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Abstract. The lacking polynomial is a graph polynomial introduced by Chan, Mar-
ckert, and Selig in 2013 that is closely related to the Tutte polynomial of a graph. It
arose by way of a generalization of the Abelian sandpile model and is essentially the
generating function of the level statistic on the set of recurrent configurations, called
stochastically recurrent states, for that model. In this note we consider the lacking
polynomial of the complete bipartite graph. We classify the stochastically recurrent
states of the stochastic sandpile model on the complete bipartite graphs K2,n and Km,2

where the sink is always an element of the set counted by the first index. We use these
characterizations to give explicit formulae for the lacking polynomials of these graphs.
Log-concavity of the sequence of coefficients of these two lacking polynomials is proven,
and we conjecture log-concavity holds for this general class of graphs.

The stochastic sandpile model is a variant of the Abelian sandpile model [3] that was
introduced by Chan, Marckert and Selig [4] in 2013. In the stochastic sandpile model the
classical sandpile toppling rule is replaced with an alternative rule whereby, on toppling
an unstable vertex, a grain may (but does not have to) be sent to each neighbouring
vertex. It can be viewed as a Markov chain on the set of non-negative configurations
where at each time step a grain is added to a random node followed by a complete
stochastic stabilization.

One consequence of this is that the toppling of a vertex does not necessarily result in it
becoming stable. As part of their paper the authors introduced a notion of stochastically
recurrent states as the analog of recurrent states for the classical model. They provided
a characterization for such states in terms of orientations compatible with configurations.
Further research into this model can be found in the papers [8, 9].

Let G be a finite, unoriented, connected and loop-free graph with a distinguished
vertex, s, called the sink. A stable configuration on G is an assignment of non-negative
integers to each non-sink vertex such that the number of grains at a given vertex is less
than its degree. First, we will recall a definition from Chan et al. [4] which explains what
it means for an orientation to be compatible with a configuration.

Definition 1 (Chan et al. [4]). Let c be a configuration on G. An orientation O of G
is an assignment of a direction to each of the edges of G. We say that configuration c is
compatible with O (and likewise O is compatible with c) if for all non-sink vertices v in
G,

inO(v) ≥ d(v)− ci,

where inO(v) is the number of incoming edges to v w.r.t. O and d(v) is the degree of
vertex v.

We denote by comp(O) the set of stable configurations on G that are compatible with
O. Note that, in comparison to the paper [4], the inequality in Definition 1 is missing
one on the right hand side. This is because of a subtle change to the model. In [4]
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they considered a vertex unstable if the number of grains at a vertex exceeds its degree,
whereas we consider a vertex unstable if the number of grains at vertex is not less than
the degree which is in line with the definition of the ASM in [5]. The two notions are
equivalent.

Theorem 2 (Chan et al. [4]). A stable configuration c on G is stochastically recurrent if
and only if there exists an orientation O on G such that c ∈ comp(O). It implies that
Sto(G), the set of all stochastically recurrent states on G, may be written

Sto(G) =
⋃

orientations O
of G

comp(O)

where the union is taken over all orientations on G.

Chan et al. [4] also introduced the lacking polynomial of a graph to be the generating
function counting the stochastically recurrent configurations according to the number of
grains by which a given configuration differs from the maximally stable configuration.

Definition 3 (Chan et al. [4]). The lacking polynomial LG(x) is

LG(x) :=
∑

c∈Sto(G)

x`(c),

where

`(c) :=
∑

v∈V (G)\{s}

l(v)

and l(v) := d(v)− c(v)− 1 is the lacking number of vertex v.

Readers familiar with the sandpile model literature will notice that the lacking poly-
nomial is essentially the level polynomial (see e.g. Cori and Le Borgne [2]) of the graph
over the set of stochastically recurrent states with the sequence of coefficients reversed.

In this note we consider the stochastic sandpile model on the complete bipartite graph
Km,n with vertex set {v0, v1, . . . , vm+n−1}. We will treat v0 as the sink s and this graph has
edges connecting vertices in the sets {v0, v1, v2, . . . , vm−1} and {vm, vm+1, . . . , vm+n−1}.

We characterise stochastically recurrent states on the graphs K2,n and Km,2 and use
these characterisations to give expressions for the lacking polynomials L2,n(x) and Lm,2(x)
on those graphs. We also prove that the sequence of coefficients of both L2,n(x) and
Lm,2(x) are log-concave. This note is motivated by Alofi and Dukes [1] that considers
rectangular tableaux representations of recurrent states of the Abelian sandpile model on
the complete bipartite graph, and transformations upon them.

Theorem 2 allows us to write an expression for stochastically recurrent states on the
complete bipartite graphKm,n:

Proposition 4. The set of stochastically recurrent states of the stochastic sandpile model
on Km,n is

Sto(Km,n) =
⋃

orientations O
of Km,n

{(c1, . . . , cm+n−1) : outO(vi) ≤ ci < d(vi), ∀1 ≤ i ≤ m + n− 1} .

Proof. Let c = (c1, c2, . . . , cm+n−1) be a stable configuration on Km,n. Suppose it is
compatible with an orientation O where ci < d(vi) for all 1 ≤ i ≤ m + n− 1. According
to the Definition 1 we must have:

inO(vi) ≥ d(vi)− ci.
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This means ci ≥ d(vi) − inO(vi) = outO(vi). When we combine the application of
Definition 1 with Theorem 2 for G = Km,n we find

Sto(Km,n) =
⋃

orientations O
of Km,n

{(c1, . . . , cm+n−1) : outO(vi) ≤ ci < d(vi), ∀1 ≤ i ≤ m + n− 1}.

�

Example 5. Consider the graph K2,2. To determine the stochastically recurrent states
compatible with each orientation O of graph K2,2 first we find outO(vi) for all 1 ≤ i ≤ 3,
and then when we apply Prop. 4. See Table 1 for a listing of the configurations that are
compatible with each orientation. It follows that

v0 v1

v2 v3

outO(v1) = 1, outO(v2) = 1, outO(v3) = 1.
=⇒ 1 ≤ c1 < 2, 1 ≤ c2 < 2, and 1 ≤ c3 < 2.
The contribution to Sto(K2,2) is {(1, 1, 1)}.

v0 v1

v2 v3

outO(v1) = 1, outO(v2) = 1, outO(v3) = 1.
=⇒ 1 ≤ c1 < 2, 1 ≤ c2 < 2, and 1 ≤ c3 < 2.
The contribution to Sto(K2,2) is {(1, 1, 1)}.

v0 v1

v2 v3

outO(v1) = 1, outO(v2) = 0, outO(v3) = 1.
=⇒ 1 ≤ c1 < 2, 0 ≤ c2 < 2, and 1 ≤ c3 < 2.
The contribution to Sto(K2,2) is {(1, 0, 1), (1, 1, 1)}.

v0 v1

v2 v3

outO(v1) = 1, outO(v2) = 1, outO(v3) = 0.
=⇒ 1 ≤ c1 < 2, 1 ≤ c2 < 2, and 0 ≤ c3 < 2.
The contribution to Sto(K2,2) is {(1, 1, 0), (1, 1, 1)}.

v0 v1

v2 v3

outO(v1) = 0, outO(v2) = 1, outO(v3) = 1.
=⇒ 0 ≤ c1 < 2, 1 ≤ c2 < 2, and 1 ≤ c3 < 2.
The contribution to Sto(K2,2) is {(0, 1, 1), (1, 1, 1)}.

Table 1. Checking all orientations of K2,2.

Sto(K2,2) = {(0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

We can provide crude lower and upper bounds on the number of stochastically recurrent
configurations by making use of the fact [4, Prop. 2.3] that Sto(Km,n) properly contains
the set of classically recurrent states, and such states are in 1-1 correspondence with the
number of spanning trees of the underlying graph. Fieldler and Sedlacek [6] showed the
number of spanning trees of the complete bipartite graph Km,n is nm−1mn−1. Thus the
number of stochastically recurrent configurations on Km,n is at least nm−1mn−1. A trivial
upper bound is achieved by noting that the stochastically recurrent states are stable
configurations, of which there are nm−1mn many. Thus

nm−1mn−1 ≤ |Sto(Km,n)| ≤ nm−1mn. (1)

Note that the upper bound differs from the lower bound only by a factor of m.
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Question 6. Can it be determined whether or not the number of stochastically recurrent
states dominates the set of stable states? I.e. can it be decided

|Sto(Km,n)| ≶ nm−1mn

2
?

The set of stable configurations on K2,n is

{(c1, c2, . . . , cn+1) : 0 ≤ c1 < n and ci ∈ {0, 1}, ∀ 2 ≤ i ≤ n + 1}.
In order to calculate the lacking polynomial L2,n(x) we first need an explicit characteri-
zation of the set Sto(K2,n).

Proposition 7.

Sto(K2,n) = {(c1, c2, . . . , cn+1) : c2, . . . , cn+1 ∈ {0, 1} and c1 ≥ |j ∈ [2, n + 1] : cj = 0|}.

Proof. Using Proposition 4 we know

Sto(K2,n) = {c = (c1, . . . , cn+1) : ∃ an orientation O of K2,n compatible with c}.
Let us suppose c = (c1, . . . , cn+1) is a member of Sto(K2,n). This means

n− inO(v1) = outO(v1) ≤ c1 < n

and
2− inO(vj) = outO(vj) ≤ cj < 2 for all 2 ≤ j ≤ n + 1.

Let us now see under what conditions one can construct an orientation O on K2,n that is
compatible with a given c. Let X be the set of indices j in [2, n+1] for which cj = 0, and
where we use the notation [a, b] := {a, a+1, . . . , b}. For any j in X the number of outgoing
edges at vertex vj is zero (outO(vj) = 0), because we know that outO(vj) ≤ cj < 2, so if
cj = 0 then outO(vj) = 0. Therefore, for all j in X there is one outgoing edge from v1 to
vj, and hence vertex vj has one incoming edge from v1. So the number of outgoing edges
from v1 is greater than or equal to the number of elements in X.

For any j in [2, n + 1]\X, we know that there is at most one outgoing edge from vj as
outO(vj) ≤ cj < 2. So if cj = 1 then outO(vj) ≤ 1. With these considerations in mind,
we can construct an orientation O on K2,n that is compatible with a stable configuration
c:

(i) If cj = 1 with 2 ≤ j ≤ n + 1 then there is at most one outgoing edge from vj.
(ii) If cj = 0 and 2 ≤ j ≤ n + 1 then there are no outgoing edges from vj.

(iii) The number of outgoing edges from vertex v1 is greater than or equal the number
of vertices vj when cj = 0 for all 2 ≤ j ≤ n+ 1. We know that the outO(v1) is less
than or equal to c1 and greater than or equal to the number of vertices vj when
cj = 0 for all 2 ≤ j ≤ n + 1. Therefore c1 is greater than or equal to the number
of vertices vj when cj = 0 for all 2 ≤ j ≤ n + 1.

There are no other restrictions that forbid us from constructing such an orientation O.
Therefore we can write down the following self-contained expression for the set Sto(K2,n)
that does not depend on an orientation O:

Sto(K2,n) = {(c1, c2, . . . , cn+1) : c2, . . . , cn+1 ∈ {0, 1} and c1 ≥ |j ∈ [2, n + 1] : cj = 0|}.
�

Theorem 8. The lacking polynomial of the graph K2,n is

L2,n(x) =
n−1∑
k=0

k∑
i=0

(
n

i

)
xk.
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Proof. Definition 3 gives

L2,n(x) =
∑

c∈Sto(K2,n)

x`(c)

where
`(c) :=

∑
vi∈V (K2,n)\{v0}

l(vi) and l(vi) := d(vi)− c(vi)− 1.

Proposition 7 provides an explicit expression for the set Sto(K2,n) that can be used to
calculate the lacking polynomial. Let c be in Sto(K2,n). Let l1 = n− c1−1 be the lacking
number at vertex v1, and let lj = 1− cj be the lacking number at vertices v2, . . . , vn+1 for
all j ∈ [2, n + 1], so lj = 0 when cj = 1 and lj = 1 when cj = 0. Let i be the number of
vertices vj with j ∈ [2, n + 1] and cj = 0 for which lj = 1. The remaining vertices have
lj = 0. Then x`(c) factors as x`(c) = xixl1 . Since c1 ≥ |j ∈ [2, n + 1] : cj = 0|, we conclude
that c1 ≥ i, therefore the lacking number at v1 will be between 0 and n − 1 − i. Since
there are

(
n
i

)
combinations of i vertices with lacking number 1 among {v2, . . . , vn+1}, we

obtain

L2,n(x) =
n∑

i=0

(
n

i

)
xi

n−1−i∑
l1=0

xl1 .

Now setting k = i + l1 we have

L2,n(x) =
n−1∑
k=0

k∑
i=0

(
n

i

)
xk. �

Note that L2,n(1) = n2n−1.
A configuration c = (c1, c2, . . . , cm+1) on Km,2 is stable precisely when ci ∈ {0, 1} for

all i ∈ {1, . . . ,m − 1} and 0 ≤ cj < m for all j ∈ {m,m + 1}. To calculate the lacking
polynomial Lm,2(x) requires an explicit characterization of the set Sto(Km,2).

Proposition 9.

Sto(Km,2) = {(c1, c2, . . . , cm+1) : c1, . . . , cm−1 ∈ {0, 1} and cm + cm+1 ≥ m− 1 + |X|}.

Proof. From Proposition 4 we have

Sto(Km,2) = {c = (c1, . . . , cm+1) : ∃ orientation O of Km,2 compatible with c}.
Suppose c = (c1, . . . , cm+1) is a member of Sto(Km,2). This means that

n− inO(vi) = outO(vi) ≤ ci < 2 for all i ∈ {1, . . . ,m− 1}
and

2− inO(vj) = outO(vj) ≤ cj < m for all j ∈ {m,m + 1}.
Let us see under what conditions one can construct an orientation O on Km,2 that is
compatible with a given c. Let X be the set of indices i in [1,m − 1] for which ci = 0.
For any i ∈ X the number of outgoing edges at vertex vi is zero (outO(vi) = 0) since
outO(vi) ≤ ci < 2. So if ci = 0 then outO(vi) = 0.

Therefore, for all i in X there are is one outgoing edge from each of vm and vm+1 to vi.
Moreover, vertex vi has one incoming edge from each of vm and vm + 1. So the number of
outgoing edges from vm is greater than or equal to the number of elements in X. Also, the
number of outgoing edges from vm+1 is greater than or equal to the number of elements
in X. Therefore cm ≥ |X| and cm+1 ≥ |X|.

For any i ∈ [1,m−1]\X, we know that there is at most one outgoing edge from vi since
outO(vj) ≤ cj < 2, so if cj = 1 then outO(vj) ≤ 1. So the total number of outgoing edges
from vm and vm+1 to vi must at least equal m− 1−|X|. Therefore we can then construct
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such an orientation O of Km,2 that is compatible with a stable configuration c precisely
when cm + cm+1 ≥ 2|X| + m − 1 − |X| = m − 1 + |X|. There are no other restrictions
that forbid us from constructing such an orientation O. Therefore we can write down
the following self-contained expression for the set Sto(Km,2) that does not depend on an
orientation O:

Sto(Km,2) = {(c1, c2, . . . , cm+1) : c1, . . . , cm−1 ∈ {0, 1} and cm + cm+1 ≥ m− 1 + |X|}.

�

Theorem 10. The lacking polynomial for the graph Km,2 is

Lm,2(x) =
m−1∑
k=0

S(m− 1, k)xk

where

S(m− 1, k) =
k∑

q=0

q∑
r=0

(
m− 1

r

)
for all 0 ≤ k ≤ m− 1.

Proof. The lacking polynomial Lm,2(x), given in Definition 3, is

Lm,2(x) =
∑

c∈Sto(Km,2)

x`(c)

where

`(c) =
∑

vi∈V (Km,2)\{v0}

l(vi), and l(vi) = d(vi)− c(vi)− 1.

Proposition 9 provides an explicit expression for the set Sto(Km,2) that can now be used
to calculate Lm,2(x). Let c be in Sto(Km,2). Let li = 1 − ci be the lacking number of
vertex vi for all i ∈ [1,m− 1], so that li = 0 when ci = 1 and li = 1 when ci = 0. For the
vertices vm and vm+1 the lacking numbers are lm = m− 1− cm and lm+1 = m− 1− cm+1,
respectively. We factor x`(c) = x|X|xlm+lm+1 and can now write cm + cm+1 ≥ m− 1 + |X|
in terms of lacking numbers as:

m− 1− lm + m− 1− lm+1 ≥ m− 1 + |X|

which is equivalent to

m− 1− |X| ≥ lm + lm+1.

Now suppose that r = lm + lm+1, then r ranges in between 0 and m− 1− |X|. For each
choice of r we have exactly r + 1 choices for (lm, lm+1). Now let j = |X| be the number
of vertices vi with i ∈ [1,m− 1] and ci = 0 for which then li = 1. The remaining vertices
will have li = 0. So there are

(
m−1
j

)
combinations of j vertices with lacking number 1

among {v1, . . . , vm−1}, and we obtain

Lm,2(x) =
m−1∑
j=0

(
m− 1

j

)
xj

m−1−j∑
r=0

(r + 1)xr =
m−1∑
j=0

m−1−j∑
r=0

(
m− 1

j

)
(r + 1)xr+j.

Set k = j + r. Then k runs from 0 to m − 1 so that j can run from 0 to k and, with
r = k − j, we obtain the sum

Lm,2(x) =
m−1∑
k=0

k∑
j=0

(
m−1
j

)
(k − j + 1)xk.
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This is equal to

Lm,2(x) =
m−1∑
k=0

S(m− 1, k)xk

where

S(m− 1, k) =
k∑

q=0

q∑
r=0

(
m− 1

r

)
for all 0 ≤ k ≤ m− 1. �

Note that the sequence (Lm,2(1)m≥1 corresponds to sequence A084851 in the OEIS [7].
A sequence a0, a1, . . . , an of non-negative real numbers is said to be logarithmically

concave, or log-concave, if for all 0 < k < n, a2k − ak−1ak+1 ≥ 0.

Lemma 11. Suppose (x0, x1, . . . , xn) is a log-concave sequence. Then the sequence
(z0, . . . , zn) of partial sums defined by

zk =
k∑

i=0

xi

is also log-concave.

Proof. Wang and Yeh [10] proved that if sequences (xk) and (yk) are log-concave, then
the sequence (zk) where zk is the ordinary convolution

zk =
k∑

i=0

xiyn−i

is log-concave. The sequence (y0, . . . , yk) = (1, . . . , 1) is trivially log-concave. The state-
ment of the lemma follows since it is the special case with all yj’s replaced with 1s. �

Theorem 12.
(i) The sequence of coefficients of the lacking polynomial L2,n(x) is log-concave.

(ii) The sequence of coefficients of the lacking polynomial Lm,2(x) is log-concave.

Proof. (i) From Theorem 8 we have

L2,n(x) =
n−1∑
k=0

T (n, k)xk where T (n, k) :=
k∑

i=0

(
n

i

)
.

It is well-known that the sequence of binomial coefficients
((

n
k

))
k=0,1,2,...,n

is log-concave.

By Lemma 11, the sequence (T (n, k))k=0,...,n is log-concave. Therefore the sequence of
coefficients of the lacking polynomial L2,n(x) is log-concave.
(ii) From Theorem 10 we have

Lm,2(x) =
m−1∑
k=0

S(m− 1, k)xk

where

S(m− 1, k) :=
k∑

q=0

q∑
r=0

(
m− 1

r

)
for all 0 < k ≤ m− 1.

Let R(m−1, q) :=
∑q

r=0

(
m−1
r

)
. By Lemma 11 the sequence (R(m−1, q))q=0,...,m−1 is log-

concave. Then, again by an application of Lemma 11, the sequence (S(m− 1, k))k=0,...,m−1

=
(∑k

q=0R(m− 1, q)
)
k=0,...,m−1

is also log-concave. Therefore the sequence of coefficients

of the lacking polynomial Lm,2(x) is log-concave. �
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L2,2(x) = 1 + 3x

L2,3(x) = 1 + 4x + 7x2

L2,4(x) = 1 + 5x + 11x2 + 15x3

L2,5(x) = 1 + 6x + 16x2 + 26x3 + 31x4

L3,2(x) = 1 + 4x + 8x2

L3,3(x) = 1 + 5x + 15x2 + 30x3 + 39x4

L3,4(x) = 1 + 6x + 21x2 + 52x3 + 100x4 + 148x5 + 158x6

L3,5(x) = 1 + 7x + 28x2 + 79x3 + 175x4 + 320x5 + 490x6 + 610x7 + 585x8

L4,2(x) = 1 + 5x + 12x2 + 20x3

L4,3(x) = 1 + 6x + 21x2 + 53x3 + 105x4 + 162x5 + 189x6

L4,4(x) = 1 + 7x + 28x2 + 84x3 + 203x4 + 413x5 + 716x6 + 1068x7 + 1344x8 + 1336x9

L5,2(x) = 1 + 6x + 17x2 + 32x3 + 48x4

L5,3(x) = 1 + 7x + 28x2 + 80x3 + 182x4 + 347x5 + 561x6 + 756x7 + 837x8

Table 2. Lacking polynomials Lm,n(x) for some small m and n.

The two results in Theorem 12 suggest that log-concavity might be a property of these
lacking polynomials for the general complete bipartite graph. We have also verified this
for all (m,n) with m,n ≥ 2 and m+n ≤ 8 (see Table 2). Since log-concavity of a sequence
implies unimodality of the sequence, we may also conjecture this latter property in the
event that log-cavity does not hold.

Conjecture 13. Let m,n ≥ 2.

(i) The sequence of coefficients of Lm,n(x) is log-concave.
(ii) The sequence of coefficients of Lm,n(x) is unimodal.

It is worth mentioning that that more general property of these polynomials being
real-rooted, which implies log-concavity, does not hold. This is easily verified by looking
at the roots of L2,3(x) = 0 or L3,2(x) = 0.
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