangular

domain, in planar geometry.
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V = k×∇ψ ∇ · V = 0

u = −
∂ψ

∂y
v = +

∂ψ

∂x

d •

dt
=

∂ •

∂t
+ u

∂ •

∂x
+ v

∂ •

∂y

=
∂ •

∂t
−
∂ψ

∂y

∂ •

∂x
+
∂ψ

∂x

∂ •

∂y

=
∂ •

∂t
+ J(ψ, •)

∇ · V = 0 ζ = ∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
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Since f does not vary with time, we have

∂

∂t
(ζ + f ) =

∂ζ

∂t
=
∂∇2ψ

∂t

Thus, the BVE may be written

∂∇2ψ

∂t
+ J(ψ,∇2ψ + f ) = 0

This is a single partial differential equation with just

one dependent variable, the streamfunction ψ(x , y , t).

Once initial and boundary values are given, the

equation can be solved for ψ = ψ(x , y , t).
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The Jacobian operator is defined as

J(ψ, ζ) =

(

∂ ψ

∂x

∂ζ

∂y
−
∂ψ

∂y

∂ ζ

∂x

)

The Jacobian operator represents advection:

V · ∇ζ = u
∂ζ

∂x
+ v

∂ζ

∂y

= −
∂ψ

∂y

∂ζ

∂x
+
∂ψ

∂x

∂ζ

∂y

= J(ψ, ζ)

It is essentially nonlinear. The BVE must be solved by

numerical means. We come to this next.
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∂

∂t
∇2ψ = −J(ψ,∇2ψ + f )

Assume that ψ(x , y) = ψ0(x , y) at t = 0.

We write the system of equations

ζ = ∇2ψ (1)

∂ζ

∂t
= −J(ψ, ζ + f ) (2)

∇2∂ψ

∂t
=

∂ζ

∂t
(3)

We assume that the values of ψ(x , y) on the boundary

remain unchanged during the integration.
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ALGORITHM:

◮

◮ Given: ψn(x , y) at time t = n∆t .

◮

◮ Compute ζn(x , y) using (1).

◮

◮ Solve (2) for (∂ζ/∂t)n.

◮

◮ Solve (3) with homogeneous boundary

conditions for (∂ψ/∂t)n.

◮

◮ Advance ψ to time t = (n + 1)∆t using

ψn+1 = ψn−1 + 2∆t(∂ψ/∂t)n.
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Figure: Polar Stereographic projection

Map Factor µ =
1

1 + sinφ
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We need to find the streamfunction by solving a

Poisson equation of the form

∇2Φ = F with Φ = 0 on the boundary

on a rectangular domain.

We introduce a discrete grid

x −→ {x0, x1, x2, . . . , xM = M∆x}

y −→ {y0, y1, y2, . . . , yN = N∆y}

For simplicity, we assume

∆x = ∆y = ∆s .

We use a spectral method that was devised by John

von Neumann for the ENIAC integrations.
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We recall some properties of the Fourier expansion:

Φmn =
M−1
∑

k=1

N−1
∑

ℓ=1

Φ̃kℓ sin

(

kmπ

M

)

sin

(

ℓnπ

N

)

The inverse transform is

Φ̃kℓ =

(

2

M

)(

2

N

) M−1
∑

i=1

N−1
∑

j=1

Φij sin

(

ikπ

M

)

sin

(

jℓπ

N

)

We note that

M−1
∑

i=1

N−1
∑

j=1

sin

(

imπ

M

)

sin

(

jnπ

N

)

sin

(

kmπ

M

)

sin

(

ℓnπ

N

)

= δikδjℓ

(

M

2

)(

N

2

)
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The usual five-point approximation to ∇2Φ is

(∇2Φ)mn ≈

(

Φm+1,n + Φm−1,n + Φm,n+1 + Φm,n−1 − 4Φm,n

∆s2

)

We expand Φ in a double Fourier series

Φmn =
M−1
∑

k=1

N−1
∑

ℓ=1

Φ̃kℓ sin

(

kmπ

M

)

sin

(

ℓnπ

N

)

We use approximations like the following:

∂2

∂x2
sin

(

kmπ

M

)

≈ −4 sin2

(

kπ

2M

)

sin

(

kmπ

M

)

[Exercise: confirm the details.]
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Thus:

∇2 sin

(

kmπ

M

)

sin

(

ℓnπ

N

)

≈

−
4

∆s2

[

sin2

(

kπ

2M

)

+ sin2

(

ℓπ

2N

)]

sin

(

kmπ

M

)

sin

(

ℓnπ

N

)

The Laplacian is applied term-by-term to Φ:

∇2Φmn ≈

−
4

∆s2

M−1
∑

k=1

N−1
∑

ℓ=1

[

sin2

(

kπ

2M

)

+ sin2

(

ℓπ

2N

)]

Φ̃kℓ ×

sin

(

kmπ

M

)

sin

(

ℓnπ

N

)
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We now expand the right hand side function:

Fmn =
M−1
∑

k=1

N−1
∑

ℓ=1

F̃kℓ sin

(

kmπ

M

)

sin

(

ℓnπ

N

)

Now we equate the coefficients of ∇2Φ and F :
[

sin2

(

kπ

2M

)

+ sin2

(

ℓπ

2N

)]

Φ̃kℓ = (−∆s2/4)F̃kℓ

or

Φ̃kℓ =
(−∆s2/4)F̃kℓ

sin2
(

kπ
2M

)

+ sin2
(

ℓπ
2N

)

Now Φ̃kℓ is known, and we can invert it:

Φmn =
∆s2

MN

M−1
∑

k=1

N−1
∑

ℓ=1

Φ̃kℓ sin

(

kmπ

M

)

sin

(

ℓnπ

N

)
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We can compute the inverse transform in one go:

Φmn = −
∆s2

MN

M−1
∑

i=1

N−1
∑

j=1

M−1
∑

k=1

N−1
∑

ℓ=1

[

sin2

(

kπ

2M

)

+ sin2

(

ℓπ

2N

)]

−1

×

Fij sin

(

imπ

M

)

sin

(

jnπ

N

)

sin

(

kmπ

M

)

sin

(

ℓnπ

N

)

We now substitute

Fij −→

(

∂ζ

∂t

)

ij

.

Then

Φmn =

(

∂ψ

∂t

)

mn

and we have the solution for Φ.
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The equation
d(ζ + f )

dt
= 0 .

was used for the four integrations on the ENIAC.

Charney, Fjørtoft and von Neumann (Tellus, 1950)

used z rather than ψ. This necessitates an

approximation involving the β-term.

Lynch (BAMS, 2008) showed that the ψ-form yields

forecasts that are slightly more accurate.

This confirmed a hypothesis advanced earlier by

Norman Phillips.
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Charney et al. used the 500mb analyses of the

National Weather Service, discretized and digitized by

hand.

The computation grid was 19× 16 points, with a

resolution of about 600 km.

The ENIAC forecasts had an “electrifying effect” on

the meteorological community, and led ultimately to

operational NWP.
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◮ ENIAC code in MatLab.

◮

◮ PHONIAC on a mobile phone.

◮

◮ What about an iPod?
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