
ON A CONJECTURE OF WILF

STEFAN DE WANNEMACKER, THOMAS LAFFEY, AND ROBERT OSBURN

Abstract. Let n and k be natural numbers and let S(n, k) denote the Stirling num-

bers of the second kind. It is a conjecture of Wilf that the alternating sum
nX

j=0

(−1)jS(n, j)

is nonzero for all n > 2. We prove this conjecture for all n 6≡ 2 and 6≡ 2944838 mod

3145728 and discuss applications of this result to graph theory, multiplicative parti-

tion functions, and the irrationality of p-adic series.

1. Introduction

Let n and k be natural numbers. The Stirling numbers S(n, k) of the second kind are
given by

xn =
∞∑

k=0

S(n, k)(x)k,

where (x)k := x(x− 1)(x− 2) . . . (x− k + 1) for k ∈ N \ {0} and (x)0 := 1. S(n, k) is the
number of ways in which it is possible to partition a set with n elements into exactly k
nonempty subsets. Consider the alternating sum

f(n) :=
n∑

j=0

(−1)jS(n, j).

The first few terms in the sequence of integers {f(n)}n≥0 are as follows:
1, −1, 0, 1, 1, −2, −9, −9, 50, 267, 413, −2180, −17731, −50533, 110176, . . .

This is sequence A000587 of Sloane [45]. This sequence appears in Example 5(ii), Section
8, Chapter 3 in Ramanujan’s second notebook (see page 53 of [2]) and has been sub-
sequently investigated by Beard [1], Harris and Subbarao [25], Uppuluri and Carpenter
[47], Kolokolnikova [32], Layman and Prather [35], Subbarao and Verma [42], Yang [49],
Klazar [30], and Murty and Sumner [41].

Wilf has conjectured (see [29]) that f(n) 6= 0 for all n > 2. So, the only value of
n for which f(n) vanishes would be n = 2. The best known result in this direction is
that of Yang [49]. In [49], the author adapted an approach of de Bruijn [9] concerning
the saddle point method and used exponential sum estimates from [33] to show that the
number of n ≤ x with f(n) = 0 is O(x2/3) where the implied constant is not explicitly
computed. Recently, Murty and Sumner have taken a different approach in proving the
non-vanishing of f(n). In [41], the authors use the congruence
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f(n) ≡
n∑

j=0

S(n, j) ≡ Bn mod 2,

properties of the Bell numbers Bn, and of ζ3, a cube root of unity, to prove the following
result.

Theorem 1.1. If n 6≡ 2 mod 3, then f(n) 6= 0.

The purpose of this paper is to extend Theorem 1.1 as follows.

Theorem 1.2. If n 6≡ 2 and 6≡ 2944838 mod 3145728, then f(n) 6= 0.

The paper is organized as follows. In Section 2, we use generating functions and
properties of finite fields to prove a general congruence for f(n). This congruence (see
Proposition 2.3) combined with computer calculations (see the Appendix) yields a proof
of Theorem 1.2. In Section 3, we give a brief discussion of other congruences for f(n).
In particular we prove a general congruence for f(n) modulo p where p is a prime (see
Proposition 3.1). This result generalizes the congruences given by Lemmas 9 and 10 in
[41]. We conclude Section 3 by mentioning another approach to the general congruence for
f(n) using a certain set of recursively defined polynomials. We relate these polynomials
to f(n) and use this relationship to give an alternative proof of Proposition 2.3. In Section
4, we discuss how Theorem 1.2 has applications in three distinct areas of mathematics,
namely graph theory, multiplicative partition functions, and to the irrationality of p-adic
series.

2. Proof of Theorem 1.2

The proof of Theorem 1.2 contains two key steps. We first derive the generating
function for f(n), then use this expression to determine when f(n) has a period of N
modulo m where N and m are positive integers. We first require the following well-known
property of Stirling numbers of the second kind, namely (see page 34 in [46])

(1)
∑
n≥k

S(n, k)xn =
xk

(1− x)(1− 2x) · · · (1− kx)
.

For more details and basic results on Stirling numbers of the second kind we refer the
reader to [8], [23], or [46]. Recent applications of S(n, k) include computing annihilating
polynomials for quadratic forms [11]. Further information on these applications can be
found in [12]. Using (1), we derive an expression for the generating function of f(n).

Lemma 2.1. For any positive integer m, the generating function F (x) of f(n) is the
following rational function modulo m.

(2) F (x) :=
∑
n≥0

f(n)xn ≡ Q(x)
(1− x)(1− 2x) · · · (1− (m− 1)x)− (−1)mxm

mod m,

where Q(x) is a polynomial modulo m given by

Q(x) :=

(
m−1∑
k=0

(−1)kxk

(1− x)(1− 2x) · · · (1− kx)

)
(1− x)(1− 2x) · · · (1− (m− 1)x).
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Proof. We begin by multiplying both sides of (1) by (−1)k and summing over k to obtain

(3) F (x) =
∑
n≥0

f(n)xn =
∑
k≥0

(−1)kxk

(1− x)(1− 2x) · · · (1− kx)
.

Now computing F (x) modulo m yields

F (x)

≡

(
m−1∑
k=0

(−1)kxk

(1− x)(1− 2x) · · · (1− kx)

)
·

( ∞∑
i=0

( (−1)mxm

(1− x)(1− 2x) · · · (1− (m− 1)x)

)i
)

mod m

≡

(
m−1∑
k=0

(−1)kxk

(1− x)(1− 2x) · · · (1− kx)

)
·

(
1− (−1)mxm

(1− x)(1− 2x) · · · (1− (m− 1)x)

)−1

mod m

≡ Q(x)
(1− x)(1− 2x) · · · (1− (m− 1)x)− (−1)mxm

mod m,

where Q(x) is defined as above. �

Remark 2.2. Given a positive integer m, we now explain one way to compute a period
N for f(n) modulo m. Consider

D(x) := (1− x)(1− 2x) · · · (1− (m− 1)x)− (−1)mxm,

which is the denominator of F (x) via Lemma 2.1. Note that F (x) is proper, i.e., the
degree of Q(x) is less than the degree of D(x). Let α be a root of D(x) modulo m and
view α as the representative of x in the ring Zm[x]/〈D(x)〉. Let

Γ(α) := {a0 + a1α + · · · am−1α
m−1 : ai ∈ Zm}.

Then Γ(α) forms a finite semi-group under multiplication. Define Γ∗(α) to be the set
of invertible elements in Γ(α). Then Γ∗(α) forms a finite group. Moreover, let g(x) =
(1−D(x))/x and note that g(α) is a polynomial in α of degree at most m− 1 and hence
belongs to Γ(α). Also we have g(α)α = 1 and so α belongs to Γ∗(α). As the order of α
divides |Γ∗(α)|,

α|Γ
∗(α)| = 1,

and so α is a root of x|Γ
∗(α)| − 1. Since this is true for all roots of D(x), we get

1− xN ≡ D(x)M(x) mod m

where M(x) ∈ Zm[x] and N is the least common multiple of the |Γ∗(α)| as α ranges over
the roots of D(x). Now if 1 − xN ≡ D(x)M(x) mod m, then observe that the proper
rational function

F (x) ≡ Q(x)M(x)
1− xN

mod m

has a period of N upon multiplying both sides by 1 − xN and comparing coefficients.
This in turn implies that f(n) has a period of N modulo m. For example, if m = 2, then

F (x) ≡ 1
x2 + x + 1

mod 2.
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By multiplying both the numerator and denominator by x + 1, we obtain

F (x) ≡ x + 1
x3 − 1

mod 2.

Thus f(n) ≡ f(n + 3) mod 2 and so we recover Theorem 1.1 as f(1) and f(3) are odd.

We are now in a position to prove a general congruence for f(n).

Proposition 2.3. Let n, h ∈ N. Then

f(n) ≡ f(n + 3 · 4h−1) mod 2h.

Proof. We first work over the field F2. Let m = 2h with h ≥ 1. By Remark 2.2, it
is sufficient to find a positive integer N such that αN ≡ 1 mod m whenever D(α) ≡
0 mod m. Let α be a root of D(x). Then

D(α) = (1− α)(1− 2α) . . . (1− (2h − 1)α)− (−1)2
h

α2h

≡ (1− α)2
h−1

+ α2h

mod 2

≡ 1 + α2h−1
+ α2h

mod 2
≡ 0 mod 2

and thus α3·2h−1 ≡ 1 mod 2. So we have α3·2h−1 ≡ 1 + 2w mod 2h for some w ∈ Z. Then

α3·2h−1·2h−1
≡ (1 + 2w)2

h−1
≡ 1 + 2hw +

(
2h−1

2

)
22w2 + · · ·+ (2w)2

h−1
mod 2h.

As
(
2h−1

t

)
≡ 0 mod 2h for all 1 ≤ t ≤ 2h−1, we deduce

α3·4h−1
≡ 1 mod 2h

and thus 3 · 4h−1 is a period for f(n) modulo 2h.
�

We can now prove Theorem 1.2

Proof. For every fixed value of h ≥ 1 one can use Proposition 2.3 to compute the values
of n in the interval [0, 3 · 4h−1 − 1] for which the 2-adic valuation of f(n) is at least h.
These values will yield the only possible cases mod 3 · 4h−1 for which Wilf’s conjecture
might fail, the so-called “open” cases. For large values of h, the computer program given
in the Appendix can be used for this purpose. In particular, take h = 22 and consider
the set

N22 := {l ∈ N : l < 3 · 421 and f(l) 6≡ 0 mod 222}.

The congruence
f(n) ≡ f(n + 3 · 421) mod 222

implies that

f(N) 6= 0
for all N ≡ l mod 3 · 421 where l ∈ N22. In particular, since f(n) ≡ 0 mod 222 only for
the values n ≡ 2 and ≡ 2944838 mod 3145728 when n < 3 · 421, this implies that if n 6≡ 2
and 6≡ 2944838 mod 3145728, then f(n) 6= 0 and the result follows. �
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In the table below we have listed the “open” cases for values of h ≤ 22.

h Open cases mod
1 2 3
2 2, 11 12
3 2 12
4 2 12
5 2 12
6 2, 38 48
7 2, 38 96
8 2, 134 192
9 2, 326 384
10 2, 326 768
11 2, 326 1536
12 2, 1862 3072
13 2, 1862 6144
14 2, 8006 12288
15 2, 20294 24576
16 2, 44870 49152
17 2, 94022 98304
18 2, 192326 196608
19 2, 192326 393216
20 2, 585542 786432
21 2, 1371974 1572864
22 2, 2944838 3145728

3. Other congruences

The purpose of this section is two-fold. We first discuss how Remark 2.2 can also be
used to prove other interesting congruences for f(n). Secondly, we provide an alternative
approach to proving congruences for f(n) using a recursively defined set of polynomials.
We begin with an immediate application of Remark 2.2.

Proposition 3.1. Let n, h ∈ N and p be an odd prime. Then

(4) f(n) ≡ f(n + 2pp−1
p−1 ) mod p

and

(5) f(n) ≡ f(n + 2p2h−2(pp−1)
(p−1) ) mod ph.

Proof. We work over the field Fp. By Fermat’s Little Theorem for finite fields, the
denominator D(x) can be simplified, namely

D(x) = (1− x)(1− 2x) · · · (1− (p− 1)x) + xp ≡ 1− xp−1 + xp mod p.

By Remark 2.2, we assume that α is a root of D(x) and let β = 1/α. Note that the
period of α is the same as the period of β. One can then check that

(6) β(β − 1)(β − 2) · · · (β − p + 1) + 1 ≡ βp − β + 1 ≡ 0 mod p.
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We now show by induction on i that βpi ≡ β − i mod p. The result holds for i = 0 and
i = 1 by (6). Assume βpi ≡ β − i mod p. Then

βpi+1
≡
(
βpi
)p

≡ (β − i)p ≡ βp − i ≡ β − (i + 1) mod p.

This proves the claim. Now applying this claim and (6), we have

β1+p+p2+···+pp−1
≡ β(β − 1)(β − 2) · · · (β − p + 1) ≡ −1 mod p.

Therefore 2(pp−1)
p−1 is a period of β and hence is a period of α. By Remark 2.2, (4) then

follows. The proof of (5) is similar to that of Proposition 2.3 and is left to the reader.
�

Remark 3.2. One can ask for the minimal periods for f(n) modulo m. In the table
below, we compute the minimal periods for f(n) modulo m for small values of m. The
values in this table follow from Propositions 2.3, 3.1, and numerical work. Note that f(n)
does not have minimal period 3 · 4h−1 modulo 2h as can be seen for h = 3 (see Remark
3.8). In general, we conjecture that the minimal period for f(n) modulo ph where h ≥ 1
is the one given by (5). We would like to point out (thanks to the referee) that the
congruences for f(n) are completely analogous to congruences for the Bell numbers. In
particular, it is well known that for prime p, the Bell numbers are periodic with minimal
period dividing pp−1

p−1 and that this seems to be the minimal period. No one has been
able to prove this claim. For further information regarding congruences for Bell numbers,
please see [6], [37], and [48].

m Minimal period m Minimal period

2 3 10 398310

3 33 − 1 11 1111−1
5

4 3 · 4 12 1560

5 55−1
2 13 1313−1

6

6 390 14 17294382

7 77−1
3 15 81091300290

8 3·42

2 16 3 · 43

9 2·32(33−1)
3−1

We now turn to an alternative approach to proving Proposition 2.3. Consider the set
of polynomials defined in the following recursive way:
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P0(X) := 1

Pn(X) := XPn−1(X)− Pn−1(X + 1), n ≥ 1.

Example 3.3.

P1(X) = X − 1,

P2(X) = X2 − 2X,

P3(X) = X3 − 3X2 + 1,

P4(X) = X4 − 4X3 + 4X + 1,

P5(X) = X5 − 5X4 + 10X2 + 5X − 2.

The generating function of the Pn’s is given by

(7) P (X, t) :=
∑
n≥0

Pn(X)tn =
∑
j≥0

(−1)jtj

(1−Xt)(1− (X − 1)t) · · · (1− (X − j)t)
.

To see this, multiply the recurrence for the Pn’s by tn and sum over n to get the functional
equation

P (X, t) =
1− tP (X + 1, t)

1−Xt
,

which is satisfied by (7). We now relate these polynomials to f(n) and prove a recursive
formula. Precisely, we have

Proposition 3.4. Let n ∈ N. Then
(i) f(n) = Pn(0).

(ii) Pn(X) =
n∑

j=0

(
n

j

)
f(n− j)Xj .

(iii) −f(n + 1) =
n∑

j=0

(
n

j

)
f(n− j).

Proof. Taking X = 0 in (7) and using (3) yields (i). Now (ii) follows from comparing
the coefficient of tn in (7) and using (1). Finally, by (ii), we have

Pn(1) =
n∑

j=0

(
n

j

)
f(n− j).

Then (iii) follows since f(n + 1) = Pn+1(0) = −Pn(1). We note that observation (iii)
was originally made in the context of multiplicative partition functions (see [42]).

�

Remark 3.5. It has been numerically verified that Pn(X) is irreducible over Z for all
5 < n ≤ 200. We believe that Pn(X) is irreducible over Z for all n > 5. It is not
immediately clear that the methods of [7], [15], or [44] can be suitably adapted to prove
this claim. Note that this claim implies Wilf’s conjecture as the constant term of Pn(X)
is f(n).
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We now prove the following useful properties of the polynomials Pn(X).

Proposition 3.6. Let k be a positive integer. Let

fk(X, Y ) := (X − Y )(X + 1− Y ) · · · (X + k − 1− Y )

=
k∑

r=0

ar,k(X)Y r

where ar,k(X) ∈ Z[X]. Then for all n ∈ N,

Pn(X + k) =
k∑

r=0

ar,k(X)Pn+r(X).

Proof. We proceed by induction on k. When k = 1, the result states Pn(X + 1) =
XPn(X)−Pn+1(X) and this is the recurrence relation for the polynomials Pn(X). Assume
the result holds for k. Then

Pn(X + k + 1) =
k∑

r=0

ar,k(X + 1)Pn+r(X + 1)

=
k∑

r=0

ar,k(X + 1) (XPn+r(X)− Pn+r+1(X))

=
k∑

r=0

(Xar,k(X + 1)Pn+r(X)− ar,k(X + 1)Pn+r+1(X)) .

For 0 ≤ t ≤ k, the coefficient of Pn+t(X) is

Xat,k(X + 1)− at−1,k(X + 1).

Thus

fk+1(X, Y ) = (X − Y )fk(X + 1, Y )

= (X − Y )
k∑

r=0

ar,k(X + 1)Y r

=
k∑

r=0

Xar,k(X + 1)Y r −
k+1∑
r=1

Xar−1,k(X + 1)Y r.

So at,k+1(X) = Xat,k(X + 1)− at−1,k(X + 1) and

Pn(X + k + 1) =
k+1∑
r=0

ar,k+1(X)Pn+r(X).

�

Corollary 3.7. Let n, k ∈ N. Then

f(n) ≡
k∑

r=1

ar,k(0)f(n + r) mod k
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where

(X − Y )(X + 1− Y ) · · · (X + k − 1− Y ) =
k∑

r=0

ar,k(X)Y r.

Proof. From Proposition 3.6 and a0,k(0) = 0, it follows that

Pn(k) =
k∑

r=1

ar,k(0)Pn+r(0)

=
k∑

r=1

ar,k(0)f(n + r).

The result now follows from part (i) of Proposition 3.4 and the fact that

Pn(k) ≡ Pn(0) mod k.

�

We can now give an alternative proof of Proposition 2.3.

Proof. Corollary 3.7 for k = 2h gives

f(n) ≡
2h∑

r=1

ar,2h(0)f(n + r) mod 2h

and, in particular,

f(n + 2h) ≡ f(n)−
2h−1∑
r=1

ar,2h(0)f(n + r) mod 2h.

So we have 
f(n + 2h)

f(n + 2h − 1)
f(n + 2h − 2)

...
f(n + 1)

 ≡ A


f(n + 2h − 1)
f(n + 2h − 2)
f(n + 2h − 3)

...
f(n)

 mod 2h

where

A =


−a2h−1,2h(0) −a2h−2,2h(0) −a2h−3,2h(0) · · · −a1,2h(0) 1

1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0

 .

Note that A is the companion matrix of the polynomial

c(Y ) = Y (Y − 1) · · · (Y − 2h+1 + 1)− 1.

Now

c(Y ) ≡ (Y (Y + 1))2
h−1

+ 1 ≡ (Y 2 + Y + 1)2
h−1

mod 2.
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Over F2, A is non-derogatory (see [4], 7.20) and has Jacobson canonical form (see [28],
page 72)

J =


X N

X N
. . . . . .

N
X


where X =

(
1 1
1 0

)
is the companion matrix of Y 2 + Y + 1 and N =

(
0 0
1 0

)
. Let Is be

the s× s identity matrix where s ≥ 1. Some calculation shows that

c(J) =


0 I2

0 I2

. . . . . .
0 I2

0


and

Z := J3 − I2h = (J − I2h)c(J) =



0 X2 N
0 X2 N

. . . . . . . . .
0 X2 N

0 X2

0


.

The matrix Z has the property that

Z2h−1
= 0.

So over F2,

J3·2h−1
= (I2h + Z)2

h−1

= I2h + 2h−1Z + . . . + Z2h−1

= I2h .

Hence A3·2h−1
is similar to a matrix of the form I2h + 2W for a matrix W over F2h . So

A3·2h−1·2h−1
= (I2h + 2W )2

h−1

= I2h + 2hW +
(

2h−1

2

)
4W 2 + . . . + (2W )2

h−1
.

Since
(

2h−1

t

)
2t ≡ 0 mod 2h, for all 1 ≤ t ≤ 2h−1, we have

A3·22h−2
≡ I2h mod 2h.
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In other words, we have
f(n + 2h)

f(n + 2h − 1)
f(n + 2h − 2)

...
f(n + 1)

 ≡ A


f(n + 2h − 1)
f(n + 2h − 2)
f(n + 2h − 3)

...
f(n)

 mod 2h

≡ A2


f(n + 2h − 2)
f(n + 2h − 3)
f(n + 2h − 4)

...
f(n− 1)

 mod 2h

...

≡


f(n + 2h − 3 · 22h−2)

f(n + 2h − 3 · 22h−2 − 1)
f(n + 2h − 3 · 22h−2 − 2)

...
f(n− 3 · 22h−2 − 2h)

 mod 2h.

Comparing the elements in the matrix yields the desired congruence. �

Remark 3.8. Using this polynomial approach, one can show for instance that 3 · 4h−1

is not a minimal period modulo 2h, h ≥ 1, for f(n). Namely, one can use the definition
of the Pn’s and Proposition 3.4 to check that

Pn+48(0) ≡ Pn+24(0) mod 8
or equivalently

f(n) ≡ f(n + 24) mod 8.

4. Applications

In this section we consider applications of Theorem 1.2 to graph theory, multiplicative
partition functions, and to the irrationality of a p-adic series.

4.1. Graph Theory. A simple graph G consists of a non-empty finite set V (G) of ver-
tices and a finite set E(G) of distinct unordered pairs of distinct elements of V (G) called
edges. We say that two vertices v, w ∈ V (G) are adjacent if there is an edge (v, w) ∈ E(G)
joining them. A graph for which E(G) is empty is called the null graph and is denoted
by Nn where n is the number of vertices. A complete graph is a simple graph in which
each pair of distinct vertices are adjacent. The complete graph on n vertices is denoted
by Kn. If the vertex set of a graph G can be partitioned into two disjoint sets A and B
so that each edge of G joins a vertex of A and a vertex of B, then G is called a bipartite
graph. A complete bipartite graph is a bipartite graph in which each vertex of A is joined



12 STEFAN DE WANNEMACKER, THOMAS LAFFEY, AND ROBERT OSBURN

to each vertex of B by just one edge. The complete bipartite graphs are denoted by Kr,s

where r and s are the cardinalities of A and B respectively.
Let G be a simple graph with n vertices. One can associate to G many polynomials

whose properties yield structure theorems of isomorphism classes of graphs. In the vast
literature, one can study, for example, the chromatic polynomial, Tutte polynomial, inter-
lace polynomials, cover polynomials of digraphs, and the matching polynomial of a graph.
In this section we take a closer look at the matching polynomial of certain bipartite
graphs.

A k-matching in a graph G is a set of k edges, no two of which have a vertex in
common. We denote the number of k-matchings in G by p(G, k). We set p(G, 0) = 1 and
define the matching polynomial of G by

µ(G, X) :=
∑
k≥0

(−1)kp(G, k)Xn−2k.

Some examples of matchings polynomials are
µ(Nn, X) = Xn,

µ(Kn, X) =
∑
k≥0

(−1)k n!
k!(n− 2k)!2k

Xn−2k,

and

µ(Kn,n, X) =
∑
k≥0

(−1)k

(
n

k

)2

k!Xn−2k.

The study of matching polynomials has been a focus of research over the last twenty
five years. For further details regarding properties of matching polynomials, the reader
should consult [3], [13], [14], [18], [19], [20], [21], or [34]. As we are interested in the roots
of µ(G, X), we recall some general results.

Proposition 4.1. Let G be a graph with n vertices. Then
(i) The zeros of µ(G, X) are real.
(ii) The zeros of µ(G, X) are symmetrically distributed about the origin.

Proof. For (i), see Corollary 1.2 or Lemma 4.3 in [19]. If n is even, then µ(G, X) can
be written as a polynomial in X2. If n is odd, then X−1µ(G, X) can be expressed as a
polynomial in X2. Thus (ii) follows. �

Further results on roots of matching polynomials can be found in [16], [17], [20], [21],
[24], or [26]. For our purposes, we consider the following bipartite graph. Let T (n) be
the graph with vertex set {1, . . . , n} ∪ {1′, . . . , n′}, where i is adjacent to j′ if and only
if i > j. Thus T (n) has 2n vertices. For n = 3, one can check that p(T (3), 1) = 3,
p(T (3), 2) = 1, p(T (3), 3) = 0, and thus

µ(T (3), X) = X2(X2 −X − 1)(X2 + X − 1).

We now relate the matching polynomial of T (n) to Stirling numbers of the second kind
S(n, k).

Proposition 4.2. For the graph T (n), we have

µ(T (n), X) =
n∑

k=0

(−1)kS(n, n− k)X2n−2k.
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Proof. We briefly sketch the proof as given in [19]. For another proof, see the solution
to Problem 4.31 in [36]. The idea is to consider a bijection from the set of k-matchings
of T (n) to a certain set of directed graphs. Thus counting the number of such directed
graphs yields p(T (n), k) and thus µ(T (n), X). Each matching in T (n) determines a
directed graph with vertex set N = {1, . . . , n} with arc (i, j) for each edge {i, j′} in the
matching and a loop on each vertex j not in the matching. Now, each vertex component
is a directed path with a loop on its last vertex. As there is an arc from i to j in the
directed graph only if i ≥ j, the graph is determined by the vertex set of each component.
Thus the number of such directed graphs with c components is S(n, c). Note that c equals
the number of loops and decreases by 1 for each edge in the original matching. Hence
c = n− k where k equals the number of edges in the matching. �

Each of the polynomials µ(T (n), X) contains X2 as a factor and thus is reducible. We

thus consider the roots of the polynomial
1

X2
µ(T (n), X). This corresponds to removing

the vertices 1 and n′ in the graph T (n). As a result of Theorem 1.2, we immediately have

Corollary 4.3. For n 6≡ 2 and 6≡ 2944838 mod 3145728, 1 is not a root of
1

X2
µ(T (n), X).

Remark 4.4. We conjecture that 1 is not a root of
1

X2
µ(T (n), X) for n ≡ 2 and

≡ 2944838 mod 3145728, and, more generally, that
1

X2
µ(T (n), X) is irreducible over Z

for every n > 3. This last statement has been numerically verified for all 3 < n ≤ 500.
Note that this statement implies Wilf’s conjecture.

4.2. Multiplicative partition functions. Multiplicative partition functions count the
number of representations of a given positive integer m as a product of positive integers.
For a well-written survey of techniques for enumerating product representations, please
see [31]. Suppose the canonical prime factorization of m is given by

m = pr1
1 . . . prn

n .

The succession of integers r1, r2, . . . rn, when arranged in descending order of magnitude,
specify a multipartite number

r1r2 . . . rn

associated to m. These multipartite numbers were first studied by MacMahon in [38].
Let bm denote the number of multiplicative partitions of m. Note that there is a one-to-
one correspondence between bm and the number of additive partitions of the multipartite
number associated to m. MacMahon [39] observed that the infinite product

∞∏
k=2

(1− k−s)−1

is the generating function of the Dirichlet series

∞∑
m=1

bmm−s.

Harris and Subbarao provide a recursion for bm in [25] while Mattics and Dodd [40] have
shown that bm ≤ m(log m)−α for each fixed α > 0 and for all sufficiently large m. This
upper bound implies a conjecture of Hughes and Shallit [27]. More precise results of an
asymptotic nature on the growth rate of bm can be found in [5].
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In this section we consider the reciprocal Dirichlet series

∞∑
m=1

amm−s

generated by the infinite product
∞∏

k=2

(1 − k−s). The coefficients am count the number

of (unordered) representations of m as a product of an even number of distinct integers
> 1 minus the number of representations of m as a product of an odd number of distinct
integers > 1. Note that for a positive integer m > 1, am depends only on the exponents
r1, r2, . . . , rn in the canonical prime factorization of m. In particular, if m is squarefree,
the value of am is a function of the number n of prime factors of m. Let e(n) denote this
function. Subbarao and Verma [42] studied the asymptotic behavior of e(n) and showed
that

log |e(n)|
n

is unbounded as n →∞. In fact, they prove

lim sup
n→∞

log |e(n)|
n log n

= 1.

Note that if we identify the factors of m = p1 . . . pn with subsets of {1, 2, . . . , n}, then
e(n) counts the number of ways to partition a set S of n elements into an even number
of non-empty subsets minus the number of ways to partition S into an odd number of
non-empty subsets. Thus,

e(n) =
n∑

k=1

(−1)kS(n, k).

As a result of Theorem 1.2, we have the following

Corollary 4.5. If m is squarefree and contains n prime factors, then am = e(n) 6= 0 for
all n 6≡ 2 and 6≡ 2944838 mod 3145728.

4.3. p-adic sums. Let p be a prime. For every a ∈ Z \ {0}, put
vp(a) = max {m ∈ Z : pm | a}.

We extend vp to Q \ {0} by defining vp(α) = vp(a)− vp(b) where α =
a

b
. If we define

|α|p =


p−vp(α) if α 6= 0

0 if α = 0,

then | |p is a norm on Q called the p-adic norm. The field of p-adic numbers Qp is the
completion of Q with respect to | |p, i.e., p-adic numbers are convergent series of the
form

∞∑
k=i

akpk,

where i, ak ∈ Z. Recall that a p-adic number α ∈ Qp \Q is called a p-adic irrational.

It is a well-known result that the series
∞∑

n=1

an with an ∈ Qp converges if and only if

|an|p → 0 as n →∞ (see Corollary 4.1.2 in [22]). Thus the series
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α :=
∞∑

n=1

n!

converges in Qp as |n!|p → 0. The same is true for the series

αk :=
∞∑

n=1

nkn!

where k is a non-negative integer. Murty and Sumner [41] investigate the irrationality of
αk. Schikhof [43] was the first to ask whether α0 = α is a p-adic irrational or not. Murty
and Sumner conjecture that it is. They also use the fact that

m∑
n=0

n · n! = (m + 1)!− 1

and |(m + 1)!|p → 0 as m →∞ to deduce that α1 = −1. Moreover, they prove using an
inductive argument that

αk = vk − ukα,
where uk, vk ∈ Z. In fact, they show that if one assumes that α is irrational, then (see
Lemma 4 in [41])

(−1)kuk =
k+1∑
j=1

(−1)jS(k + 1, j).

As a result of this expression for uk and Theorem 1.2, we can extend Theorem 1 in [41]
as follows.

Corollary 4.6. Let p be a prime. If α is a p-adic irrational and k + 1 6≡ 2 and 6≡
2944838 mod 3145728, then αk is a p-adic irrational.

Appendix

The following code provides the possible zeros of f(n) modulo m as well as the minimal
period.
#include <stdio.h>

#define m ’any number’

long Data1[m + 1]; long Data2[m + 1];

int main() {
long I;
long double Steps=0;
Data1[1] = 1;
Data2[1] = 0;
for (I = 2; I < m + 1; ++I) {

Data1[I]= 0;
Data2[I]= 0;

};
long Sum=0;
long l=0;
printf("--------------------------------------------\n");
printf("Possible zeros for f(n) modulo %i\n",m);
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printf("--------------------------------------------\n");
cont1:

++Steps;
Sum = 0;
for (I = m; I > 1 ; --I) {

Data2[I] = (m+Data1[I] * (I - 1) - Data1[I - 1]) % m;
Sum += Data2[I];

};
Data2[1] = (m - Data1[m])%m;

if (!((Sum + Data2[1] )% m)){
printf("Possible zero is %Lf \n ",Steps);

}
// Check if minimal period is reached
if (Sum | (Data2[1]-1)) goto Transfer;
printf("The minimal period is : %Lf \n", Steps);
return 0;

Transfer:
for (I = 1; I < m + 1; ++I){

Data1[I]=Data2[I];
}
goto cont1;

}

Acknowledgments

The authors would like to thank Ram Murty for his comments on a preliminary version
of this paper, Bruce Berndt for pointing out reference [2], and the referees for their
encouragement and insightful comments which shortened our original proof of Theorem
1.2 and improved the exposition. The first author would also like to thank Barbara
Verdonck for many productive discussions. The third author would like to mention that
this paper owes its existence to a delightful talk given by Professor Murty in the Summer
of 2004 at Queen’s University in Kingston, Ontario, Canada.

References

[1] R. E. Beard, On the coefficients in the expansion of eet
and ee−t

, J. Inst. Actuar. 76 (1950),

152–163.
[2] B. Berndt, Ramanujan’s Notebooks, Part I, Springer–Verlag, New York, 1985.

[3] R. A. Beezer, E. J. Farrell, The matching polynomial of a regular graph, Discrete Math. 137 (1995),

no. 1-3, 7–18.
[4] W. C. Brown, Matrices over Commutative Rings, M. Dekker, New York, 1993.

[5] E. Canfield, P. Erdos, and C. Pomerance, On a problem of Oppenheim concerning “Factorisatio
Numerorum” J. Number Th. 17 (1983), 1–28.

[6] L. Carlitz, Congruences for generalized Bell and Stirling numbers, Duke Math. J. 22 (1955), 193–

205.
[7] R. Coleman, On the Galois group of the exponential Taylor polynomial, L’Enseignement Math. 33

(1987), 183–189.

[8] L. Comtet, Advanced Combinatorics, D. Reidel, 1974.
[9] N. G. de Bruijn, Asymptotic methods in analysis, Corrected reprint of the third edition, Dover

Publ. Inc., New York, 1981.

[10] S. De Wannemacker, On 2-adic orders of Striling numbers of the second kind, INTEGERS, 5(1)
(2005), A21.



ON A CONJECTURE OF WILF 17

[11] S. De Wannemacker, Annihilating polynomials for quadratic forms and Stirling numbers of the

second kind, to appear in Math. Nachr.

[12] S. De Wannemacker, Annihilating polynomials and Stirling numbers of the second kind, Ph.D.
thesis, University College Dublin (2006).

[13] P. Diaconis, A. Gamburd, Random matrices, magic squares, and matching polynomials, Electron.

J. Combin. 11 (2004/06), no. 2, Research Paper 2, 26 pp.
[14] E. J. Farrell, An introduction to matching polynomials, J. Combin. Theory Ser. B 27 (1979), no.

1, 75–86.

[15] M. Filaseta, O. Trifonov, The irreducibility of the Bessel polynomial, J. Reine Angew. Math. 550
(2002), 125–140.

[16] D. C. Fisher, J. Ryan, Bounds on the largest root of the matching polynomial, Discrete Math. 110

(1992), no. 1-3, 275–278.
[17] C. D. Godsil, Matchings and walks in graphs, J. Graph Theory 5 (1981), no. 3, 285–297.

[18] C. D. Godsil, Hermite polynomials and a duality relation for matching polynomials, Combinatorica
1 (1981), no. 3, 257–262.

[19] C. D. Godsil, Algebraic Combinatorics, Chapman & Hall, New York, 1993.

[20] C. D. Godsil, I. Gutman, On the theory of the matching polynomial, J. Graph Theory 5 (1981),
no. 2, 137–144.

[21] C. D. Godsil, I. Gutman, On the matching polynomial of a graph, Algebraic methods in graph

theory, Vol. I, II (Szeged, 1978), 241–249, Colloq. Math. Soc. János Bolyai, 25, North-Holland,
Amsterdam-New York, 1981.
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